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THE RESONANT FREQUENCY OF A
RECIPROCATING LOAD ON AN ELASTIC BEAM
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The resonant frequency of a reciprocating point load on an elastic beam is considered.
Employing the elementary beam theory and applying the Fourier expansion technique, the
exact solution is obtained in the form of double series. We have found that the resonant
frequency of the reciprocating load is given by v*n,m =v*n /m, where v*n is the natural
frequency of the nth mode of the beam vibration and m is an integer ranging from 1 to
infinity. Checking the vibration mode, we have concluded that there is an infinite number
of resonant frequencies for a single mode of vibration. This multi-resonance for a single
mode may prove to be quite interesting to engineers.
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1. INTRODUCTION

The dynamic response of an elastic beam to a moving load is one of the classical and basic
engineering problems. A unified treatment for a uniformly moving load on the beam can
be found in the book by Fryba [1]; however, there are fewer studies for a reciprocating
load. We can cite the works of Ohyoshi [2, 3], Goloskokov [4] and Watanabe [5–7]
regarding the reciprocating load.

Ohyoshi [3] has considered the dynamic response of an elastic half-space to a
reciprocating load, including the frictional effect, and has given more accurate information
for the internal stress field, which might be more helpful for tribologists. Goloskokov [4]
has considered the time harmonic response of a cylindrical shell. Watanabe [7] has
considered the reciprocating and vibrating anti-plane load on an elastic half-space, as a
model of a imperfect positioning of a pin load, and has derived an approximate expression
for the response. All of these authors have considered only the dynamic response, not the
resonance characteristics. Here, we have considered the resonant frequency for the
reciprocating load and have found an infinite number of resonant frequencies for a single
mode of vibration. This characteristic of the multi-resonant frequencies is very strange and
interesting.

2. STATEMENT OF THE PROBLEM

Let us consider an elastic beam and take the co-ordinates as shown in Figure 1. A
reciprocating point load with an interval, −aE xE+a, is assumed, as follows:

P(x, t)=P0d(x− a sin (vt)), (1)
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where P0 is the magnitude of the load, v is the frequency of the reciprocation and d( · )
is the Dirac delta function. Employing elementary beam theory [8, p. 324], we have the
simple equation of motion as

EI
14W
1x4 + rA

12W
1t2 =P0d(x− a sin (vt)), (2)

where EI, r and A are the bending rigidity, density and cross-sectional area respectively.
In the present paper, the three types of boundary conditions as shown in Figure 1 are

considered. They are:
(a) both ends simply supported;

W=x=2l =0,
1W 2

1x2 bx=2l

=0, (3)

(b) both ends fixed,

W=x=2l =0,
1W
1x bx=2l

=0, (4)

(c) one end simply supported and the other fixed,

W=x=2l =0,
1W
1x bx=−l

=0,
1W 2

1x2 bx=+l

=0. (5)

Expanding the reciprocating load given by the delta function in the form of double
Fourier series (see Appendix A), we can obtain the formal solution which is composed of
two parts:

W(x, t)=Ws(x)+Wd(x, t), (6)

where the first and second terms in Equation (6) correspond to the static and dynamic
responses respectively, and are given by

Ws(x)=
P0

2lEI $2 s
a

k=1 0 l
kp1

4

J00kpa
l 1 cos 0kpx

l 1+
x4

4!
+Asx+Bsx+Csx+Ds%, (7)

Figure 1. A reciprocating load on an elastic beam and three types of boundary conditions.
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Figure 2. The deflection of beam within a period. (a) Both ends simply supported; (b) Both ends fixed; (c)
One end simply supported and the other fixed.

Wd(x, t)= s
+a

m=−a
m$ 0

exp (−imvt) s
+a

k=−a $ P0

2lEI
Jm(kpa/l)

(kp/l)4 − b4
m

exp (ikpx/l)

+ Ad(m, k) sinh (bmx)+Bd(m, k) cosh (bmx)

+ Cd(m, k) sin (bmx)+Dd(m, k) cos (bmx)], (8)

where Aj , Bj , Cj and Dj , j= s, d, are unknown coefficients to be determined by the
boundary conditions and

bm =(z=m=v)/l. (9)

After applying the boundary conditions of equations (3)–(5), we have the exact solution
as in Appendix B. Typical deflections of the beam are shown in Figure 2, where the
following non-dimensionalization is introduced:

X= x/l, T=2p/V, a= a/l, V=vl2zrA/EI, W*= (EI/P0l3)W. (10)
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3. THE RESONANT FREQUENCY

From the exact solution in Appendix B, we can discuss the resonant frequency. For the
case (a), one expects that the solution will be divergent when

kp− bml=0, cos (bml)=0. (11, 12)

For the first condition of equation (11), replacing bml with kp in equation (B2), we find
that the solution is divergent only when the integer m is an odd number. Thus the resonant
frequency is given by

v=
1
m 0np

2l1
2

XEI
rA

, (13)

where n=2k.
On the other hand, for the second case of equation (11), if we substitute bml= np/2 (n

is odd) into equation (B2), the solution is divergent only when m is an even number. Then,
we have the same expression as equation (12) for the resonant frequency. Therefore,
introducing the natural frequency of a simply supported beam,

v*n =0np

2l1
2

XEI
rA

, (14)

we have the resonant frequency for the reciprocating load as

v*n,m =v*n /m, m=1, 2, 3, . . . . (15)

In order to check the vibration mode at resonance, we substitute equation (15) into
equation (B2) and then have

Wd(x, t)1 P0l3

2EI
lim

v:v*n ,m $ Jm(npa/2l)
(np/2)4(v−v*n,m)% sin (v*n t) sin (npx/2l) (16)

for even n and odd m, and

Wd(x, t)1 P0l3

2EI
2v*n

(np/2)
lim

v:v*n ,m $ 1
v−v*n,m

s
a

k= odd

Jm(kpa/2l)
(np/2)2 − (kp)2% cos (v*n t) cos 0npx

2l 1 (17)

for odd n and even m.
Thus, at the resonant frequency v*n,m , the frequency of the beam vibration is equal to

that of the nth natural frequency, v*n , and the anti-symmetric and symmetric modes of
vibration correspond to the even and odd numbers of n respectively. At a resonant with
symmetric mode, that is, odd n, the largest resonant frequency v*n,m is half of the resonant
frequency of the free vibration, v*n . The reason is that m is even and starts from 2. In
Figure 3(a) one can find the contradiction in order between two resonant frequencies
marked by (n=5, m=2) and (n=4, m=1). This is very strange because, in the general
knowledge of the vibration, the resonant frequency of the lower mode is higher than that
of the higher mode.

For the other two cases of the boundary conditions, it is easily checked that the first
condition, bml= np, in equation (11) does not give the resonant frequency. After checking
the denominator

sin (bml) cosh (bml)2 cos (bml) sinh (bml)=0 (18)
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in equation (B4) for case (b), we can find the same expression for the resonant frequency
as in case (a). In equation (13) the natural frequency is replaced by

v*n =0pn

2l1
2

XEI
rA

, (19)

where pn is the well-known nth root of the eigenequation, cos (p) cosh (p)=1. In this case,
it is also valid that the denominator m in equation (15) must be even for an odd mode
number n and it must also be odd for even n.

For the last case (c), the resonant frequency has the same expression as in the former
two cases. However, a replacement for the eigenvalue, pn , which is the root of the
eigenequation

sin (p) cosh (p)− cos (p) sinh (p)=0, (20)

Figure 3. Resonance curves (amplitude versus frequency). (a) Both ends simply supported; (b) Both ends fixed;
(c) One end simply supported and the other fixed.
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T 1

The resonant frequency v*n,m =(1/m)(pn/2l)2zEI/rA of the reciprocating load on an elastic
beam

Boundary Conditions
conditions Eigenvalues for m and n

(a) Both ends pn = np (1) If n is odd, m is even
simply supported (2) If n is even, m is odd

(b) Both ends fixed cos (pn) cosh (pn)=1 (3) If n is odd, m is even
(4) If n is even, m is odd

(c) one end simply tan (pn)= tanh (pn) None for all m and n
supported and
the other fixed

should be used, and the contradiction in order between the mode number and its highest
(m=1) resonant frequency does not take place, as there is no restriction for the
combination of even and odd numbers of m and n.

Consequently, for all three cases, the resonant frequency v*n, m of the reciprocating load
is given by equation (14), in which v*n is the natural frequency of the beam corresponding
to the boundary condition. As the denominator m ranges from 1 to infinity, there is an
infinite number of resonant frequencies for a single mode of vibration. This may be called
multi-resonance. The resonant curves (amplitude–frequency diagrams are shown in Figure
3). It is evident that the lower resonant frequency, with a larger value of m, contributes
less to the amplitude. For example, if we focus our attention on the fourth mode, the first
resonance with m=1 is very strong; however, the second with m=3 in Figure 3(a) is weak
and, especially in Figure 3(b), the second is invisible. In a practical problem, this
multi-resonance effect may be weak because every kind of material has internal friction.

4. CONCLUSIONS

The resonant frequency of the reciprocating load on an elastic beam has been discussed.
We have found that the resonant frequency is 1/m times lower than the natural frequency
of the beam with the corresponding edge condition and that there is an infinite number
of resonant frequencies for a single mode of vibration as the integer m ranges from 1 to
infinity. This is multi-resonance. Our results are summarized in Table 1.
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APPENDIX A: FOURIER EXPANSION OF THE RECIPROCATING LOAD IN
EQUATION (2)

Let us consider the Fourier expansion of the reciprocating load given by the delta
function which is on the right side of equation (2); that is,

P0d(x− a sin (vt))=P0 s
+a

k=−a

ak(t) exp (ikpx/l), −lQ xQ+l, (A1)

where ak(t) is the Fourier coefficient. In order to determine the Fourier coefficient ak(t),
we multiply both sides of equation (A1) by exp (−ikpx/l) and apply the integration
formula,

g(c)=g
b

a

g(x)d(x− c) dx, aQ cQ b, (A2)

where g( · ) is an arbitrary function. Then we have

P0d(x− a sin (vt))=
P0

2l
s
+a

k=−a

exp6−ikpa
l

sin (vt)7 exp (ikpx/l). (A3)

The exponential in the summation of the above equation (A3) is just the form of
the generating function of the Bessel function. Thus, using Jacobi’s expansion formula [9,
p. 22],

exp (−iz sin u)= s
+a

m=−a

Jm(z) exp (−imu), (A4)

we have the double Fourier series for the reciprocating load,

P0d(x− a sin (vt))= (P0/2l) s
+a

m=−a

exp (−imvt) s
+a

k=−a

Jm(kpa/l) exp (ikpx/l). (A5)

Substituting equation (A5) into equation (2), we can seek the particular solution in the
form of double series as

W(x, t)= s
+a

m=−a

exp (−imvt) s
+a

k=−a

Wk,m exp (ikpx/l), (A6)

where the Wk,m are unknowns to be determined. The final form of the general solution is
given by equations (6)–(8).
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APPENDIX B: EXACT SOLUTIONS

(a) Both ends simply supported:

Ws(x)=
P0l3

2EI W 1
24

{(x/l)2 −5}{(x/l)2 −1}

+ s
a

k=1

J0(kpa/l)
(kp)4 $2 cos 0kpx

l 1+(−1)k[(kp)2{(x/l)2 −1}−2]%w, (B1)

Wd(x, t)=
P0l3

EI
s
a

m=1

s
a

k=1

Jm(kpa/l)
(kp)4 − (bml)4 Wcos 0mvt−

kpx
l 1

+ (−1)m cos 0mvt+
kpx

l 1
−

(−1)k{1+ (−1)m}
2(bml)2 cos (mvt)${(bml)2 − (kp)2} cosh (bmx)

cosh (bml)

+ {(bml)2 + (kp)2} cos (bmx)
cos (bml)%w. (B2)

(b) Both ends fixed:

Ws(x)=
P0l3

2EI $2 s
a

k=1

J0(kpa/l)
(kp)4 {cos (kx/l)− (−1)k}+ 1

12(x/l+1)2(x/l−1)2%, (B3)

Wd(x, t)=
P0l3

EI
s
a

m=1

s
a

k=1

Jm(kpa/l)
(kp)4 − (bml)4 Wcos0mvt−

kpx
l 1+(−1)m cos0mvt+

kpx
l 1

− (−1)k${1− (−1)m}

×
kp

bml
sin (bml) sinh (bmx)− sinh (bml) sin (bmx)
sin (bml) cosh (bml)− cos (bml) sinh (bml)

sin (mvt)

+ {1+ (−1)m}

×
sin (bml) cosh (bmx)+ sinh (bml) cos (bmx)
sin (bml) cosh (bml)+ cos (bml) sinh (bml)

cos (mvt)%w. (B4)
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(c) One end simply supported and the other fixed:

Ws(x)=
P0l3

2EI W s
a

k=1

J0(kpa/l)
(kp)4 $2 cos 0kpa

l 1+(−1)k60kp

2 1
2

(x/l+1)2(x/l−1)−27%
+ 1

24(x/l+1)2(x/l−1)(x/l−2)w (B5)

Wd(x, t)

=
P0l3

EI
s
a

m=1

s
a

k=1

Jm(kpa/l)
(kp)4 − (bml)4 $cos 0mvt−

kpx
l 1+(−1)m cos 0mvt+

kpx
l 1

− (−1)k {1+ (−1)m}W(1)
m,k(x) cos (mvt)+ (2kp/bml){1− (−1)m}W(2)

m (x) sin (mvt)
sin (2bml) cosh (2bml)− cos (2bml) sinh (2bml) %;

(B6)

where

W (1)
m,k(x)=$60kp

bml1
2

+17 sin (bml) cosh (bml)+60kp

bml1
2

−17 cos (bml) sinh (bml)%
× {sin (bml) sinh (bmx)− sinh (bml) sin (bmx)}

− $60kp

bml1
2

+17 cosh (bml) cos (bmx)−60kp

bml1
2

−17 cos (bml) cosh (bmx)%
× {sin (bml) cosh (bml)− cos (bml) sinh (bml)}

− 2 sin (bml) sinh (bml){sin (bml) cosh (bmx)+ sinh (bml) cos (bmx)}, (B7)

W (2)
m =sin (bml) sinh (bml){cos (bml) cosh (bmx)− cosh (bml) cos (bmx)}

−cos (bml) cosh (bml){sin (bml) sinh (bmx)− sinh (bml) sin (bmx)}. (B8)


