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The solution for the vertical dynamic interaction forces between a moving vehicle and
the bridge deck is analytically derived and experimentally verified. The deck is modelled
as a simply supported beam with viscous damping, and the vehicle/bridge interaction force
is modelled as one-point or two-point loads with fixed axle spacing, moving at constant
speed. The method is based on modal superposition and is developed to identify the forces
in the time domain. Both cases of one-point and two-point forces moving on a simply
supported beam are simulated. Results of laboratory tests on the identification of the
vehicle/bridge interaction forces are presented. Computation simulations and laboratory
tests show that the method is effective, and acceptable results can be obtained by combining
the use of bending moment and acceleration measurements.
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1. INTRODUCTION

An important type of inverse problem in structural mechanics is force identification or
force reconstruction from measured structural responses. One major class of this problem
is where the initiation site is known. Examples include determining the impact of aircraft
on landing [1] and, in a more interesting case, the force on fruit [2]. Stevens [3] gives an
excellent survey of the literature on the force identification problem as well as an overview
of the subject. Another major class of problem is where both the force history and its
location are unknown. Examples include using the modal response data to determine the
location of impact forces on the read/write head of computer disks [4] and using wave
propagation responses to determine the location of structural impacts [5].

The third class of problem is on the identification of moving forces on structure.
Examples include vehicle/bridge interaction forces, which are important for bridge
engineering. The forces are dependent on the bridge design parameters, the vehicle
dynamics properties, the profile of the bridge surface and the speed of the moving vehicles.
It is difficult to calculate the forces accurately, although a number of methods and models
have been proposed. Since the forces are moving, it is difficult to measure them directly.
These prompt the need for a technique to measure indirectly the moving forces from
measurements of the response of the structure.

If the supporting beam model is taken as linear, the equations of motion of the beam
model are often decoupled by modelling in the modal co-ordinates. Tunna [6] used the
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modal superposition technique to calculate wheel/rail contact forces due to wheel
irregularities. The calculation of the modal parameters demands a linear track model and,
if the damping distribution of the track is general, complex modal synthesis is adopted [7]
to study the wheel/track interaction. O’Connor and Chan [8] used a convertible central
difference to obtain speeds and accelerations from deflections or bending moments, and
all response data are then substituted into the set of equations formed for the finite
elements, to calculate the force directly.

In this paper an attempt is made to explore the theory of moving force identification.
On the basis of the modal superposition principle, and assuming the force as a
step function in a small time interval, a method is developed to identify the force in
the time domain. The simulation of both one and two forces moving on a simply
supported beam is used to evaluate the method. An experiment with a model car
moving on a simply supported beam is performed to simulate the vehicle/bridge
interaction problem, and the interaction forces are identified from measurements of
bending moments and/or accelerations of the beam. Both the simulations and the
experimental results show that the method is effective, and acceptable results can be
obtained by combining the use of data from bending moment and acceleration
measurements. The proposed method is noise sensitive, especially in identifying more than
one moving force.

2. THEORY OF MOVING FORCE IDENTIFICATION

2.1.      

The time varying force moving on a simply supported beam, as shown in Figure 1, is
used to demonstrate the method. The beam is assumed to be of constant cross-section with
constant mass per unit length, having linear, viscous proportional damping with small
deflections, and the effects of shear deformation and rotary inertia (Bernoulli–Euler beam)
are not taken into account. The force moves from left to right at a constant speed c. The
equation of motion can be written as

r
12v(x, t)

1t2 +C
1v(x, t)

1t
+EI

14v(x, t)
1x4 = d(x− ct)f(t), (1)

where v(x, t) is the beam deflection at point x and time t, r is the mass per unit length,
C is the viscous damping parameter, E is the Young’s modulus of the material, I is the
second moment of inertia of the beam cross-section, l is the length of the beam, f(t) is the
time varying point force, c is the speed of the force motion, and d(t) is the Dirac delta
function.

Figure 1. A simply supported beam subjected to a moving force f(t).
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Based on modal superposition, the dynamic deflection v(x, t) can be described as
follows:

v(x, t)= s
a

n=1

Fn (x)qn (t), (2)

where n is the mode number, Fn (x) is the mode shape function of the nth mode, and the
qn (t) are the nth modal amplitudes. Substituting equation (2) into equation (1), and
multiplying by Fj (x), integrating with respect to x between 0 and l, and applying the
orthogonality conditions, we obtain

d2qn (t)
dt2 +2jnvn

dqn (t)
dt

+v2
nqn (t)=

1
Mn

pn (t), (3)

where vn is the modal frequency of the nth mode, jn is the damping ratio of the nth mode,
Mn is the modal mass of the nth mode, and pn (t) is the modal force. Based on assumptions
for the beam, the modal parameters of the beam can be calculated as follows:

vn =(n2p2/l 2)zEI/r , Fn (x)= sin (npx/l), (4, 5)

Mn = rl/2, pn (t)= f(t) sin (npct/l). (6, 7)

For practical structures, the modal parameters can be obtained from the finite element
model and/or modal testing.

Equation (3) can be solved in the time domain by the convolution integral, and yields

qn (t)=
1

Mn g
t

0

hn (t− t)p(t)dt, (8)

where

hn (t)= (1/v'n ) e−jnvn t sin (v'n t), te 0, v'n =vnz1− j2
n . (9, 10)

Substituting equations (8) and (5) into equation (2), the dynamic deflection of the beam
at point x and time t can be found, as

v(x, t)= s
a

n=1

2
rlv'n

sin
npx

l g
t

0

e−jnvn (t− t) sin v'n (t− t) sin
npct

l
f(t) dt. (11)

2.2.     

The bending moment of the beam at point x and time t is

m(x, t)=−EI
12v(x, t)

1x2 . (12)

Substituting equation (11) into equation (12) gives

m(x, t)= s
a

n=1

2EIp2n2

rl3v'n
sin

npx
l g

t

0

e−jnvn (t− t) sin v'n (t− t) sin
npct

l
f(t) dt. (13)
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Assuming that the force f(t) is a step function in a small time interval, equation (13) can
be rewritten in discrete terms as

m(i)=
2EIp2

rl3
s
a

n=1

n2

v'n
sin

npx
l

s
i

j=0

e−jnvnDt(i− j) sin v'n Dt(i− j) sin
npcDtj

l
f( j) Dt,

i=0, 1, 2, . . . , N, (14)

where Dt is the sampling interval and N+l is the number of sample points. Let

Cxn =
2EIp2

rl3
n2

v'n
sin

npx
l

Dt, (15)

Ek
n =e−jnvnDtk, S1(k)= sin (v'n Dtk), S2(k)= sin (npcDtk/l). (16)

Arranging equation (14) into matrix form,

m(0)

m(1)

g
G

G

G

G

F

f

m(2) h
G

G

G

G

J

j

= s
a

n=1

Cxn

···
m(N)

0 0 0 · · · 0

0 0 0 · · · 0

×G
G

G

G

G

K

k

0 E1
nS1(1)S2(1) 0 · · · 0 G

G

G

G

G

L

l
···

···
··· · · · ···

0 EN−1
n S1(N−1)S2(1) EN−2

n S1(N−2)S2(2) · · · EN−NB
n S1(N−NB )S2(NB )

f(0)

f(1)

×g
G

G

G

G

F

f

f(2) h
G

G

G

G

J

j

, (17)
···

f(NB )

where

NB = l/cDt.

Assuming that

f(0)=0, f(NB )=0 (18)

at the entry and exit of a vehicle, we have, from equation (17),

m(0)=0, m(1)=0. (19)
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Equation (17) can then be condensed as

F J K Lm(2) E1
nS1(1)S2(1) 0 · · · 0

G G G Gm(3) E2
nS1(2)S2(1) E1

nS1(1)S2(2) · · · 0
= s

a

n=1

Cxng h G G···
···

···
···

···G G G G
m(N) EN−1

n S1(N−1)S2(1) EN−2
n S1(N−2)S2(2) · · · beef j k l

f(1)

f(2)
×g

G

G

F

f

···
h
G

G

J

j

, (20)

f(NB −1)

where

bee =EN−NB +1
n S1(N−NB +1)S2(NB −1).

Equation (20) is simply rewritten as

B
(N−1)× (NB −1)

f
(NB +1)×1

= m
(N−1)×1

(21)

If N=NB , matrix B is a lower triangular matrix. We can find the force vector f directly
by solving equation (21). If NqNB and/or Nl bending moments (Nl q 1) are measured,
the least squares method can be used to find the force vector f, from

B1 m1K L K L
G G G GB2 m2

G G G G···
f= ···

. (22)
G G G G

BNl mNlk l k l
The above procedure is derived for single force identification. Equation (21) can be

modified for two-forces identification using the linear superposition principle, as

&Ba

Bb

Bc

0

Ba

Bb'6f1

f27=m, (23)

where Ba [Ns ×(NB −1)], Bb [(N−1−2Ns )× (NB −1)] and Bc [Ns ×(NB −1)] are
sub-matrices of matrix B. The first row of sub-matrices in the first matrix describes the
state having the first force on the beam after its entry. The second and third rows of
sub-matrices describe the states having two forces on the beam and one force on the beam
after the exit of the first force. The whole matrix has a dimension of (N−1)× (NB −1).
Ns = ls /cDt, where ls is the distance between two forces. The two forces can be identified
using more than one measured bending moment measurement.

2.3.   

The acceleration at point x and time t is

v̈(x, t)= s
a

n=1

1
Mn

Fn (x)$pn (t)+g
t

0

h� n (t− t)pn (t) dt%, (24)
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where

h� n (t)=
1
v'n

e−jnvnt{[jnvn )2 −v'2n ] sin v'n t+[−2jnvnv'n ] cos v'n t}. (25)

Equation (24) can be rewritten in discrete terms as

v̈(i)=
2
rl

s
a

n=1

sin
npx

l $sin npcDti
l

f(i)+ s
i

j=0

h� (i− j) sin
npcDtj

l
f( j)Dt%. (26)

The response of mode n is

v̈(i)n =
2
rl

sin
npx

l $sin npcDti
l

f(i)+
1
v'n

s
i

j=0

h� (i− j) sin
npcDtj

l
f( j) Dt%. (27)

Let

Dxn =
2
rl

sin
npx

l
, Hn (k)=

Dt
v'n

h� (k), S2(k)= sin 0npcDt
l

k1. (29)

Arranging equation (27) into matrix form,

v̈(0)

v̈(1)

g
G

G

G

G

F

f

v̈(2) h
G

G

G

G

J

jn

···
v̈(N)

K L F J0 0 0 · · · 0 f(0)
G G G G0 S2(1)(1+Hn (0)) 0 · · · 0 f(1)
G G j f

=Dxn 0 Hn (1)S2(1) S2(2)(1+Hn (0)) · · · 0 f(2)G G J F···
···

··· · · · ···
···G G G G

0 Hn (N−1)S2(1) Hn (N−2)S2(2) · · · Hn (N−NB )S2(NB ) f(NB )k l f j

(30)

Assuming that

f(0)=0, f(NB )=0, (31)

we have

v̈(0)=0. (32)
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Equation (30) can be condensed as

F J K Lv̈(1) (1+Hn (0))S2(1) 0 · · · 0
G G G G

v̈(2) Hn (1)S2(1) (1+Hn (0))S2(2) · · · 0g h G G···
=Dxn ···

···
···

···G G G G
v̈(N) n Hn (N−1)S2(1) Hn (N−2)S2(2) · · · Hn (N−NB+1)S2(NB−1)f j k l

f(1)

f(2)
×g

G

G

F

f

···
h
G

G

J

j

. (33)

f(NB −1)

Equation (33) is simply rewritten as

v̈n
N×1

= An
N×(NB −1)

f
(NB −1)

. (34)

If N=NB −1, matrix An is a lower triangular matrix. From equation (34), we can find
the force vector f directly:

f=0 s
Nm

n=1

An1
−1

v̈. (35)

If NqNB −1 and/or more than one bending moment is measured (NL q 1), the least
squares method can be used to find the force vector f

K L
G G0 s

Nm

n=1

DxnAn11

+

G G
G G

g
G

G

F

f

v̈1

v̈2
···

v̈NL

h
G

G

J

j
.

G G0 s
Nm

n=1

DxnAn12G G
G G

f=

···

(36)

G G
G G0 s

Nm

n=1

DxnAn1NL

G G
k l

2.4.      

If the bending moments and acceleration responses are measured at the same time, both
of them can be used together to identify the moving force. The vectors m in equation (21)
and v̈ in equation (34) should be scaled to have dimensionless units; then the two equations
are combined, to give

$B/>m>
A/>v̈> %f=6m/>m>

v̈/>v̈> 7 (37)

where > , > is the norm of the vector.
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2.5.    

2.5.1. Sampling frequency and record length
The sampling frequency fs should be high enough so that there is sufficient accuracy in

the discrete integration in equations (14) and (26). The fs /fa ratio should in general be larger
than 5, where fs is the sampling frequency and fa is the highest analysis frequency of interest.
For the data logging system used in the present study, the hardware poses a limiting fs /fa

ratio of 2·56, and therefore interpolation of the time history of the measured bending
moments and accelerations is required. The number of data N should be equal to or larger
than NB +1.

2.5.2. Using bending moments or accelerations
Measurements of the bending moment contain system information mainly in the lower

frequency bandwidth, while those of the acceleration contain system information in the
higher frequency bandwidth. It should be noted that the static component of the force
cannot be identified from acceleration alone. For the general dynamic force identification
(e.g., the interaction forces between the bridge and vehicles), it would be more beneficial
to use both the bending moment and acceleration measurements.

2.5.3. Locations at which the responses are measured
The locations of measurements should be selected carefully because of the presence

of modal nodes. The responses of all modes in the analysis frequency bandwidth
should be detectable at the measuring point. For example, if there are three modes
in the frequency bandwidth of interest, and if the responses at only one location are
used, the measurement location should be at 1/4 span. If the responses at two
locations are used, the two measurement locations are recommended to be at 1/4 and 1/2
span.

2.5.4. Modal parameters of the beam
Modal parameters are required in the moving force identification. The mode shape

functions are particularly important for the calculation. In practice, the modal parameters
must be obtained from modal testing. If they are obtained through the finite element
method or analytical solutions, they should be corrected using measured data. The
discrete mode shapes can then be curve-fitted to obtain the mode shape functions. The
flexural stiffness EI in equation (14) should be corrected by measured modal frequencies
ṽn :

EIn = ṽ2
nl4r/n4p4, (38)

where equation (38) is derived from equation (4).

2.5.5. Modal truncation
The number of modes used in the calculation generally depends on the analysis

frequency bandwidth. In practice, only the lowest few modes are used, and as a result
modal truncation errors will occur. For beam-like structures the modal density is relatively
small, and this error will be insignificant. If the measurement locations are carefully
selected, the error can be reduced further. For cases of high modal density, the modal
acceleration method can be used to reduce the truncation error.
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3. SIMULATION AND RESULTS

3.1.  

To check on the correctness and effectiveness of the proposed method, identification of
the following forces is simulated:

(a) single moving force,

f(t)=40 000[1+0·1 sin (10pt)+0·05 sin (40pt)] N;

(b) two moving forces,

f1(t)=20 000[1+0·1 sin (10pt)+0·05 sin (40pt)] N;

f2(t)=20 000[1−0·1 sin (10pt)+0·05 sin (50pt)] N,

ls =4 m.

The parameters of the beam are as follows: EI=1·274916×1011 Nm2, r=12 000 kg/m,
l=40 m, j1 =0·02, j2 =0·02, j3 =0·04, f1 =3·2 Hz, f2 =12·8 Hz, f3 =28·8 Hz. The
moving speed is 40 m/s. The analysis frequency bandwidth is from 0 Hz to 40 Hz and
therefore the first three modes of the beam are included in the calculation. The sampling
frequency fs is 200 Hz and NB =100. The record length N is 512, and 110 points are used
in the identification.

3.2.   

Bending moment and/or acceleration responses at 1/2 span and/or 1/4 span are used.
Nine combinations of the responses are adopted as follows:

1/2m.
1/4m.

1/2m. and 1/4m.

1/2a.
1/4a.

1/2a. and 1/4a.

1/2m. and 1/2a.
1/4m. and 1/4a.
1/2m. and 1/4a.

where 1/2 and 1/4 represent the location of the span, and m. and a. represent the bending
moment and acceleration responses respectively. White noise is added to the calculated
responses to simulate the polluted measurements:

m=mcalculated +Ep× >mcalculated >×Noise

where Ep is a specified error level; Noise is a standard normal distribution vector (with zero
mean value and unit standard deviation). The following results are obtained.

(1) If Ep=0, i.e., where no noises are added to the measured responses, accurate results
are obtained. This means that the proposed method and algorithms are correct.

(2) If Ep=5%, the simulation of the bending moment and acceleration at 1/4 span are
shown in Figures 2 and 3. Both the traces of the Power Spectral Density functions (PSD)s
and the time histories match closely with the true ones. The PSDs indicate that errors exist
in the higher frequency range. This error level is approximately equivalent to 70 dB
dynamic range, which is of the same order as those in a measurement system (65 dB).
Therefore this error level could represent typical values in practical situations.

(3) For Ep=1% and Ep=5%, the errors in the simulated forces are shown in Table 1.
The errors are calculated by the following equation

Error=
>fidentified − ftrue >

>ftrue >
×100%.

Some of the identified results are shown in Figure 4.
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Figure 2. The bending moment at 1/4 span: simulation for single force identification; 40 m/s, 5% error. (a)
The 1/4 span bending moment; (b) the PSD of the response. ——, True; –· –· –, simulation.

(4) The results in Table 1 show that the forces identified from bending moments only
are inaccurate. That is because the bending moment responses in the high frequency range
are very small (refer to Figure 2). It is exactly this phenomenon in the measurements that
causes errors in the time domain identification. For the identification of a single moving
force, more than one response is required to enhance the identification accuracy.

(5) The results using responses from a single measurement point only are less accurate
than those using responses from multi-points, as some of the modal responses may have
not been used in the identification.

Figure 3. The acceleration at 1/4 span: simulation for single force identification; 40 m/s, 5% error. (a) The
1/4 span acceleration; (b) the PSD of the response. ——, True; –· –· –, simulation.
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T 1

Errors on single force identification (in percent)

1% error in response 5% error in response
Location ZXXXXXXXCXXXXXXXV ZXXXXXXCXXXXXXV

and responses m. a. m. and a. m. a. m. and a.

1/2 † 16·4 1·32 † 24·9 13·2
1/4 46·4 0·80 0·733 † 3·80 3·57
1/2 and 1/4 24·1 0·24 0·748 † 1·39 3·45

† Error larger than 100%.

(6) The simulation results show that if the bending moment and acceleration are used
at the same time, satisfactory results on a single force identification could be achieved for
practical cases.

3.3. - 

Bending moment and/or acceleration responses at 1/4, 1/2 and 3/4 spans in 12
combinations described in Table 2 are used to identify the two forces. In a manner similar
to single force identification, the following results are obtained.

Figure 4. The identified force from simulated single force identification; 40 m/s, 5% error, identified from
moments and acceleration. (a) The moving force; (b) the PSD of the force. ——, True force; –· –· –, 1/2m. and
a.; –––, 1/4m. and a.; · · · · , 1/2m. and 1/4a.
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T 2

Errors on two-forces identification (in percent)

1% error in response 5% error in response
Response combinations, ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV
location and response First force Second Force First force Second force

1/2m. and 1/4m. 421 620 † †
1/2m. and 1/4m. and 3/4m. 428 397 † †
1/2a. and 1/4a. 26·9 12·4 222 78·6
1/2a. and 1/4a. and 3/4a. 3·26 6·34 10·7 10·7
1/2m. and 1/2a. 266 580 † †
1/2m. and 1/4m. and 1/2a. 199 360 † 474
1/2m. and 1/4m. and 1/2a.

and 1/4a. 26·9 13·7 201 49·7
1/4m. and 1/4a. 813 402 † †
1/4m. and 1/4a. and 1/2a. 28·2 13·9 206 156
1/2m. and 1/4a. 162 353 † †
1/2m. and 1/4a. and 1/4m. 171 224 † †
1/4a. and 1/2a. and 1/2m. 27·1 13·5 193 46·8

† Error larger than 1000%.

(1) If Ep=0, i.e., when no noises are added to the measured responses, accurate results
are obtained. This means that the proposed method and algorithms for two-forces
identification are correct.

(2) For Ep=1% and Ep=5%, errors in the identification results are shown in Table 2.
Samples of the time histories and PSDs of the identified forces are shown in Figures 5 and
6. The results obtained from using 1/4a. and 1/2a. vary greatly close to the beam ends
and at the nodal points of the third mode of the beam, while those obtained from 1/4a.,
1/2a. and 3/4a. give satisfactory results except at both end of the beam. The results are
very noise sensitive. The identified forces are close to the true forces only when they are
in the middle length of the beam.

(3) Other results not included here show that acceleration measurement gives much
better results than bending moment measurements in the identification.

(4) The results also show that accuracy in two-forces identification is lower than in
single force identification. One reason is that there is a force component with same
amplitude and opposite phase in the two identified forces. This results in large errors in
the time domain. Moreover, in Figures 5 and 6 it is shown that there are large errors in
the time duration from 0·1 s to 0·3 s and from 0·8 s to 1·0 s. This is due to the low sensitivity
of the responses to the forces at the beginning and end of the beam. This results in large
errors in the PSDs and time histories of the forces.

4. EXPERIMENTAL RESULTS

4.1.  -

The experimental set-up is shown diagrammatically in Figure 7. The main beam,
3376 mm long with a 100 mm×25 mm uniform cross-section, is simply supported. The
leading beam is for the acceleration of the model car and the trailing beam is for the
slowing down of the car. Some damping material is placed beneath the main beam to
improve its damping properties.

A U-shaped aluminum section is glued to the upper surface of the beams as a
direction guide for the car. The model car is pulled along the guide by a string wound
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around the drive wheel of an electric motor, the rotational speed of which can be adjusted.
Seven photoelectric sensors are mounted on the beams to measure and monitor the moving
speed of the car. The second sensor is located at the point at which the front wheels of
the car just get on the main beam, and the last sensor is located at the point at which the
rear set of wheels just get off the main beam. They are used to measure the speed of the
model car. The others are located on the beams at a spacing of 0·776 m to check on the
uniformity of the speed.

Three strain gauges and four accelerometers are mounted at the bottom of the main
beam to measure the responses. One gauge and one accelerometer are mounted at each
cross-section, at 1/4, 1/2 and 3/4 span. The fourth accelerometer is mounted at 3/8 span.
An eight-channel dynamic testing and analysis system (DTAS) is used for data collection
and analysis in the experiment. The first channel is used to monitor the signal of the
photoelectric sensors. The second, third and fourth channels are used to measure the
signals from the strain gauges. The remaining channels are used to measure the
acceleration responses. The sampling frequency is 256 Hz, with a data block size of
2048.

The model car has two axles at a spacing of 0·203 m and it runs on four rubber wheels.
The mass of the whole car is 7·1 kg. The modal frequencies and damping ratios obtained
from modal testing are shown in Table 3.

Figure 5. The identified first force from simulated two-forces identification; 40 m/s, 5% error in the responses.
(a) The moving force; (b) the PSD of the force. ——, True force; –––, 1/4a.&1/2a.; –· –· –, 1/4a. and 1/2a. and
3/4a.
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Figure 6. The identified second force from simulated two-forces identification; 40 m/s, 5% error in the
responses. (a) The moving force; (b) the PSD of the force. Key as Figure 5.

4.2.  

(1) A modal test was performed for the model car.
(2) A modal test was performed for the main beam; the modal parameters measured

are shown in Table 4. The model shapes were obtained through curve fitting of the
measured shapes. The modal masses were obtained and checked by additive masses. The
results show that the modal frequencies are different from the calculated results for a
simply supported beam and, therefore, the flexural stiffness EI of the beam was corrected
using equation (27).

(3) The output of channels 2, 3 and 4 for the strain gauges was adjusted to zero when
the main beam was unloaded. This takes care of the fact that the signal from the strain
gauges are very small and usually have a zero-shift phenomenon. Removing the zero-shift
portion in the output increases the dynamic range of the measurement.

(4) The strain gauges were calibrated by adding masses at the middle of the main beam.
The average sensitivities were found to be 2·243, 2·532 and 2·259 mV/N-m, respectively,
for the 1/4, 1/2 and 3/4 span gauges. During the calibration, the signal of the strain gauges
were found to be not very stable and repeatability was not completely satisfactory. It is
noted that this will lead to calibration errors in the identified results.

(5) The car was placed at the left end of the leading beam, and DTAS set in pre-trigger
state at channel 1. The power for the motor was turned on, and the car moved on top
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Figure 7. A diagram of the experimental set-up.

of the beams. Eight channels of signal were acquired, samples of which are shown in
Figure 8.

(6) The speed was calculated and the uniformity of the speed checked.
(7) If the speed was stable, steps (2)–(4) were repeated to check whether or not the

properties of the structure and measurement system had changed. If no significant change
was found, the recorded data was accepted.

(8) The zero-shift in the measured signals was removed, and the signals were calibrated
using measured channel sensitivities. The point in the signals at which the front wheel of
the car just got on the main beam was identified.

T 3

The modal parameters of the model car

Mode Frequencies (Hz) Damping ratios (%) Mode type

1 27·5 10·5 Bounce
2 42·9 11·7 Pitch
3 69·4 10·8 Roll

T 4

The modal parameters of the main beam

Frequencies Damping Modal masses Corrected EI
Mode (Hz) (%) Mode shapes (kg) (kN-m2)

1 6·612 2·71 sin (px/3·776) 40·13 63·4
2 18·51 0·653 sin (2px/3·776) 38·58 31·1
3 39·45 0·199 sin (3px/3·776) 38·65 28·6
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Figure 8. The recorded time histories from sensors in the experiment. (a) Channel 1, photoelectric sensor signal;
(b) channel 2, acceleration at 1/4 span; (c) channel 3, acceleration at 1/2 span; (d) channel 4, acceleration at 3/4
span; (e) channel 5, bending moment at 1/4 span; (f) channel 6, bending moment at 1/2 span; (g) channel 7,
bending moment at 3/4 span; (h) acceleration at 3/8 span.

(9) Interpolation between two measured points in the time histories of the responses was
carried out, if necessary, to ensure a sampling frequency at least five times the highest
analysis frequency of interest.

(10) The interaction forces were identified as a single moving force using the bending
moment and acceleration responses at 1/4 and 1/2 span, and the identified results were
indirectly checked by comparing the measured bending moment and acceleration at 3/4
span with the responses calculated from the identified force.

(11) The interaction forces were identified as two moving forces using the bending
moment and acceleration responses at 1/4, 1/2 and 3/4 span, and the identified results were

T 5

The correlation coefficients between measured and calculated responses:
single force identification

Combinations of the Comparing bending Comparing acceleration at
responses moment at 3/4 span 3/4 span

1/2m. 0·140 0·076
1/4m. 0·845 0·416
1/2m. and 1/4m. 0·942 0·584
1/2a. 0·674 0·252
1/4a. 0·793 0·565
1/2a. and 1/4a. 0·792 0·565
1/2m. and 1/2a. 0·775 0·814
1/4m. and 1/4a. 0·810 0·755
1/2m. and 1/4a. 0·818 0·844
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indirectly checked by comparing the measured acceleration at 3/8 span with the responses
calculated from the identified forces. Due to the limitations of the available measurement
channels, only the acceleration at 3/8 span was used for checking.

4.3.   

Nine combinations of the measured responses are used to identify the force. The
responses of the main beam at 3/4 span are calculated using the identified force, and they
are compared with the measured responses. Correlation coefficients between the calculated
and measured responses are calculated to evaluate the accuracy of the identified force.
Clearly, a larger coefficient means that the identified force is more accurate than that with
a smaller coefficient, but the larger coefficient does not mean the identified force is accurate
enough, because this indirect method of checking of the identified results is not fully
sufficient. The coefficients are shown in Table 5, and some of the identified results are
shown in Figures 9–11.

It is not possible to identify the static component of the forces using only acceleration
measurements, and the static forces are added to the identified forces in the figures for
convenience of comparison.

The results in Table 5 show that the combined use of bending moment at 1/2 span and
acceleration at 1/4 span is most suitable for single moving force identification. In
Figures 10 and 11 it is shown that the PSDs of the responses match very closely, although

Figure 9. The identified force from experimental single force identification; 3·102 m/s, identified from bending
moments. (a) The moving force; (b) the PSD of the force. ——, Static; –· –· –, 1/2 and 1/4m.; –––, 1/2 and 1/4a.;
· · · · , 1/2m. and 1/4a.
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Figure 10. The measured and calculated acceleration at 3/4 span: experimental single force identification;
3·102 m/s. (a) The measured and calculated accelerations at 3/4 span; (b) the PSD of the response. ——,
Measured. Identified: –· –· –, 1/2 and 1/4m.; –––, 1/2 and 1/4a.; · · · · , 1/2m. and 1/4a.

Figure 11. The measured and calculated bending moments at 3/4 span: experimental single force identification;
3·102 m/s. (a) The measured and calculated bending moments at 3/4 span; (b) the PSD of the response. Key as
Figure 10.

the time histories are not very close to each other. It is suspected that calibration errors
lead to these differences in the time histories. The PSDs of the identified forces from
bending moments in Figure 9 match loosely, but the identified forces in the time domain
at several time intervals are below zero, which could not be explained using the
experimental observations.

4.4.    fi

Twelve combinations of the measured responses are used to identify the two forces. The
acceleration of the main beam at 3/8 span is calculated using the identified forces, and it
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T 6

The correlation coefficients between measured and calculated responses:
two-forces identification

Response combinations, Correlation
location and response coefficient

1/2m. and 1/4m. 0·640
1/2m. and 1/4m. and 3/4m. 0·708

1/2a. and 1/4a. 0·933
1/2a. and 1/4a. and 3/4a. 0·994

1/2m. and 1/2a. 0·989
1/2m. and 1/4m. and 1/2a. 0·856

1/2m. and 1/4m. and 1/2a. and 1/4a. 0·883
1/4m. and 1/4a. 0·865

1/4m. and 1/4a. and 1/2a. 0·870
1/2m. and 1/4a. 0·874

1/2m. and 1/4a. and 1/4m. 0·856
1/4a. and 1/2a and 1/2m. 0·863

Figure 12. The identified first force from experimental two-forces identification. (a) Moving force, 3·102 m/s
using 1/4a. and 1/2a.: ——, static force; –· –· –, 1/4a. and 1/2a. (b) Moving force, 3·102 m/s using 1/4a. and
1/2a. and 3/4a.: ——, static force; –––, 1/4a. and 1/2a. and 3/4a.

is compared with the measured response. Correlation coefficients are calculated between
the calculated and measured responses, and they are shown in Tables 6. Some of the
identified results are shown in Figures 12–14.

The results from Table 6 show that the acceleration response alone or combined bending
moment and acceleration responses are suitable for the two-forces identification.
Comparison of the correlation coefficients of the accelerations in Table 5 and 6, and
comparison with Figures 11 and 14, show that results from the identification of two
moving forces are more accurate than those from the identification of a single force.

Large discrepancies in the identified results around 0·065 s and 1·025 s are shown in
Figures 12 and 13. These two moments correspond to the entry of the second axle and
the exit of the first axle to the bridge, where the forcing system switches from a single force
excitation to a two-forces excitation and vice versa. The large discrepancy after 1 s
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Figure 13. The identified second force from experimental two-forces identification. Key as Figure 12.

Figure 14. The measured and calculated accelerations at 3/8 span: experimental two-forces identification;
3·102 m/s. (a) Measured and calculated accelerations at 3/8 span; (b) the PSD of the response. ——, Measured;
–· –· –, 1/4a. and 1/2a.; –––, 1/4a. and 1/2a. and 3/4a.

corresponds to the incorrect identification by the proposed method of non-existent forces
on the bridge deck, due to free oscillation of the structure.

There is also a large local discrepancy between the identified results and the true force
using 1/2 and 1/4 accelerations at around 0·87 s in Figures 12–14. This occurs as the vehicle
is located on the nodal point of the third mode shape of the beam, and the noise from
the third modal frequency bandwidth would dramatically affect the identified result.
Similar phenomena in the simulation results are found in Figures 4–6. The identified results
using 1/4, 1/2 and 3/4 accelerations are close to the true static force within the time range
of 0·3–0·9 s. This strongly suggests using responses from at least three locations for the
identification, to reduce these local discrepancies, and disregarding the good correlation
shown in Table 6 for cases using responses from two locations.

By comparing Figures 12 and 13, we find that there is a component with the same
amplitude and opposite phase in the two identified forces. This is the component due to
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Figure 15. The identified resultant force from experimental two-forces identification. (a) Moving force,
3·102 m/s using 1/4a. and 1/2a.: ——, static force; –· –· –, 1/4a. and 1/2a. (b) Moving force, 3·102 m/s using
1/4a. and 1/2a. and 3/4a.: ——, static force; –––, 1/4a. and 1/2a. and 3/4a.

the pitching motion of the model car. The two identified forces are added to obtain a
resultant force, as shown in Figure 15. This resultant force matches the true force very
closely. This resulting force is a good estimate of the total dead weight force of the vehicle.

5. DISCUSSION

(1) A vehicle with only a few degrees of freedom has been studied, and it serves to show
the important trends and considerations which are applicable to actual vehicles crossing
a bridge deck. The vehicle and suspension characteristics (mass and stiffness) are not
important in the identification of the interaction forces.

(2) The plots shown for single force and two-forces identification show accurate
estimates of the mass of the vehicle, and this method can be used for the WIM
(weight-in-motion) of passing vehicles with no constraints on the type of vehicle or its
suspension characteristics.

(3) This method is beneficial to the identification of vehicles with only a limited number
of axles, since each additional moving force adds another set of equations which must be
solved. For the case of many vehicles or multi-axle vehicles, a much greater computational
cost will be involved.

(4) It is noted that the use of the finite element method combined with modal analysis
in solving this problem gives approximate solutions, especially in the higher frequency
range, while the proposed method gives a more reliable estimate, especially when the
contributions of higher modes have been checked to be significant for the overall responses
of the structure.

6. CONCLUSIONS

The theoretical studies, computation simulations and laboratory experiments suggest the
following conclusions.

(1) It is possible to use measured responses to identify moving forces in the time domain.
(2) The agreement between the calculated and measured dynamic responses is, for the

most part, quite acceptable. Acceptable results can be obtained using either measured
accelerations or a combination of accelerations and bending moments.
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(3) It is believed that difficulties may arise in using bending moment measurements to
predict the time varying moving forces because of the limitations of the dynamic range
in the measurements. Errors in the higher analysis frequency range will lead to large errors
in the identified results.

(4) Satisfactory results in terms of computational cost and accuracy could be obtained
for single force identification with the proposed method. However, the identification of
more than one force needs a longer computational time. Further study is required to
increase the accuracy and to reduce the computational costs.

(5) The correlation of the reconstructed and measured responses is a robust scoring
function for evaluating the identified results.
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APPENDIX: NOTATION

c speed of vehicle
C viscous damping of beam
E Young’s modulus of material
fa highest analysis frequency of interest
fs sampling rate
f(t) time varying concentrated force
I second moment of inertia
l length of beam
ls axle distance
m bending moment
Mn modal mass of nth mode
n mode number
N number of discrete data point
NB number of discrete data point when

vehicle is on beam

pn modal force of nth mode
qn nth modal amplitude
v deflection of beam
d(t) Dirac delta function
r mass per unit length of beam
vn nth modal frequency
v'n damped nth modal frequency
ṽn measured nth modal frequency
jn damping ratio of nth mode
Fn mode shape function of nth mode
f force vector
m bending moment vector
v̈ acceleration vector
> , > norm of vector \ , \


