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The measurement of the relative contributions to the acoustic field made by a set of
sources, which by necessity must operate simultaneously, is of importance in many areas
of noise control technology. A partial solution to this problem, proposed in the 1970s, was
the Polar Correlation Technique. This recognized, initially, the Fourier transform
relationship between cross-spectra, measured in the acoustic far field, and the distribution
of source strength of a line array of sources, typical of an aero-engine, for example. In a
second development (1981) a parametric method was developed. Essentially, the position
of the contributing sources was assumed to be known and a least squares error procedure
was employed to establish an optimum fit between the source strength distribution and the
cross-spectral data. A major restriction, however, was the necessary assumption of mutually
incoherent sources. In the present work it is demonstrated that this restriction is
unnecessary, albeit at the expense of some extra data processing. Specifically, we show that
by employing several reference microphones, as opposed to one for incoherent sources,
both the amplitude of and coherence between an array of sources may be determined. The
potential capability of the method is established both analytically and through extensive
numerical simulation.

7 1997 Academic Press Limited

1. INTRODUCTION

The estimation of the relative contribution to the acoustic field made by a set of sources,
which by necessity must operate simultaneously, is important in many areas of noise
control technology. Developments in this area during the 1970s, in the context of aircraft
noise, led to the development of the Polar Correlation Technique [1]. This recognized the
Fourier transform relationship which exists between the source strength distribution of a
line source and cross-spectra measured between microphones located on a polar arc in the
far field. As originally conceived, the method yielded a resolution limited image of the true
source distribution. In a second development, a parametric approach was adopted [2].
Here, briefly, one assumes that the source positions are known and then employs a least
squares fit procedure to calculate the set of source strengths which provide minimum error
with respect to the measured cross-spectral data. We shall return to the advantages of this
class of technique later. However, a major restriction of the techniques described in
references [1] and [2] was the requirement that all sources had to be mutually incoherent.
In this paper it is demonstrated how the basic method may be generalized to include an
array of partially coherent sources; albeit at the price of extra data processing. Specifically,
it will be shown that, while for incoherent sources measurement of the cross-spectra
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between one reference microphone and others in the array is sufficient, for coherent sources
a number of such reference microphones must be employed.

In the interests of brevity, we shall explore the capabilities and limitations of this method
in terms of a line array of partially coherent monopoles, the phasing of which is set by
a disturbance convecting through them, as shown in Figure 1. The astute reader will note
a marked similarity with the shock associated noise model first proposed in reference [3]
and, indeed, this was the original motivation for the work. However, as will be shown,
the method is perfectly general and can be applied to any source–microphone arrangement.
The principal advantage of the line source configuration in the present context is that it
permits certain analytical results to be obtained which provide a degree of understanding
not available from numerical simulation alone.

1.1. 

While the class of techniques discussed in this paper are frequently referred to as ‘‘Source
Location Methods’’, this is to some extent a misnomer. The objectives of source location,
in the context of sonar for example, is the detection of a source of unknown location and
in the presence of significant background noise and other complications. Conversely, for
noise control application, the location or vicinity of potentially contributing sources is
usually known; the objective is to assess the relative contributions which they make to the
total noise field. The application of such data may include the following: identifying that
source or subset of sources which require the application of noise control methods before
any significant improvement of the noise environment can be anticipated; confirming that
these methods have been successful and have not created adverse effects on other sources;
and, in a slightly different context, to use such source distributions as the basis for
calculation of acoustic pressures in either the geometric near or far field of the source array.

A major incentive for this type of investigation arose in the 1970s and early 1980s in
the context of aircraft noise. The applications were twofold. More fundamental was the
desire to measure the axial distribution of ‘‘source strength’’ for jet shear flows. However,
the advent of the high bypass ratio engines (i.e., the Rolls Royce RB-211) provided a
second application; the measurement of the so-called ‘‘Engine Noise Source Breakdown’’
[2]. These are of relevance not only in the noise control sense outlined above, but are also
important in the detremination of the static-to-flight noise changes which may be
anticipated.

The approaches to ‘‘source contribution’’ determination developed at that time fall
naturally into two classes. The first historically, which we believe was originally
attributatble to Siddon [4], became known as ‘‘Causality Correlation’’ techniques. These

Figure 1. An array of partially coherent monopole sources.
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involved the determination of the coherence between an ‘‘in-source’’ probe and a far field
microphone as a measure of the fraction of the mean square pressure at the microphone
contributed by the ‘‘source’’ under investigation. Such techniques involved a range of
practical difficulties and, more fundamentally, a need for a presupposition of the noise
producing mechanisms involved, since these determined what should be measured by the
source probe.

The second general class of techniques avoided these problems by restricting
measurements to the acoustic field alone. They include the parabolic and elliptic mirror
measurements of Chu and Laufer [5] and Grosche [6] respectively. While such methods
are apparently both simple to apply and effective at model scale, the requirements of
adequate resolution and gain lead to prohibitive mirror sizes for full scale aero-engine
application. An estimate by Glegg [7] suggests that mirrors of 25 feet diameter might
be required in this context. We note further that for the more desirable elliptic mirror
the distance between the microphone at one focus and the source at the other is fixed,
so that physical traversing of the mirror is required to explore an extended source
distribution.

An awareness of these problems led workers in the U.K. to explore the possibility of
replacing reflecting surfaces with arrays of microphones. One such system, termed the
‘‘Acoustic Telescope’’, was described by Billingsley and Kinns [8] and comprised a line
array of microphones. Beam forming and/or focusing of the array was achieved by
introducing time delays into the various microphone channels prior to a summation. A
recent survey of this class of technique has been provided by Mosher [9], who notes that
the improved performance to cost ratio of electronic equipment and computers makes it
increasingly practical to make acoustic measurements with phased arrays containing many
microphones. Indeed, it is the number of microphones required in practice which,
arguably, sets the limit on all microphone array methods. Even for an assumed line array
[8], one needs a sufficient array aperture to resolve at the lowest frequency of interest f1

the most closely spaced sources at distance l apart, while simultaneously having sufficiently
closely spaced microphones to prevent aliasing at the highest frequency of interest f2 for
the entire length of the real source distribution L. This leads to a requirement for N
microphones, given by (N−1)= (L/l)(f2/f1), a number which can easily reach 100 in
practical situations, in which results over perhaps a decade of frequency are required.
Furthermore, we note that for the phased array methods all these microphones must be
positioned simultaneously.

A method developed concurrently with the ‘‘Acoustic Telescope’’ [8] was the Polar
Correlation Technique [1]. This approach recognized a Fourier transform relationship
between the cross-spectra measured between microphones in the far field and a distribution
of source strength. This type of what might be termed a ‘‘statistical’’ approach has some
advantages over phased arrays in terms of both data acquisition and the subsequent data
processing.

First, while the number of microphone measurement positions is identical with that
required for the phased array approach, all the required cross-spectra could, in principle,
be measured with as few as two microphones if facility operating economics so dictate.
Even more attractive is the natural ‘‘break’’ in the data processing which occurs once the
cross-spectra have been determined. These form a relatively compact data storage bank
from which information can be subsequently retrieved for a wide range of post-processing
operations. Furthermore, the ability selectively to choose data, for various frequency
ranges, can be employed to reduce microphone numbers, as has been reviewed in some
detail by Glegg [10], while the possibility of creating ‘‘virtual’’ microphone positions has
been discussed by Strange et al. [11].
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Despite these advantages, it became apparent that for routine source breakdown work
the processing of resolution limited source images to obtain the spectrum of individual
sources was extremely time consuming and required siginficant judgement as the limits of
resolution were approached. An awareness of this problem led to the development of the
parametric or source model based approach, first described in reference [2]. In principle,
one sets up a model of the source distribution and determines a set of unknown source
amplitudes from a least squares fit between the calculated and measured cross-spectra.
Practical problems, in particular some uncertainty in source position, can be overcome by
iterating these positions across a limited window until the difference between the modelled
and measured cross-spectra is minimized in a least squares sense.

However, a major restriction of this class of technique, as described in references [1] and
[2] and applied in reference [11], was the inherent assumption that all the contributing
sources were mutually incoherent. We note in this context that Mosher [9] comments that
‘‘The most difficult situations probably involve distributed coherent sources’’. The purpose
of this paper is to show how this particular problem can be successfully addressed using
an extension of the model based approach.

However, in closing this section we note that some formidable problems do remain to
be overcome. Not least among these is the question of source directivities. Most of the
methods described above implicitly assume that the source array is comprised of
incoherent monopoles, despite the fact that the acoustic measurements demonstrate
directional characteristics. This is not a serious complication if one can reasonably assume
[1] that all sources have similar, strictly identical, directivities at each frequency. It also
seems probable, but is currently unproven, that the model based approaches would cope
with inherent source directivities if these were known a priori and could be included in the
source model. However, the determination of unknown source directivities in situations
in which sources could be either incoherent or coherent presents a formidable challenge
and is perhaps leading towards ambiguous possibilities; an extreme version of which was
so elegantly described by Kempton [12]. Certainly, at the present state-of-the-art, it would
seem that the more prior knowledge of the source characteristics which can be employed
from the outset, the more reliable the results obtained will be.

2. A MODEL

Consider the line source array in Figure 1, for which source fluctuations at sources k
and l, respectively, are partially coherent and driven by a convecting disturbance of
velocity Uc : i.e., the filtered cross-correlation function is of the form

Ak(t)Al(t+ t)= akalckl exp jv0r−
xl − xk

Uc 1 ,

where ak is the r.m.s. amplitude and ckl is the correlation coefficient between sources k and
l respectively.

The cross-spectrum between microphones m and n can then be written as

C(m, n)= s
k

s
l

akalckl exp jv$rkm − rln

a0
+

xk − xl

Uc %
rkmrln

, (2.1)
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where rkm is the distance from source k to microphone m, rln is the distance from source
l to microphone n and a0 is the speed of sound. We note here that the phase of the
cross-spectrum comprises two terms: (rkm − rln)/a0, representing a difference of propagation
times; (xk − xl)/Uc , representing the ‘‘phase’’ difference between sources k and l
respectively. Hence equation (2.1) can be generalized to any situation in which the
source–microphone geometry and the relative phasing of the sources is known, and
rewritten as

C(m, n)= s
k

s
l

bkl exp jf(m,n, k, l). (2.2)

Therefore, clearly, the task is basically to use a set of cross-spectral measurements C(m, n)
in conjunction with known values of f(m, n, k, l) to determined the unknown values of
bkl . As previously discussed in reference [2], a least squares fit procedure is advantageous
in view of the statistical errors inevitably involved in such cross-spectral measurements.

2.1.    

The objective is to find a set of sources, bpq , having the same positions and phases as
those specified in equation (2.2), which will minimize the mean square error between the
measured cross-spectra and those calculated from the model equation (2.2). The error to
be minimized is defined as

s2 =
1
M

s
m

1
N

s
n

=C	 (m, n)−C(m, n)=2, (2.3)

where C	 (m, n) denotes the measured values. To find the minimum error then requires that

1s2/1bpq =0. (2.4)

As shown in the Appendix, insertion of equation (2.2) into equation (2.4) yields

1
M

1
N

s
m

s
n

R	 (m, n) cos f(m, n, p, q)+I	 (m, n) sin f(m, n, p, q)

= s
k

s
l

bkl
1
M

s
m

1
N

s
n

cos (f(m, n, k, l)−f(m, n, p, q)), (2.5)

where R	 (m, n) and I	 (m, n) are the real and imaginary parts of the measured cross-spectra,
respectively. It is also shown in the Appendix that equation (2.4) yields a single unique
minimum with 12s2/1b2

pq =2.
Inspection of equation (2.5) shows that the left side is comprised of a set of

measurements, combined with some geometric information. For each pair of values (p, q),
one can therefore write

M� 	(p, q)= s
k

s
l

bkl
1
M

s
m

1
N

s
n

cos (f(m, n, k, l)−f(m, n, p, q)), (2.6)

where M	 (p, q) is a vector of measurements of dimension K2 ×1 for K sources which
equates to the product of a vector of source ‘‘amplitudes’’ B, also of dimension K2 ×1,
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Figure 2. The model geometry.

and a geometric matrix H of dimensions K2 ×K2, where

H(p, q, k, l)0
1
M

s
m

1
N

s
n

cos (f(m, n, k, l)−f(m, n, p, q)). (2.7)

Hence, in matrix notation,

M=HB (2.8)

and one is required to solve the inverse problem

B=H−1M. (2.9)

Hence it is immediately apparent that a crucial factor in obtaining satisfactory results is
the condition and hence invertibility of the geometry matrix H. However, since this
contains only geometric (and phase) information, its condition number can be employed,
prior to any testing, to determine both the suitability of a proposed microphone array and
to define frequencies for which results of uncertain accuracy may be obtained. We shall
now proceed to explore these possibilities first analytically and subsequently via numerical
simulation.

3. ANALYTICAL RESULTS

It is possible to make some progress in understanding the requirements for the successful
inversion of equation (2.6) to obtain the required source parameters, (i.e., bkl) via the
idealized source model shown in Figure 2. Here the sources are all equally spaced at
interval L such that xk = kL, etc. The microphones are assumed to be located on a polar
arc of large radius r0 with the position of the mth microphone defined by the angle am ,
where sin am =m sin D: that is, the microphones are spaced by equal increments in the sine
of the angle a. The approximations rkm = r0 − xk sin am and rln = r0 − xl sin an may then be
invoked. Hence by inspection of equations (2.1) and (2.2) and using the definition of
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H(p, q, k, l) in equation (2.7) one finds

H(p, q, k, l)=
1
M

s
m

1
N

s
n

cos $vL sin D

a0
{(k−p)m−(l− q)n}−

vL
Uc

{(k− p)−(l− q)}%.
(3.1)

With an ‘‘appropriate’’ value of vL sin D/a0, the oscillatory nature of the terms in this
summation suggests that H(p, q, k, l)=1 if k= p and l = q, and=0 otherwise. Inserting
this result into equation (2.6) then yields the ideal result M� 	(p, q)= bpq . Inspection of
equation (2.5) shows that this result is entirely equivalent to having performed a discrete
well resolved double Fourier transform on the data. This is expected, since Fourier
transforms are well known as the equivalent of a least squares fit. We also note the
implication from equation (3.1) that good quality results are likely to be obtained when
the geometry matrix H has its principal values located on or close to the principal diagonal
k= p, l= q. We shall now explore conditions under which this would not occur in the
limits of high and low frequencies respectively.

3.1.   

The occurrence of aliasing in equation (3.1) can be identified as a situation in which the
argument of the cosine function increments by 2p for each term of the summation. The
worse case, in the sense of the lowest frequency, can be identified by inspection as l= q
and =k− p= obtaining its maximum possible value. However, since the product of the
source spacing L and the maximum value of =k− p= is just the total length of the source
distribution, LT say, then aliasing will potentially be present for all frequencies for which
vLT sin D/a0 e 2p, or

fe a0/(LT sin D). (3.2)

This is just the classical definition of an aliasing frequency, as given in references [1] and
[2] for example, and corresponds to the phase of the cross-spectrum for a particular source
changing by more than 2p between adjacent microphones.

In the present context, as we shall see below, it manifests itself by yielding finite values
off the main diagonal of the geometric matrix, increasing its condition number and
potentially yielding poor results at certain frequencies.

3.2.   

Inspection of equation (3.1) suggests that at low frequencies the variation of the
argument of the cosine function may be too limited to yield the required cancellation when
k$ p or l$ q.

A quantitative description of this process is straightforward to obtain if one assumes
that at such low frequencies the variation of the cosine function is sufficiently small
between the discrete values so that the summation in equation (3.1) can be replaced by
integrals in which m and n are treated as continuous variables. The result is

H(p, q, k, l)=
sin (vL sin (aM/2)(k− p)/a0)

vL sin (aM/2)(k− p)/a0

sin (vL sin (aN/2)(l− q)/a0)
vL sin (aN/2)(l− q)/a0

× cos (vL/a0)[(sin(aM/2)−(1/Mc))(k− p)−(sin(aN/2)−(1/Mc)(l− q))],

(3.3)

where sin aN =N sin D and sin aM =M sin D. Hence the angles aN and aM define the
aperture of the microphone array used in the summation over n and m respectively.
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The nature of the geometric matrix H(p, q, k, l) becomes clear if one rewrites equation
(2.6) in the form

M	 (p, q)= s
k

s
l

bklH(p, q, k, l). (3.4)

Inspection of equation (3.3) then suggests that, in the limit as the frequency tends to
infinity, H(p, q, k, l)=1 when k= p and l= q, and=0 otherwise, as a result of the
sin X/X functions. Hence, as before, one finds that M	 (p, q)= bpq .

However, at lower frequencies these sin X/X functions remain finite for finite values of
either k− p or l− q. They are the window functions associated with the finite aperture
of the microphone array and remind us that under these circumstances contributions to
the measurement vector M	 (p, q) can arise from ‘‘sources’’ other than bpq . However, the
principal advantage of a parametric, as opposed to Fourier transform, method is that the
matrix inversion, equation (3.4) or (2.9), allows for such contributions; it is fundamentally
a deconvolution process. Hence, in principle, there is no low frequency limit below which
results may not be obtained. However, in practice a lower frequency limit is set by the
accuracy of the cross-spectral measurements and the resulting values of M	 (p, q). We note
from equation (3.3) that in the limit of low frequency all values of H(p, q, k, l) tend
towards unity, and the whoe matrix inversion becomes progressively more ill-conditioned
and hence dependent on any errors in the measured values of M	 (p, q).

4. THE INCOHERENT SOURCE ARRAY

The situation described above can be specialized to a set of incoherent sources by noting
that, by definition,

bkl 0 akalckl , (4.1)

so that for incoherent sources, where ckl =1 for k= l and =0 for k$ l, equation (3.4)
reduces to

M	 (p, p)= s
k

b2
kH(p, p, k, k), (4.2)

with, from equation (3.1),

H(p, p, k, k)=
1
M

s
m

1
N

s
n

cos $vL sin D

a0
(k− p)(m− n)%.

In fact, this can be generalized by noting that kL is just the position of the kth source,
xk , and m sin D is the angular position of the mth microphone, am . Hence equation (4.2)
becomes

M	 (p, p)=
1
M

s
m

1
N

s
n

s
k

b2
k cos

v

a0
[(xk − xp)(sin am −sin an)].

This is the least squares fit expression of reference [2] for an incoherent source array, except
that it contains a double, as opposed to single, summation over the microphones.
Physically, this means that, while for the method given in reference [2] one measures only
the cross-spectra between a single reference microphone and the other microphones in the



     111

array, to evaluate the above expression one needs to measure the cross-spectra between
all possible microphone combinations, each microphone in turn being used as the reference
microphone. Inspection of the expression above indicates, however, that use of multiple
reference microphones for the incoherent source case merely duplicates information,
because the argument of the cosine function depends only on the microphone separation,
i.e., (sin am −sin an). Thus the benefits are probably marginal against the extra data
processing effort involved, where for a 30-microphone array one would need to measure
900 as opposed to 30 cross-spectra. We note from the window function equation, equation
(3.3), for example, that H(p, p, k, k) is of the form (sin X/X)2, while for a single
summation, equivalent to putting aM =0, it becomes sin X/X, only a marginal advantage
in view of the deconvolution process described above.

We note, however, that the use of multiple reference microphones is essential for
coherent sources. As inspection of equations (3.1) or (3.3) indicates, without the outer
summation over m, equivalent to putting m=0 in equation (3.1) and aM =0 in equation
(3.3), that one loses the ability to obtain low values of the window function when l= q,
but k$ p. This hopelessly ill-conditions the geometry matrix H(p, q, k, l), because the
results are basically ambiguous. Fortunately, as we shall proceed to demonstrate, via
numerical simulation, only a selected few microphones of the total array need to be used
as reference microphones.

5. THE INTERFERENCE TERMS

Before closing this section of analytical results, it is informative to identify two classes
of terms inferred in the definition of the cross-spectra given in equation (2.2): i.e.,

C(m, n)= s
k

s
l

bkl exp jf(m, n, k, l), (5.1)

where bkl 0 akalckl .
The first group is comprised of those for which k= l and their contribution to the

cross-spectrum, Ck= l(m, n), can be written for the far field microphone array as

Ck= l(m, n)= s
k

a2
k exp j$va0

(sin an −sin am)xk%. (5.2)

In discrete form, this is the Fourier transform relationship of reference [1], and represents
the form that the cross-spectrum would take if the sources were all mutually incoherent.

Some care is now necessary with the remaining terms, for which k$ l. In deriving the
least squares relationship in the Appendix it was implicitly assumed that bkl and blk were
independent variables. However, as their definition above makes clear, they are in fact
identical. For interpretation purposes, therefore, it is useful to consider pairs of terms in
equation (5.1) involving bkl and blk respectively. Their sum is

S0 bkl exp jf(m, n, k, l)+blk exp jf(m, n, l, k).



. .   . . 112

For a far field microphone array, this becomes

S=2bkl cos
v

a0 $(xl − xk)$sin an +sin am

2 %+xk − xl

Mc %
×exp j

v

a0 $(xl + xk)
2

(sin an −sin am)%, (5.3)

where Mc =UC/a0. Comparing equations (5.2) and (5.3) one sees that in the former the
source position xk is defined in the complex exponential term. A similar interpretation
applied to equation (5.3) suggests that the ‘‘sources’’ of the interference terms are located
at positions (xk + xl)/2. These ‘‘phantom’’ sources appear, therefore, at a position halfway
between the actual sources. For equally spaced sources these may either occcupy positons
between the actual sources or be superimposed on actual source positions. For example,
the interference contribution from sources 2 and 4 will appear to be located at the position
of source number 3, etc.

However, the important difference to be noted between equation (5.2) and equation (5.3)
is that for the self-terms (k= l) in the former, the value of C(m, n) depends only on the
angular separation of the microphones, (i.e., sin an −sin am), not on their position.
Conversely, equation (5.3) exhibits an additional directional feature through its cosine
term, and it is this which permits one to separate the self- and cross-terms respectively,
despite the fact that their ‘‘apparent positions’’ may be identical, as explained above.

6. NUMERICAL SIMULATION STUDIES

6.1.   

The computer simulation model employed to support the work described above can be
considered, roughly, to replicate shock cell noise generated by a 50 mm diameter nozzle
operated with unheated air at a pressure ratio of order 3·0. Specifically, six shock cells are
modelled as point monopoles, equally spaced at 50 mm intervals. The eddy convection
velocity Uc was assumed to be 250 m/s. Each source is attributed unit source strength and
the mutual coherence between source n and n2 1 is 0·75, that between n and n2 2 is 0·5,
that between n and n2 3 is 0·25 and that between n and n2 4 and beyond is zero. The
far field microphone array consists of a maximum of of 30 microphones situated around
an arc of 10 m radius (200 nozzle diameters) centred on the nozzle outlet. The array covers
the angular range 90° to 61° from the nozzle axis in 1° intervlas. The ambient speed of
sound was taken as 342 m/s.

The simulations cover a frequency range from 1 kHz to 20 kHz at intervals of 100 Hz.
For reference purposes we note that the principal peak shock associated noise frequency
for the combination of source spacing and convection velocity specified above would range
from 5 kHz at 90° to the nozzle axis to 7·9 kHz at 60°.

6.2.  

Equation (2.1) is used to generate a data file containing the cross-spectra between pairs
of microphones. Each mircophone is paired with each other microphone giving, for the
30-microphone array, a total of 900 cross-spectra. This cross-spectra file is treated as a set
of measured cross-spectra, from which estimates of the source strengths and coherences
can be calculated using the methods described previously.
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Unless otherwise stated, all matrix inversions are carried out by using L.U.
decomposition with partial pivoting (based on reference [13]) and all calculations are to
IEEE double precision. All program code (including matrix inversion routines) is written
in BBC Basic VI and run on an Acorn Archimedes microcomputer.

6.3.      -

In real measurement situations, the cross-spectra measured at the microphone array will
be subject to a degree of statistical uncertainty. In order to simulate this uncertainty in
the computer generated data, pre-specified amounts of equal probability random noise are
added to the calculated cross-spectra. The noise error is defined relative to the sum of the
mean squared source amplitudes at the array, i.e.,

added noise=
e×rand

100
s
k

a2
k

r2
0
,

where e is the specified percentage noise and ‘‘rand’’ is an equal probability number
between −1 and +1. The noise is added to the real and imaginary parts of the
cross-spectra prior to matrix generation. Note that the range of values that the added noise
can take is proportional to 2e, and that the statistical r.m.s. value of the noise is
approximately proportional to e.

6.4.   

A measure of the performance of a particular microphone array and calculation
procedure is obtained from the r.m.s. error between the calculated source strengths and
coherence values (b'kl) and those specified in the cross-spectral generation (bkl). The
resultant error is defined as

r.m.s. error=6 1
K2 s

k

s
l

(b'kl − bkl)27
1/2

,

where K is the number of sources. For the source distribution described above, the results
can be considered to be acceptable if the r.m.s. error is less than 0·1. To demonstrate this,
we present Figures 3(a) and 3(b) as a diagrammatic representation of a comparison
between the actual source strengths and coherences and typically calculated values for
r.m.s. errors of 0·05 and 0·5 respectively. The ‘‘T’’-shaped symbols represent actual values
and the ‘‘boxes’’ represent calculated values. One can see that, while the results of Figure
3(a) show an agreement of acceptable level for both source strength and coherence, with
the higher r.m.s. error in Figure 3(b) significant differences of both source strength and
particularly coherence values occur. Appraisal of a significant quantity of data of this type
led to the conclusion that, for most purposes, an r.m.s. error of order 0·1 would be
adequate.

In the remainder of this paper, the majority of results will be presented as the variation
of this r.m.s. error with frequency. In view of the large range of vaues involved, a decibel
scale, 20 log10 (r.m.s. error), is employed, with the desired value (0·1) shown as a horizontal
line at −20 dB.
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Figure 3. An example comparison between calculated and actual source strengths and coherences with an
r.m.s. error in vector B of 0·05 (a) and 0·5 (b).
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Figure 4. The r.m.s. error in vector B: 5×5 microphone array, least squares fit method, 0% error in far field
data.

7. RESULTS OF NUMERICAL SIMULATION

7.1.    

While, as described above, this simulation study was set up on the basis of 30
microphones covering a 30° arc the complete evaluation of, for example, equations (2.5)
or (2.6) would require the calculation/measurement of 900 cross-spectra. From the
practical viewpoint an important early consideration was therefore the determination of
the minimum number of microphones which would yield satisfactory results over the
specified frequency range. We note this is not specifically set in the ‘‘least squares’’ context,
since ‘‘averaging’’ over the microphone array occurs prior to the formation of the matrices
per se. It is the dimensions of the latter which are set by the source numbers, as outlined
in section 2.1. However, guidance can be obtained on two grounds:

(a) As already noted, the required matrix inversion will be optimally conditioned when
the principal values of the geometry matrix H(p, q, k, l) are concentrated on or close to
the main diagonal k= p, l= q. Inspection of the analytically derived window functions,
equation (3.3), shows that the most rapid decay of these window functions will occur when
the aperture angles aM and aN respectively are maximized. Hence the full 30° aperture
should be employed.

(b) In the solution of any set of simultaneous equations, such as equation (2.2) for
example, it is a fundamental requirement that there are at least as many knowns as
unknowns. Hence, regardless of the method used, a minimum of six microphones are
required to solve for six sources. However, for six incoherent sources the only unknowns
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are their strengths, so that the measurement of the cross-spectra between a reference
microphone and five others in the array is sufficient to yield six knowns and solve the
problem; what is termed a 6×1 array is adequate. However, for six partially coherent
sources there are a total 36 unknowns. Here the 36 ‘‘knowns’’ can be generated with six
microphones by using each microphone in the array successively as the reference; the
so-called 6×6 array.

Evidence that this is indeed the case can be seen by comparison of Figures 4 and 5. In
the former, a 5×5 microphone array was employed for our model of six partially coherent
sources. Even with zero error, apart from computer rounding errors, in the far field data,
the r.m.s. error in the results is large over the entire frequency range. In marked contrast,
use of a 6×6 array, as shown in Figure 5, yields excellent results at all frequencies for
perfect input data. With 5% statistical error superimposed on the far field cross-spectra,
the results are satisfactory above about 7 kHz, based on the −20 dB criterion, except for
two isolated regions around 13 and 17 kHz respectively.

The identification of the origin of these latter regions of poorer results is straightforward.
Choosing to use a minimum number of microphones, six, but to spread them over the full
30° arc to maximize low frequency resolution, has created a spacing between adjacent
microphones of 6°. Reference to the approximate expression for H(p, q, k, l) in equation
(3.1) and the condition for aliasing given in expression (3.2) shows that for this microphone
separation aliasing, and hence potentially large values for H(p, q, k, l) for k$ p and l$ q
can now occur for any frequency above 13 kHz. Hence, for frequencies above 13 kHz, a
closer microphone spacing is required.

Figure 5. The r.m.s. error in vector B: 6×6 microphone array, least squares fit method, 0% and 5% error
in far field data.
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Figure 6. The r.m.s. error in vector B: 30×6 microphone array, least squares fit method, 0% and 5% error
in far field data.

While, in principle, there are several straightforward ways of achieving this—for
example, 7×7 array at 4° spacing would be almost adequate up to 20 kHz—there are
other practical requirements to be considered. First, from a data processing viewpoint it
is advantageous to keep the number of reference microphones to a minimum. Second, in
designing an array for practical use it is always undesirable to work on the limits of the
aliasing criteria. Any unexpected source outside the anticipated source distribution can
then invalidate the complete data set acquired.

These considerations led to the idea of testing a 30×6 array. That is, the complete set
of 30 microphones is employed, but with the number of reference microphones held at the
minimum of six. In terms of equation (3.1) for H(p, q, k, l), this is equivalent to reducing
sin D1D to 1° and incrementing the value n in steps of unity. The value of m is, however,
incremented in steps of six. Hence aliasing effects in respect of finite values of l− q are
entirely eliminated; they are restricted to a few values of k− p, but only when l= q.

The results obtained by using this procedure are shown in Figure 6. Evidence of some
weak residual aliasing effects is apparent in the r.m.s. error variations above 13 kHz,
particularly for the case of the perfect far field data. However, these effects are relatively
weak, and even for 5% error in the cross-spectral data all results above about 7 kHz
conform to the −20 dB error criterion.

Finally in this context, we turn to the results obtained by using the full 30×30 array,
which are shown in Figure 7. The unsteadiness in the, albeit small, errors above 13 kHz
seen in Figure 6 has now disappeared, indicating that this array has now eliminated all
aliasing effects. The only other difference is some reduction in r.m.s. error for the results
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obtained from data with 5% statistical error in the cross spectra. In fact, inspection of
Figures 5, 6 and 7, corresponding to 6×6, 30×6 and 30×30 arrays respectively,
indicates that, as we might expect, there has been a progressive improvement above 10 kHz
as the number of degrees of freedom in the least squares fit procedure has increased.
However, whether the improvement between Figures 6 and 7 is worthwhile in view of the
extra data processing involved is considered to be debatable.

7.2.    

In contrast to the variation and general improvement of results obtained amongst
Figures 5, 6 and 7 for the higher frequencies, the results below about 10 kHz show very
little dependence on the microphone array employed. In all cases the r.m.s. errors show
a general, fairly rapid, increase as the frequency reduces below 10 kHz, with a sinusoidal
variation modulating this increase. The former had been anticipated on the basis of the
analytical window functions given in equation (3.3). For the case of the equal aperture
angles aN = aM , these can be written as

H(p, q, k, l)=
sin (k− p)X

(k− p)X
×

sin (l− q)X
(l− q)X

×cos
vL
a0 60sin aM

2
−

1
Mc1((k− p)−(l− q))7 ,

(7.1)

where X0 (vL/a0) sin (aM/2). As discussed previously, therefore, at the higher frequencies
it is the terms sin (k− p)X/(k− p)X which ensure that the major terms in the geometric

Figure 7. The r.m.s. error in vector B: 30×30 microphone array, least squares fit method, 0% and 5% error
in far field data.
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Figure 8. The condition number of matrix H: 30×30 microphone array

matrix are concentrated around its main diagonal k= p and l= q. However, as the
frequency reduces, these functions obtain significant values for finite values of k− p or
l− q. Using as an arbitrary criterion that these functions should be reduced to their first
zero when =k− p= or =l− q= equals one, yields the condition fe a0/[2L sin (aM/2)], which,
for the current model, yields fe 13·2 kHz.

One might anticipate, therefore, a progressive deterioration in the condition of the
geometric matrix below this frequency, as the off-diagonal terms progressively increase
their values. This effect is shown in Figure 8 for the 30×30 array. Perhaps even more
remarkable, however, is the way in which the variation of the contidion number mirrors
the increasing, but cyclic, behaviour of the r.m.s. errors for this array shown previously
in Figure 7. Furthermore, while a general increase in condition number and r.m.s. error
had been anticipated on the basis of the increasing sin Z/Z functions discussed above, the
cyclic behaviour had not. In fact, at first sight the results presented in Figures 7 and 8 might
suggest that certian ‘‘critical’’ or ‘‘problem’’ frequencies exist for the least squares fit
method which, for the current model, occur at approximately 3, 6 and 9 kHz.

This prompted a search for alternative methods of inversion which might avoid these
apparent difficulties. In Figure 9, for example, is shown the result of the direct, forced fit,
inversion of equation (2.2) using the required 6×6 array. In comparison with the
equivalent least squares data, shown in Figure 5, one can note that (a) the effect of aliasing
is far more apparent and leads to much larger errors at the higher frequencies when direct
inversion is employed, and (b) while the cyclic behaviour of the r.m.s. errors at frequencies
below 10 kHz has now been eliminated, the error curve passes through the peaks of the
error curve for the least squares method, as shown in Figure 5.
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Somewhat similar results were obtained by using Singular Value Decomposition in
conjunction with the more practical 30×6 microphone array. The results are shown in
Figure 10, and may be compared with the equivalent least squares data shown in Figure
6. One can observe that (a) the increase in error due to aliasing at 13 and 17 kHz, which
had been virtually eliminated for the least squares data in Figure 6, is now clearly apparent
in Figure 10, and (b) while the cyclic behaviour of the error curve is absent at low
frequencies, it again passes through the peaks of the error curve in Figure 6.

Hence we conclude that the proposed least squares method actually outperforms these
alternatives at both high and low frequencies.

As to the cyclic behaviour problem, the clue to this lies in equation (7.1). One can
observe that the cyclic behaviour is associated with that frequency range in which the
sin Z/Z functions do not necessarily obtain small values for finite values of k− p and
l− q. However, the actual value of H(p, q, k, l) also depends on the cosine function. Hence
while the values of the sin Z/Z functions may not be particularly small, a significant
number of the values of H(p, q, k, l) may be as a result of low values of this associated
cosine function and hence the matrix condition number is reduced.

The exceptions, in fact, occur when the argument of this cosine function is an integer
multiple of p for all values of k− p and l− q, thus guaranteeing the maximum magnitude
of H(p, q, k, l) everywhere. Inspection of equation (7.1) shows that this occurs at the

Figure 9. The r.m.s. error in vector B: 6×6 microphone array, direct inversion method, 0% and 5% error
in far field data.
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Figure 10. The r.m.s. error in vector B: 30×6 microphone array, singular value decompositon, 0% and 5%
error in far field data.

frequency

f=
a0

2L b sin am

2
−

1
Mc b

−1

,

and harmonics thereof. Evaluating these frequencies for the current model yields 3·08, 6·16
and 9·24 kHz, in precise agreement with the peaks in the condition number variation
shown in Figure 8. However, between these peaks the condition number is lower for certain
frequency ranges and hence more accurate results can be obtained. In Figures 6 and 7,
for example, it is indicated that, on the basis of our −20 dB criterion, just adequate results
can be obtained at 5 kHz, although those at 6 kHz would not be acceptable. The fact that
these frequencies can be determined from the variation of the condition number of the
geometry matrix, prior to any testing, and to some extent controlled by choice of the
microphone aperture, sin (aM/2), is considered to be a valuable feature of the present
procedure.

8. CONCLUSIONS

(1) The principal objective of the work presented in this paper has been to explore the
feasibility and limitations of a proposed least squares fit method for the determination of
the amplitudes and mutual coherence of a set of monopole sources. It constitutes the next
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logical step from the work of reference [2] to the extent that the restriction to incoherent
sources has been removed.

(2) Although the model considered here has been restricted to a line source array, as
explained in section 2 the basic requirement is a knowledge of the positions and relative
phasing of the constituent sources. While this has been convenient as an intermediate step,
the next logical advance is to remove the requirement for known phasing, and this
development is currently under investigation at the ISVR by Yoon and Nelson [14].

(3) The heart of the present system is described by equation (2.5) which can be written
in matrix form as M=HB, where M is the measurement vector, H a geometric matrix
and B the required vector of source strengths and coherences as described previously. The
required solution is therefore B=H−1M. An essential feature of the procedure is therefore
the condition number and hence invertibility of this geometry matrix. A powerful feature
of the current procedure is that this condition number, specifically its variation with
frequency, can be determined prior to any testing and hence used to aid the design of a
microphone array and/or determine that range of frequencies over which satisfactory
results may be obtained.

(4) Subject to the general condition that the number of microphones must equal or
exceed the number of sources, factors which will adversely effect the condition number of
this geometric matrix and lead to poor quality results are the following: (a) an inadequate
microphone array aperture leading, physically, to a lack of resolution at lower frequencies;
(b) an excessive spacing between microphones which leads to aliasing effects. Both effects
are clearly shown in the condition number of the geometry matrix irrespective of the
complexity of either the source or microphone array geometry.

(5) However, in terms of our simple line source array with equal source spacing, L, both
the analytical and numerical simulation results indicate the following. (a) At low
frequencies the condition number will begin to increase when the sin Z/Z functions in
equation (3.3) or (7.1) do not reach their first zero for =k− p= or =l− q= equal to unity;
on this criterion one needs

fe a0/[2L sin (am/2)]. (8.1)

However, the rate of increase is relatively slow for about an octave below this frequency
so that, as discussed below, for reasonable levels of statistical error in the cross-spectral
data one might expect acceptable results down to about half this frequency.

(b) As specified in section 3.1, aliasing will begin to occur when the frequency exceeds

fe a0/(LT sin D), (8.2)

where LT is the total length of the source distribution and D is the microphone spacing.
It is to satisfy this criterion (see equation (3.1)) which leads to the need for the use of
multiple reference microphones in conjunction with coherent sources. Strictly, one needs
to satisfy the criterion (8.2) for the highest frequency of interest. However, as discussed
in section 7.1, there are practical advantages in utilizing a small spacing for the main array
and then selecting the minimum number of these microphones for use as reference
microphones. This led to the adoption of the 30×6 array in the present simulation study
of six sources. This allows a large safety margin against aliasing created by unsuspected
sources of noise outside the anticipated source array, as well as building extra degrees of
freedom into the least squares fit, which serves to reduce the r.m.s. error of the results.

(c) We shall finally consider the relationship between the condition number of the
geometry matrix, statistical error in the cross-spectral data and the quality of the source
strength and coherence results. The first point to note is that it is completely
non-productive to examine the potential of techniques of this nature on the assumption
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that the cross-spectral data is entirely accurate. Had this been done in the present study,
one would have concluded that high precision results would be obtained at all frequencies
examined 1E fE 20 kHz with all the microphone arrays tested, with the single exception
of the clearly inadequate 5×5 array.

The results indicate, in fact, that the following factors all play their part in determining
the r.m.s. error of the final results and the frequency range over which adequate results
may be obtained: the condition number of the geometry matrix; the statistical error in the
far field cross-spectral data; the number of cross-spectra used in the least squares fit
procedure. Of these, the former two are the more important parameters at low frequencies,
with the results indicating that for 5% error in the cross-spectral data a condition number
of about 105 or less is required to achieve our proposed criterion of 0·1 r.m.s. error (i.e.,
the −20 dB error criterion).

We note finally that while, as specified in section 6.2, the majority of the simulations
reported here were carried out by using IEEE double precision, some additional work, not
included here indicates that this is completely unnecessary whenever realistic amounts of
statistical error are present in the cross-spectral data.
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APPENDIX

A.1.    

The relationship between the cross-spectrum of microphones m and n and the required
set of source amplitudes and coherences bkl is

C(m, n)= s
k

s
l

bkl exp jf(m, n, k, l). (A1)

We now wish to identify a set of source parameters, bpq say, which will minimize the mean
square error between a set of cross-spectral measurements C	 (m, n) and the model given
by equation (A1).

Let this mean square error s2 be

s2 0 s
mn

=C	 (m, n)−C(m, n)=2, (A2)

where, for this Appendix only,

s
mn

0
1
m

s
m

1
N

s
n

.

Upon writing C	 (m, n) and C(m, n) in terms of their real and imaginary parts equation (A2)
becomes

s2 = s
mn

(R	 (m, n)−R(m, n))2+(I	 (m, n)−I(m, n))2.

Hence the requirement that the mean square error is a minimum, i.e., 1s2/1bpq =0, leads
to

s
mn

(R	 (m, n)−R(m, n))
1R(m, n)

1bpq
=−s

mn

(I	 (m, n)−I(m, n))
1I(m, n)

1bpq
,

which can be rearranged as

s
mn

R	 (m, n)
1R(m, n)

1bpq
+ I	 (m, n)

1I(m, n)
1bpq

= s
mn

R(m, n)
1R(m, n)

1bpq
+ I(m, n)

1I(m, n)
1bpq

. (A3)

In the present formulation in which the phasing of the sources are assumed known and
are contained in the phase angle f(m, n, k, l), it follows that the values of bkl are purely
real. Hence

R(m, n)= s
k

s
l

bkl cos f(m, n, k, l), I(m, n)= s
k

s
l

bkl sin f(m, n, k, l), (A4)

and hence

1R(m, n)
1bpq

=cos (m, n, p,q),
1I(m, n)

1bpq
=sin (m, n, p,q), (A5)
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Inserting these relationships into equation (A3) then yields

s
mn

R	 (m, n) cos f(m, n, p, q)+I	 (m, n) sin f(m, n, p, q)

= s
m n

s
k

s
l

bkl cos (f(m, n, k, l)−f(m, n, p, q)), (A6)

which is the result quoted as equation (2.5).

A.2.     

Using the expression for s2 given above, one finds that

1s2

1bpq
= s

mn

−2 $(R	 (m, n)−R(m, n))
1R(m, n)

1bpq
+(I	 (m, n)−I(m, n))

1I(m, n)
1bpq %

and hence

12s2

1b2
pq

=2 s
mn 01R(m, n)

1bpq 1
2

+R(m, n)
12R(m, n)

1b2
pq

−R	 (m, n)
12R(m, n)

1b2
pq

+01I(m, n)
1bpq 1

2

+ I(m, n)
12Imn

1b2
pq

− I	 (m, n)
12I(m, n)

1b2
pq

.

Inserting the expressions for these terms from equations (A4) and (A5) and noting from
the latter 12R(m, n)/1b2

pq =0 and 12I(m, n)/1b2
pq =0, one finds that

1s2

1b2
pq

=2 s
mn

{cos2 (m, n, p, q)+sin2 (m, n, p, q)}=2.

Since 2 is positve, this shows there are no maxima and therefore only one single minimum.


