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1. 

Obtaining accurate estimates of modal parameters from test data is an essential part of
designing and analyzing aerospace structures. As both the precision required of structural
models and the modal complexity of the structures themselves have increased, it has
become more challenging to obtain accurate estimates of modal parameters. A central part
of this challenge is improving the numerical procedure with which the modal parameters
are extracted from the data. Most current research has focused primarily on time domain
procedures such as Eigensystem Realization Algorithm (ERA) [1] and the polyreference
algorithm [2] to accomplish the modal parameter extraction. Although each performs well
on simulated data sets, none has been shown to have a distinct advantage when applied
to actual modal test data. The major shortcoming is that high time domain accuracy of
the curve fit is not well reflected in frequency domain accuracy, and may lead to large errors
in the frequency domain near anti-resonances.

In this note, we present a frequency domain curve fit algorithm for estimating the modal
vectors associated with the modes estimated using time domain realization methods. We
have found in previous work that significant increases in the amount of data used in time
domain realization algorithms does not significantly improve frequency domain error near
the anti-resonances. It does, however, converge the poles of the structure very tightly. This
feature is exploited in the present procedure.

Several researchers have also investigated similar methods. Reference [3] presents a
procedure which, beginning with an identified ERA model, performs a full non-linear
minimization in which poles, residuals and modal vectors are simultaneously adjusted. In
contrast, reference [4] presents a procedure which, using poles estimated from the
polyreference method, performs a modal vector adjustment on each mode individually
using data near the resonances. Finally, reference [5] uses a matrix fraction decomposition
approach to find both the poles and the modal vectors, but reduces the resulting model
with a final ERA identification. Our approach is to use the converged pole estimates from
an asymptotically large ERA analysis and then find the output modal vectors and residuals
in a separate, overdetermined linear least squares problem. In this way, it is similar
philosophically to the method of reference [4], but finds a simultaneous solution for the
modal vectors and residuals. Also, it avoids the computational burdens of the non-linear
minimization problem used in reference [3] by finding the poles in a separate ERA
procedure.

In the following sections, we present and illustrate the method on experimental data.
First, the method by which poles are identified in the time domain is discussed, relying
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primarily on references to prior work. Then, the necessary discrimination of spurious poles
from the identified set is discussed. The linear least squares problem for modal vectors and
residuals is discussed, following by an application of the method to experimental data.

2.    

The response y(t) of a structure to a set of forces or inputs u(t) can be modelled as a
finite order discrete state space model of the form

x(k+1)=Ax(k)+Bu(k), y(k)=Cx(k)+Du(k), (1)

in which k is the time sample index. All state space time domain realization methods
attempt to find the state space matrices A, B, C and D from measurements of the Markov
parameter sequence. This is the process known as system realization. Given that frequency
response functions G( jv) have been estimated from the measured data, the Markov
parameters M(k) are given by the inverse discrete Fourier transform of G( jv). The
essential considerations in system realization are the selection of the model order (it is
presumed that the model form is correct) and the determination of the state space
parameters from a minimization of some prediction error. For ERA, the prediction error
is defined in terms of a Hankel matrix of the Markov parameters. The ERA realization
finds the linear least squares solution for A, B, C and D to minimize the error in the shift
in the Hankel matrix of the system model and the data. The model order is selected by
examining the numerical rank of the Hankel matrix formed from the data. Reference [6]
discussed the efficient computation of the ERA realization for data sets sufficiently large
to converge the pole estimates; reference [7] examined the variance of ERA pole estimates
as a function of data set size, demonstrating the data set size necessary to achieve
convergence.

3.       

Our procedure uses a combination of several quantitative modal quality indicators
(MQI) to detect convergence and discriminate unwanted or unreliable modes from the A
and B matrices which are subsequently used in the frequency domain curve fit. We note
that none of these indicators is demonstrably superior over the others. In our experience,
only a careful, combined examination of all of these MQI leads to reliable discrimination
of structural poles: (1) Modal Singular Value (MSV) [8], (2) Extended Modal Amplitude
Coherence (EMAC) [9] and (3) Consistent Mode Indicator (CMI) [9].

In addition to the above, we have also developed a new indicator. The Mass Scaling
Parameter (MSP) evaluates the extent to which the identified mode shape can be
normalized by the driving point measurement collocated with the applied forces. If Cij is
the displacement mode shape value for mode i at DOF j, Cimax is the highest magnitude
modal displacement for mode i, and Bij is the continuous time modal participation factor
of force for mode i at DOF j, then

MSP= =Cimax /Cij = sgn
Bij

Cij
. (2)

Modes with small components at the driving points are poorly excited and poorly
normalized. In addition, a negative sign change between the Bij and the Cij indicates that
the mode has negative modal mass. By discriminating modes with low or negative values
of MSP, one can exclude modes for which the extracted normalized mode shape is
unreliable.
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4.       

 

A fundamental limitation of discrete time domain state space realization algorithms for
continuous systems is that they cannot accurately represent the influence of modes above
the Nyquist frequency in an efficient form. That is, the effects of these so-called residual
modes on the response functions leads to residual terms in the continuous model which
do not have a corresponding finite representation in the discrete model. In classical
structural dynamics theory, the predominate residual terms are residual flexibility and
residual mass. It is well known that neglecting these terms can lead to poor frequency
domain accuracy for an identified model, even when the modes within the test bandwidth
are perfectly identified. Herein lie many of the aforementioned problems with time domain
realization algorithms; in particular, ambiguity in model order and poor frequency domain
reconstruction for the resultant model. Unlike noise, an error in the model form cannot
be mitigated by averaging more data or changing the error norm which serves as the basis
of the numerical algorithm.

The present procedure recognizes this limitation of discrete state space realization
algorithms and proposes to add a second stage linear estimation to determine the modal
vectors and residual terms. The procedure exploits the primary strength of the existing
realization algorithms; that is, their ability to identify extremely accurate estimates of all
the resonant poles in the data via efficient and robust linear numerical analysis. Using this
capability, together with the MQI previously discussed to discriminate the estimated poles,
the second stage procedure assumes that the matrices A and B of the identified model are
known.

Assuming acceleration output and force input, we model the continuous response of the
system as the sum of the response of the identified modes Gn

ik (s) and the contribution of
the residuals Rik (s); viz.,

G
 ik (s)=Gn
ik (s)+Rik (s), (3)

where

Gn
ik (s)= s

NID

n=1

s2FinFkn

s2 +2znvns+v2
n
, Rik (s)= s

a

n=NID +1

s2FinFkn

s2 +2znvns+v2
n
. (4)

Then expanding the residual term Rik (s) with the assumption that s�jvn , we have

Rik (s)= s2 s
a

n=NID +1

FinFkn

v2
n

− s4 s
a

n=NID +1

FinFkn

v4
n

+ . . .

=s2Fik − s4Hik + . . . , (5)

where

Fik = s
a

n=NID +1

FinFkn

v2
n

, Hik = s
a

n=NID +1

FinFkn

v4
n

. (6)

In terms of the discrete-time state space model [A, B, C, D] and the residuals, our
representation of the FRF at a particular frequency fk becomes (for different types of
output):

acceleration: G
 ( fk )=C(e j2pfkDtI−A)−1B+D−(2pfk )2F−(2pfk )4H;
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velocity: G
 ( fk )=C(ej2pfkDtI−A)−1B+D+j(2pfk )F+j(2pfk )3H;

displacement: G
 ( fk )=C(ej2pfkDtI−A)−1B+F+(2pfk )2H. (7)

Therefore, to estimate the output quantities C, D, F and H for acceleration
measurements, we can write the linear equation

(ej2pfkDtI−A)−1B

I
G
 ( fk )= [C D F H]G

G

G

K

k
−(2pfk )2I

G
G

G

L

l

=[C D F H]S( fk ). (8)

−(2pfk )4I

Figure 1. The four-bay cantilevered truss used in this research.
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Figure 2. A reconstruction of the driving point FRF for the initial 200-mode (400-state) ERA model: (a) phase,
(b) magnitude. ——, Measured; · · · , identified ERA model.

In this form, the error minimization problem is given by

min
[C D F]

s
k$kset

>G( fk )−G
 ( fk )>2 (9)

and the solution is given by

[C D F H]=6 s
nk$kset

G( fk )S( fk )*76 s
k$kset

S( fk )S( fk )*7
−1

, (10)

in which k $kset denotes the set of frequency samples to be included in the curve fit. A
pseudo inverse is generally unnecessary, as rich data typically results in a full rank matrix
that can be inverted directly. Frequency weights could also be included proportionately
to emphasize frequency bands of interest, but we have found that this is usually not
necessary.

5.  

The testbed used to illustrate our modal identification procedure is shown in Figure 1.
It is a cantilevered truss consisting of four 0·5 bays with a 50 lb steel plate tip mass. FRF
data was collected using a pseudo-random force input applied with an electromagnetic
shaker in voltage-coupled mode. Auto- and cross-spectra were averaged for 50 ensembles
consisting of 8192 samples collected at a rate of 500 Hz. A total of 62 accelerometer
measurements were collected, including a driving point measurement for mass
normalization of the mode shapes. The input signal was band limited to 240 Hz and the
sensors were appropriately filtered to avoid aliasing of signals above the Nyquist
frequency.

For the time domain identification phase, an ERA analysis was performed with a Hankel
matrix of 40 block rows and 4000 block columns. Models with orders ranging from 50
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to 400 states were extracted from the ERA analysis, and the convergence of the model poles
with respect to the MQI were studied. In Figure 2 is shown the reconstruction of the
driving point data for the 400 state ERA model. From this analysis, 124 modes were
identified. In Table 1 is shown the MQI for the first 30 modes identified by the ERA
analysis. The far right column indicates the modes which are chosen for subsequent
analysis.

The second stage frequency domain identification procedure was then applied. Although
this is a direct linear least-squares problem, it is wise to re-apply the mode discrimination
procedure after re-computing the modal vectors, in order to detect additional unreliable
modes. Using this, the initial 124 mode discriminated ERA model was reduced first to 58
modes and finally to 42 modes at the end of this procedure. The final curve fit, which
includes the residual flexibility term, is shown in Figure 3. The modal vectors and residuals
were computed using the above frequency domain curve including data up to 120 Hz.
Compare the accuracy of this 42-mode reconstruction to that of the 200-mode
reconstruction shown in Figure 2 using the original ERA model. Note that the curve fit
accuracy is very high within the bandwidth of the curve fit, and maintains reasonable
accuracy for modes outside the bandwidth. Note also that the phase error is also greatly

T 1

Modal quality indicators for the ERA identified modes (124-mode model)

ERA EMAC MSV MPC MSP Identified
mode f (Hz) zi (%) (%) (%) (%) (%) mode

1 0·0 86·5 94·9 16·5 96·0 15·3
2 0·9 6·8 78·3 3·6 38·2 2·8
3 11·5 0·8 98·8 23·5 100 64·0 1
4 12·8 0·2 99·1 20·7 99·8 48·9 2
5 12·9 6·8 50·7 4·0 74·6 −26·1
6 47·9 0·1 94·9 71·3 99·1 68·4 3
7 48·0 0·1 97·2 47·0 24·6 −2·9
8 52·9 0·5 73·0 6·2 97·4 −0·6
9 66·6 0·1 87·8 7·9 89·7 −3·2

10 66·8 0·1 91·6 8·7 98·0 −2·2
11 68·3 0·1 96·9 14·7 98·0 19·9 4
12 68·9 0·4 72·2 5·0 88·1 8·6 5
13 70·0 0·1 91·7 9·7 99·2 4·3 6
14 71·0 0·1 94·8 18·7 43·6 12·1
15 71·1 0·2 90·4 13·2 59·3 7·2 7
16 73·0 0·2 83·0 6·8 97·1 2·2 8
17 73·8 0·1 87·8 3·6 98·3 2·8 9
18 74·5 0·3 68·7 23·5 82·3 64·0
19 77·0 0·2 75·7 20·7 95·4 48·9
20 77·6 0·1 96·5 4·0 99·4 −26·1 10
21 79·5 0·4 90·9 71·3 78·3 68·4 11
22 79·7 0·1 95·2 47·0 79·3 −2·9 12
23 80·6 0·1 93·6 6·2 97·1 −0·6 13
24 81·7 0·1 90·5 7·9 97·4 −3·2 14
25 82·6 0·1 93·8 8·7 98·8 −2·2 15
26 84·6 0·1 96·0 14·7 95·2 19·9 16
27 85·1 0·1 83·9 5·0 90·8 8·6 17
28 85·3 0·6 63·6 9·7 66·3 4·3
29 87·7 0·1 89·9 18·7 99·6 12·1 18
30 88·1 0·1 96·6 13·2 98·0 7·2 19
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Figure 3. Data reconstruction after a frequency domain curve fit with residuals and reduction to 42 modes (84
states).

reduced over the entire band, and the troublesome phase lead error at intermediate
frequencies is nearly zero.

6. 

The method reported in this note obtains a minimal order modal model with both time
and frequency domain accuracy using only overdetermined linear regressions. The
converged poles from an overdetermined ERA model are carefully discriminated using a
combination of modal quality indicators to eliminate redundant or non-physical modes.
The model vectors are then determined using a linear least-squares curve fit to the FRF
data, which includes residual terms. These additional terms compensate for the fact that
a discrete state space model cannot represent the effects of super-Nyquist modes on the
FRF, although most structural modal test data is significantly influenced by their low
frequency residual dynamics.
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