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It is shown how the conventional harmonic probing algorithm of Bedrosian and Rice
can be extended to deal with the multi-input multi-output form of the Volterra functional
series. Example calculations are presented for both continuous-time and discrete-time
multi-input non-linear systems subject to multiple sinusoidal inputs.
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1. INTRODUCTION

The single-input Volterra series is by now established as a powerful tool in the analysis
of non-linear systems. Individual papers are too numerous to cite; a useful review by
Billings [1] and the fairly recent review of Korenburg and Hunter [2] account for all
references of importance up to 1990. Rugh’s book [3] covers material up to 1981. Possibly
the most significant developments in the theory since are the generating series approach
of Fliess and his co-workers [4], and several new methods of estimating the series kernels
and kernel transforms [2, 5, 6]. In contrast, the multi-input version of the series appears
to have received little attention since its inception (in the guise of the closely related Wiener
series) in the paper of Marmarelis and Naka in 1974 [7]. In reference [8], the situation is
discussed. The more restricted case in which several independent signals are input to a
system at the same point has received some attention from Bussgang et al. [9].

In the case of non-linear structures, as encountered in mechanical and civil engineering,
the motivation for applying the Volterra series is often the need to determine how energy
is transferred from harmonic inputs to sum and difference frequencies in the output; for
example, Worden et al. [10] considered the example of non-linear wave loading on offshore
structures. In this case, it was most convenient to work with the Fourier transforms of
the Volterra kernels—the so-called kernel transforms or Higher-order Frequency Response
Functions (HFRFs). If the differential equations of motion of the system, or a
discrete-time model are available, there are a number of methods of obtaining the kernel
transforms for the single-input series; arguably the most direct is the harmonic probing†
algorithm of Bedrosian and Rice [11] (extended to discrete-time systems by Billings and
Tsang [5]).

The objective of the current paper is to extend the harmonic probing algorithm to the
multi-input Volterra series so that the additional cross-kernel transforms can be
determined. This is a novel method of establishing the kernels; previous work seems to

† In the literature relating to control engineering or system theory, the Laplace s-domain is often used in
preference to the Fourier v-domain and it is more correct to refer to the kernel transforms as Higher-order
Transfer Functions (HTFs). In that case, the method of harmonic probing is referred to as the method of growing
exponentials [3].
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have been concentrated on correlation methods. The layout of the paper is as follows. In
section 2 the relevant facts about the single-input Volterra series are summarized and an
example is given of the use of harmonic probing. In section 3 the modifications necessary
to deal with the case of multiple inputs are described, as is the new algorithm, and an
example is given of how it is applied to a discrete-time multi-input non-linear system,
together with a description of how it can be used to compute the response of a non-linear
system under multiple sinusoidal excitation. In section 4 this theoretical work is validated
via a numerical example.

2. THE SINGLE-INPUT VOLTERRA SERIES AND HARMONIC PROBING

The theory described in this section can be found elsewhere in the literature; it is included
here in an attempt to make the paper as self-contained as possible.

The Volterra series is essentially a generalization of the well-known input–output
relation for linear systems,

y(t)=g
+a

−a

h(t− t)x(t) dt, (1)

where x(t) is the system input and y(t), the output. The above equation is sometimes
referred to as Duhamel’s integral. The system is specified uniquely by its impulse response
function h(t). The Fourier transform F of equation (1) yields the familiar frequency
domain expression

Y(v)=H(v)X(v), (2)

where X(v), Y(v) and H(v) are the Fourier transforms of x(t), y(t) and h(t), respectively,
and H(v) is the system Frequency Response Function or FRF. All information about the
system is encoded in either of the functions h(t) or H(v).

Equations (1) and (2) are manifestly linear and therefore cannot hold for arbitrary
non-linear systems. However, both admit a generalization. The extended form of equation
(1) was obtained in the early part of this century by Volterra [12] and it takes the form
of an infinite series

y(t)= y1(t)+ y2(t)+ y3(t)+ · · · , (3)

where

y1(t)=g
+a

−a

h1(t)x(t− t) dt, (4)

y2(t)=g
+a

−a g
+a

−a

h2(t1, t2)x(t− t1)x(t− t2) dt1 dt2, (5)

y3(t)=g
+a

−a g
+a

−a g
+a

−a

h2(t1, t2, t3)x(t− t1)x(t− t2)x(t− t3) dt1 dt2 dt3. (6)

For the systems being considered the equilibrium position is set to be y=0. This means
that a y0(t) DC term is not required in equation (3). This does not disallow a DC term
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in the output response of the system, which may still occur due to interactions between
the input frequencies.

The form of the general term follows from the above equations. The functions h1(t),
h2(t1, t2), h3(t1, t2, t3), . . . hn (t1, . . . , tn ), . . . are generalizations of the linear impulse
response function and are usually referred to as Volterra kernels. The use of the Volterra
series in dynamic stems from the seminal paper of Barrett [13], in which the series was
applied to non-linear differential equations for the first time. One can think of the series
as a generalization of the Taylor series from functions to functionals. The expression (1)
simply represents the lowest order truncation which is, of course, exact only for linear
systems.

It was shown by Schetzen [14] that the kernels can be taken to be symmetric without
loss of generality: i.e., h2(t1, t2)= h2(t2, t1) etc. A formal argument is fairly
straightforward: consider the expression for y2(t),

y2(t)=g
+a

−a g
+a

−a

h2(t1, t2)P2(t1, t2; t) dt1 dt2 (7)

with the newly defined

P2(t1, t2; t)= x(t− t1)x(t− t2), (8)

and note that P2 is manifestly symmetric in its arguments t1 and t2.
Even if h2 has no particular symmetries, it still has a canonical decomposition into

symmetric and antisymmetric parts,

h2(t1, t2)= hsym
2 (t1, t2)+ hasym

2 (t1, t2), (9)

where

hsym
2 (t1, t2)= 1

2(h2(t1, t2)+ h2(t2, t1)),

hasym
2 (t1, t2)= 1

2(h2(t1, t2)− h2(t2, t1)). (10)

Now, consider the contribution to y2(t) from the antisymmetric component of the kernel,

g
+a

−a g
+a

−a

hasym
2 (t1, t2)P2(t1, t2; t) dt1 dt2. (11)

Any (infinitesimal) contribution to this ‘‘summation’’, say at t1 = v, t2 =w, will cancel with
the corresponding contribution at t2 = v, t1 =w, as

hasym
2 (v, w)P2(v, w; t)=−hasym

2 (w, v)P2(w, v; t) (12)

and the overall integral will vanish. This is purely because of the ‘‘contraction’’ or
summation against the symmetric quantity P2(t1, t2; t). Because hasym

2 makes no
contribution to the quantity y2(t), it may be disregarded and the kernel h2 can be assumed
to be symmetric. Essentially, the h2 picks up all the symmetries of the quantity P2. This
argument may be generalized to the kernel hn (t1, . . . , tn ). This type of argument will
surface in the following section when the multi-input series is discussed.

As in the linear case, there exists a dual frequency domain representation for non-linear
systems. The higher order FRFs or Volterra kernel transforms Hn (v1, . . . , vn ),
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n=1, . . . , a, are defined as the multi-dimensional Fourier transforms of the kernels, i.e.,

Hn (v1, . . . , vn )=g
+a

−a

· · · g
+a

−a

hn (t1, . . . , tn ) e−i(v1t1 + · · ·+vntn ) dt1 · · · dtn , (13)

hn (t1, . . . , tn )=
1

(2p)n g
+a

−a

· · · g
+a

−a

Hn (v1, . . . , vn ) e+i(v1t1 + · · ·+vntn ) dv1 · · · dvn . (14)

It may be shown that symmetry of the kernels implies symmetry of the kernel transforms,
so that, for example, H2(v1, v2)=H2(v2, v1).

The frequency domain dual of the expression (3) may be written as

Y(v)=Y1(v)+Y2(v)+Y3(v)+ · · · , (15)

where

Y1(v)=H1(v)X(v), (16)

Y2(v)=
1
2p g

+a

−a

H2(v1, v−v1)X(v1)X(v−v1) dv1, (17)

Y3(v)=
1

(2p)2 g
+a

−a g
+a

−a

H3(v1, v2, v−v1 −v2)X(v1)X(v2)X(v−v1 −v2) dv1 dv2.

(18)

Again, the form of the general term follows.
In order to determine the analytical form of the kernel transforms, the method of

harmonic probing was introduced by Bedrosian and Rice in [11] specifically for systems
with continuous-time equations of motion. The method was extended to discrete-time
systems by Billings and Tsang [15]. An alternative, recursive approach to probing was
presented by Peyton-Jones and Billings [16]. In order to explain how the procedure works,
it is necessary to determine how a system responds to a harmonic or periodic input in terms
of its Volterra series.

First consider a periodic excitation composed of a single harmonic

x(t)= eiVt. (19)

Substituting this expression into equations (4)–(6) and forming the total response as in
(3) gives, after a relatively straightforward calculation,

y(t)=H1(V) eiVt +H2(V, V) ei2Vt +H3(V, V, V) ei3Vt +· · · . (20)

The important point here is that the component in the output at the forcing frequency is
multiplied by H1(V). However, probing the system with a single harmonic yields only
information about the values of the FRFs on the diagonal line in the frequency space
(V1, V2). In order to obtain information elsewhere in this space, one should use
multi-frequency excitations. With this in mind, consider the ‘‘two-tone’’ input

x(t)= eiV1t +eiV2t. (21)

Substituting this into equations (4)–(6) and thence into equation (3) yields, after a slightly
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more involved calculation,

y(t)=H1(V1) eiV1t +H1(V2) eiV2t

+H2(V1, V1) ei2V1t +2H2(V1, V2) ei(V1 +V2)t +H2(V2, V2) ei2V2t

+H3(V1, V1, V1) ei3V1t +3H3(V1, V1, V2) ei(2V1 +V2)t

+3H3(V1, V2, V2) ei(V1 +2V2)t +H3(V2, V2, V2) ei3V2t +· · · (22)

for the response up to third order. The important thing to note here is that the amplitude
of the component at the sum frequency for the excitation, i.e., at (V1 +V2), is twice the
second order FRF H2(V1, V2). In fact, if a more general periodic excitation is used, i.e.,

x(t)= eiV1t +· · ·+eiVn t, (23)

it is not difficult to show that the amplitude of the output component at the frequency
(V1 + · · ·+Vn ) is n!Hn (V1, . . . , Vn ). This single fact is the basis of the harmonic probing
algorithm. In order to find the second order FRF of a system, for example, one substitutes
the expressions for the input (21) and general output (22) into the system equation of
motion and extracts the coefficient of ei(V1 +V2)t; this yields an algebraic expression for H2.

The procedure is best illustrated by choosing a concrete example. Consider the
continuous-time asymmetric Duffing oscillator system.

mD2y+ cDy+ ky+ k2y2 + k3y3 = x(t), (24)

where D=d/dt. In order to find H1, one substitutes in the equation, the probing
expressions (indicated by subscript p),

x(t)= xp1(t)= eiVt, y(t)= yp1(t)+ · · · , (25, 26)

where yp1(t), the output probing signal, is that portion of the Volterra response capable
of generating response components at frequency V and is given by yp1(t)=H1(V) eiVt. The
result of these substitutions is

(−mV2 + icV+ k)H1(V) eiVt + k2H1(V)2 ei2Vt + k3H1(V)3 ei3Vt +· · ·=eiVt. (27)

Equating the coefficients of eiVt on each side of this expression yields an equation for H1,

(−mV2 + icV+ k)H1(V)=1, (28)

which yields the expected expression

H1(V)=1/(−mV2 + icV+ k). (29)

Evaluation of H2 is only a little more complicated. One uses the probing expressions

x(t)= xp2(t)= eiV1t +eiV2t, y(t)= yp2(t)+ · · · , (30, 31)

where

yp2(t)=H1(V1) eiV1t +H1(V2) eiV2t +2H2(V1, V2) ei(V1 +V2)t. (32)

Note that in passing from the general output (22) to the probing expression (32), all second
order terms except that at the sum frequency have been deleted. This simplification is
allowed for the same reason as before: i.e., no combination of the missing terms can
produce a component at the sum frequency and therefore they cannot appear in the final
expression for H2. Substituting expressions (30) and (31) into equation (24), and extracting
the coefficients of ei(V1 +V2)t yields

{−m(V1 +V2)2 + ic(V1 +V2)+ k}H2(V1, V2)+ k2H1(V1)H1(V2)+ · · ·=0, (33)
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so that

H2(V1, V2)=−k2H1(V1)H1(V2)/(−m(V1 +V2)2 + ic(V1 +V2)+ k)

=−k2H1(V1)H1(V2)H1(V1 +V2). (34)

Note that the constant k2 multiplies the whole expression for H2, so that if the square-law
term is absent from the equation of motion, H2 vanishes. This reflects a quite general
property of the Volterra series; if all non-linear terms in the equation of motion for a
system are odd powers of x or y, then the associated Volterra series has no even order
kernels. As a consequence, it will possess no even order kernel transforms.

It is also a general property of systems that all higher order FRFs can be expressed in
terms of H1 for the system. The exact form of the expression will of course depend on the
particular system.

The harmonic probing algorithm has been established above for all continuous-time
systems: i.e., those whose evolution is governed by differential equations of motion. For
difference equations such as the NARMAX models of Leontaritis and Billings [17, 18], the
probing algorithm requires a little modification, as in reference [15]. Consider a difference
equation similar in appearance to equation (24),

m D2y+ c Dy+ ky+ k2y2 + k3y3 = x(t), (35)

where D is the backward shift operator, defined by Dz(t)= z(t−Dt), where Dt is the
sampling interval. In the usual notation for difference equations, equation (35) becomes

myi−2 + cyi−1 + kyi + k2y2
i + k3y3

i = xi . (36)

However, the form containing D allows the most direct comparison with the
continuous-time case. The only differences for harmonic probing of discrete-time systems
will be generated by the fact that the operator D has a different action on functions eiVt

to the operator D. This action may be expressed as

D eiVt =eiV(t−Dt) = e−iVDt eiVt. (37)

One can carry out the harmonic probing algorithm for equation (35) exactly as for the
continuous-time equation (24); the only difference will be that the D operator will generate
a multiplier e−iVDt everywhere that D generated a factor iV. As a consequence, H1 and H2

for (35) may be computed as

H1(V)=1/(−m e−2iVDt + c e−iVDt + k), (38)

H2(V1, V2)=−k2
H1(V1)H1(V2)

−m e−2i(V1 +V2) Dt + c e−i(V1 +V2) Dt + k

=−k2H1(V1)H1(V1)H1(V1 +V2). (39)

Note that the form of H2 as a function of H1 is identical to that for the continuous-time
system.

The system in equation (36) is not NARMAX as it is a non-linear function of the most
recent sampled value yi . A NARMAX model has the general form

yi =F(yi−1, . . . , yi− ny ; xi−1, . . . , xi− nx ; ei−1, . . . , ei− ne )+ ei , (40)

where ei is the noise signal. The relevant existence theorems obtained in references [17, 18]
show that this form is actually general enough to represent almost all input–output
systems.
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It is assumed throughout this work that the Volterra series exists for all the systems
considered; necessary and sufficient conditions for existence can be found in references
[19, 20]. Essentially all that is required is that the non-linearity be analytic. Here, all
non-linearities are polynomial and therefore satisfy this condition. Many non-linearities
of interest, such as the piecewise-linear functions which arise in dealing with backlash and
clearance systems, can be approximated arbitrarily closely by polynomial systems by the
Stone–Weierstrass theorem [21]. Unfortunately, it is not sufficient for the Volterra series
to exist for a given system; one must also have convergence over the range of excitations
of interest. In practice, one requires convergence to appropriate accuracy in a few terms.
There are few results on the radius of convergence for the Volterra series, Barrett [22]
provided a lower bound on the radius for a Duffing oscillator and recently, in an empirical
study, Tomlinson et al. [23] attempted to establish an upper bound. The only section of
this work where convergence is an issue is section 4 in which an application to a specific
dynamical system is presented.

3. MULTI-INPUT VOLTERRA SERIES

When a non-linear system is excited with more than one input, complicated
intermodulation terms arise in the response. As before, the Volterra series proves equal
to the task; however, it is necessary to use a more general multi-input form of the series.

Before embarking upon the theory it is first necessary to extend the notation used
previously. A superscript is added to each Volterra kernel denoting the response point and
the number of occurrences of each particular input relevant to the construction of that
kernel is indicated: e.g., h(j:aabbb)

5 (t1, . . . , t5) represents a fifth order kernel measured at
response point j and having two inputs at point a and three at point b.

To illustrate the process, consider a non-linear system excited at locations a and b with
inputs x(a)(t) and x(b)(t). The expression for the response at point j is the same as equation
(3) in the single-input case: i.e.,

y(j)(t)= y(j)
1 (t)+ y(j)

2 (t)+ y(j)
3 (t)+ · · · . (41)

For the single-input case each non-linear component y(j)
n (t) in equation (41) is expressed

in terms of a single Volterra kernel; in the multi-input case, several kernels are needed.
For the two-input case, the components are given by

y(j)
n (t)=g

+a

−a

· · · g
+a

−a

h(j:aa · · · aa)
n (t1, . . . , tn )x(a)(t− t1) · · · x(a)(t− tn ) dt1 · · · dtn

+· · ·+g
+a

−a

· · · g
+a

−a

h(j:aa · · · bb)
n (t1, . . . , tn )x(a)(t− t1)x(a)(t− t2)

· · · x(b)(t− tn−1)x(b)(t− tn ) dt1 · · · dtn

+· · ·+g
+a

−a

· · · g
+a

−a

h(j:b · · · b)
n (t1, . . . , tn )x(b)

× (t− t1) · · · x(b)(t− tn ) dt1 · · · dtn : (42)
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i.e.,

y( j)
1 (t)=g

+a

−a

h( j:a)
1 (t)x(a)(t− t) dt+g

+a

−a

h( j:b)
1 (t)x(b)(t− t) dt (43)

and

y( j)
2 (t)=g

+a

−a g
+a

−a

h( j:aa)
2 (t1, t2)x(a)(t− t1)x(a)(t− t2) dt1 dt2

+g
+a

−a g
+a

−a

h( j:ab)
2 (t1, t2)x(a)(t− t1)x(b)(t− t2) dt1 dt2

+g
+a

−a g
+a

−a

h( j:ba)
2 (t1, t2)x(b)(t− t1)x(a)(t− t2) dt1 dt2

+g
+a

−a g
+a

−a

h( j:bb)
2 (t1, t2)x(b)(t− t1)x(b)(t− t2) dt1 dt2, (44)

etc.
A relabelling of the dummy variables in certain integrals allows the combination of

kernels thus reducing the number of required terms; e.g., for the second order component
of the response,

y( j)
2 (t)=g

+a

−a g
+a

−a

h( j:aa)
2 (t1, t2)x(a)(t− t1)x(a)(t− t2) dt1 dt2

+g
+a

−a g
+a

−a

{h( j:ab)
2 (t1, t2)+ h( j:ba)

2 (t2, t1)}x(a)(t− t1)x(b)(t− t2) dt1 dt2

+g
+a

−a g
+a

−a

h( j:bb)
2 (t1, t2)x(b)(t− t1)x(b)(t− t2) dt1 dt2. (45)

The second order combination term is now re-defined as

{h( j:ab)
2 (t1, t2)+ h( j:ba)

2 (t2, t1)}:2h( j:ab)
2 (t1, t2), (46)

and similarly for all other combination terms.
The frequency domain dual of the response is the same as equation (15) for the

single-input case,

Y(j)(v)=Y(j)
1 (v)+Y(j)

2 (v)+Y(j)
3 (v)+ · · · , (47)
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where, for the two-input case, the components are now given by

Y( j)
n (v)=0 1

2p1
n−1

g
+a

−a

· · · g
+a

−a

H( j:aa · · · aa)
n (v1, v2 . . . . , v−v1 − · · ·−vn−1)

×X(a)(v1)X(a)(v2) · · · X(a)(vn−1)X(a)(v−v1 − · · ·−vn−1) dv1 · · · dvn−1

+ · · ·+0 1
2p1

n−1

g
+a

−a

· · · g
+a

−a

H( j:aa · · · bb)
n (v1, v2 . . . . , v−v1 − · · ·−vn−1)

×X(a)(v1)X(a)(v2) · · · X(b)(vn−1)X(b)(v−v1 − · · ·−vn−1) dv1 · · · dvn−1

+ · · ·+0 1
2p1

n−1

g
+a

−a

· · · g
+a

−a

H( j:bb · · · bb)
n (v1, v2 . . . . , v−v1 − · · ·−vn−1)

×X(b)(v1)X(b)(v2) · · · X(b)(vn−1)X(b)(v−v1 − · · ·−vn−1) dv1 · · · dvn−1.

(48)
The question now arises of symmetry of the kernels under interchange of the time indices

ti . There is no longer total symmetry under permutations of the n symbols of hn and Hn .
In fact, the kernels still have interchange invariance but under a smaller group than the
group of permutations on n elements. Consider the object y( j:aab)

3 ,

y( j:aab)
3 =g

+a

−a g
+a

−a g
+a

−a

h( j:aab)
3 (t1, t2, t3)P( j:aab)

3 (t1, t2, t3; t) dt1 dt2 dt3, (49)

which contributes to the third order component of the output. The kernel is contracted
with or summed against the object

P( j:aab)
3 (t1, t2, t3; t)= x(a)(t− t1)x(a)(t− t2)x(b)(t− t3), (50)

which is symmetric on the first two indices. In the integral above, the summation of P( j:aab)
3

against h( j:aab)
3 annihilates the part of h( j:aab)

3 which is antisymmetric in the first two indices;
the antisymmetric part can therefore be ignored. As in the single-input case, the kernel
inherits in each case the symmetries of the product of inputs to which it corresponds. In
general, the kernel

na nb

ZCV ZCV

h( j:a · · · ab · · · b)
na + nb

(t1, . . . , tna , tna +1, . . . , tna + nb ) (51)

is symmetric on the group of indices corresponding to the x(a) and x(b) inputs separately.
The generalization to more than two inputs may be performed in a similar manner. It will
be shown later that these residual symmetries in the multi-input case are just sufficient to
allow the construction of a harmonic probing algorithm.

3.1.        - 

The harmonic probing method introduced by Bedrosian and Rice [11] is now extended
to allow calculation of the analytical form of the cross-kernel transforms alongside the
direct-kernel transforms. Once again, to illustrate the process, the case of two excitation
inputs shall be discussed. Extension to more inputs is straightforward.
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Let the inputs to the system be x(a)(t)= eiVt and x(b)(t)=0, so that X(a)(v)=2pd(v−V)
and X(b)(v)=0, where d(v−V) is the Dirac delta function.

Substituting the frequency form of the inputs into equations (47) and (48) and
considering integrals composed only of non-zero inputs eventually yields, in the time
domain,

y( j)(t)=H( j:a)
1 (V) eiVt +H( j:aa)

2 (V, V) ei2Vt +· · · . (52)

This is the same as equation (20) and upon substitution of the above expression into the
equations of motion of the system and equating coefficients of eiVt an expression for
H( j:a)

1 (V) can be determined.
Similarly, setting x(a)(t)=0 and x(b)(t)= eiVt yields

y( j)(t)=H( j:b)
1 (V) eiVt +H( j:bb)

2 (V, V) ei2Vt +· · · , (53)

which then leads to an expression for H( j:b)
1 (V).

To obtain expressions for the second order direct-kernel transforms, H( j:aa)
2 (V1, V2) and

H( j:bb)
2 (V1, V2), the ‘‘two-tone’’ input of equation (21) (i.e., eiV1t +eiV2t) is applied at points

a and b respectively. The response at point j will be given by equation (22) with the
appropriate kernel superscripts included; e.g., for the input at point a the response at j will
be

y( j)(t)=H( j:a)
1 (V1) eiV1t +H( j:a)

1 (V2) eiV2t

+H( j:aa)
2 (V1, V1) ei2V1t +2H( j:aa)

2 (V1, V2) ei(V1 +V2)t +H( j:aa)
2 (V2, V2) ei2V2t

+H( j:aaa)
3 (V1, V1, V1) ei3V1t +3H( j:aaa)

3 (V1, V1, V2) ei(2V1 +V2)t

+3H( j:aaa)
3 (V1, V2, V2) ei(V1 +2V2)t +H( j:aaa)

3 (V2, V2, V2) ei3V2t +· · · , (54)

with all a superscripts being exchanged for b superscripts for the response at point j when
the input is moved to point b.

As before, it should be noted that the amplitude of the component at the sum frequency
(V1 +V2) is twice the second order FRF in each case. It has been shown that the method
of obtaining the direct-kernel transforms is identical to the single-input harmonic probing
method.

To obtain the cross-kernel transforms, the sum of harmonics is no longer applied at just
one point but is instead split and applied at the various input points.

Let the inputs to the system be x(a)(t)= eiV1t and x(b)(t)= eiV2t, so that
X(a)(v)=2pd(v−V1) and X(b)(v)=2pd(v−V2).

Substituting these inputs into equations (47) and (48) and transferring back to the time
domain yields

y( j)(t)=H( j:a)
1 (V1) eiV1t +H( j:b)

1 (V2) eiV2t

+H( j:aa)
2 (V1, V1) ei2V1t +2H( j:ab)

2 (V1, V2) ei(V1 +V2)t +H( j:bb)
2 (V2, V2) ei2V2t

+H( j:aaa)
3 (V1, V1, V1) ei3V1t +3H( j:aab)

3 (V1, V1, V2) ei(2V1 +V2)t

+3H( j:abb)
3 (V1, V2, V2) ei(V1 +2V2)t +H( j:bbb)

3 (V2, V2, V2) ei3V2t +· · · . (55)

It can be seen that the amplitude of the component at the sum frequency (V1 +V2) is equal
to twice the second order cross-kernel transform, H( j:ab)

2 (V1, V2), as was the case with the
direct-kernel transforms. The reason for this is not due to the cross-multiplication of two
inputs being applied at one point as it was in the direct-kernel case. It is due instead to
the manner in which the combination terms are defined: in equation (46) it can be seen
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that the h( j:ab)
2 (t1, t2) is preceded by a 2 under re-definition because it was constructed from

two of the original kernels. The method can be generalized.
Obtaining the third order cross-kernel transform H( j:aab)

3 (V1, V2, V3) involves probing
with inputs x(a)(t)= eiV1t +eiV2t and x(b)(t)= eiV3t, while the output probing expression may
be greatly simplified from the general outputs, as was the case with obtaining the
single-input probing expressions. This is accomplished in the same manner as before: i.e.,
by removing any terms which are incapable of forming a sum frequency component; these
prove to be any kernel transform which contains repetitions of frequency components (e.g.,
H( j:aa)

2 (V1, V1) and H( j:aab)
3 (V1, V3, V3)).

This gives the output probing expression for obtaining the H( j:aab)
3 (V1, V2, V3) kernel

transform as

y( j:aab)
p3 (t)=H( j:a)

1 (V1) eiV1t +H( j:a)
1 (V2) eiV2t +H( j:b)

1 (V3) eiV3t +2H( j:aa)
2 (V1, V2) ei(V1 +V2)t

+2H( j:ab)
2 (V1, V3) ei(V1 +V3)t +2H( j:ab)

2 (V2, V3) ei(V2 +V3)t

+6H( j:aab)
3 (V1, V2, V3) ei(V1 +V2 +V3)t. (56)

It is possible to arrive at general probing expressions after consideration of higher order
terms. In general, to obtain an expression for H( j:nanbnc · · · )

n (V1, V2, . . . , Vn ), where na is the
number of point a inputs, the probing inputs are found to be given by

x(a)
pn

(t)= eiV1t +eiVna
t, x(b)

pn
(t)= eiVna+1t +eiVna+ nb

t, (57)

etc., and the probing expression for the response is

y( j:nanbnc · · · )
pn

(t)= s
k= n

k=1

s
i= p

i=1

k!H( j:kakbkc · · · )
k (V, . . . , V) ei(s V)t, (58)

where p= n!/k!(n− k)! (i.e., the number of partitions of k elements within a set of n
elements) and ka is the number of point a inputs in the kernel transform,
H( j:kakbkc · · · )

k (V, . . . , V) and will depend upon which particular partition is being considered.

3.2.        - 

The objective here is to give an example of how the direct and cross-kernel transforms
are obtained for a non-linear multi-input discrete-time system. The system of interest is
specified by the NARMAX form

y(1)
i = y(1)

i−1 + (y(1)
i−1)2 + y(1)

i−1x(1)
i−1 + x(2)

i−1. (59)

First, the linear FRFs are extracted. In order to obtain H(1:1)
1 , the probing expressions

x(1)
p1

(t)= eiVt, x(2)
p1

(t)=0 (60)

and

yp1 =H(1:1)
1 (V) eiVt (61)

are substituted into the NARMAX model, and the coefficient of eiVt is extracted. The result,
term by term, is

H(1:1)
1 (V)=H(1:1)

1 (V) e−iV Dt +0+0+0, (62)

showing that

H(1:1)
1 (V)=0. (63)
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This is a consequence of the fact that the input x(1)(t) does not appear linearly in the
equation. The probing expressions for the extraction of H(1:2)

1 are

x(1)
p1

(t)=0, x(2)
p1

(t)= eiVt (64)

and

yp1 =H(1:2)
1 (V) eiVt. (65)

Substituting these expressions into the NARMAX model and equating the coefficients of
eiVt on each side of the equation yields

H(1:2)
1 (V)=H(1:2)

1 (V) e−iVDt +0+0+e−iVDt, (66)

or, on rearranging,

H(1:2)
1 (V)= e−iVDt/(1−e−iVDt). (67)

The second order terms are obtained next, first H(1:11)
2 by applying the probing expressions

x(1)
p2

(t)= eiV1t +eiV2t, x(2)
p2

(t)=0 (68)

and

yp2 =H(1:1)
1 (V1) eiV1t +H(1:1)

1 (V2) eiV2t +2H(1:11)
2 (V1, V2) ei(V1 +V2)t (69)

to the NARMAX model above. Term by term, extracting the coefficients of ei(V1 +V2)t gives

2H(1:11)
2 (V1, V2)=2H(1:11)

2 (V1, V2) e−i(V1 +V2) Dt +2H(1:1)
1 (V1)H(1:1)

1 (V2) e−i(V1 +V2) Dt

+(H(1:11)
1 (V1)+H(1:1)

1 (V2)) e−i(V1 +V2) Dt +0, (70)

or, on rearranging,

H(1:11)
2 (V1, V2)= 1

2[H
(1:1)
1 (V1)+H(1:1)

1 (V2)+2H(1:1)
1 (V1)H(1:1)

1 (V2)]
e−i(V1 +V2) Dt

1−e−i(V1 +V2) Dt

= 1
2[H

(1:1)
1 (V1)+H(1:1)

1 (V2)+2H(1:1)
1 (V1)H(1:1)

1 (V2)]H(1:2)
1 (V1 +V2). (71)

As all the terms in the square brackets are equal to zero it follows that H(1:11)
2 (V1, V2)=0.

The other direct-kernel transform H(1:22)
2 comes from an application of the probing

expressions

x(1)
p2

(t)=0, x(2)
p2

(t)= eiV1t +eiV2t (72)

and

yp2 =H(1:2)
1 (V1) eiV1t +H(1:2)

1 (V2) eiV2t +2H(1:22)
2 (V1, V2) ei(V1 +V2)t. (73)

Substituting into the system equation and collecting appropriate coefficients yields

2H(1:22)
2 (V1, V2)=2H(1:22)

2 (V1, V2) e−i(V1 +V2) Dt +2H(1:2)
1 (V1)H(1:2)

1 (V2) e−i(V1 +V2) Dt +0+0,

(74)

or, after a little algebra,

H(1:22)
2 (V1, V2)= 1

2H
(1:2)
1 (V1)H(1:2)

1 (V2)H(1:2)
1 (V1 +V2). (75)

Finally, at second order, the cross-kernel transform H(1:12)
2 is obtained by applying the

probing expressions

x(1)
p2

(t)= eiV1t, x(2)
p2

(t)= eiV2t (76)
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and

yp2 =H(1:1)
1 (V1) eiV1t +H(1:2)

1 (V2) eiV2t +H(1:12)
2 (V1, V2) ei(V1 +V2)t. (77)

Substituting into the system equation and extracting the coefficients of ei(V1 +V2)t yields

H(1:12)
2 (V1, V2)=H(1:12)

2 (V1, V2) e−i(V1 +V2) Dt +2H(1:1)
1 (V1)H(1:2)

1 (V2) e−i(V1 +V2) Dt

+H(1:2)
1 (V2) e−i(V1 +V2) Dt +0, (78)

or, after a little effort,

H(1:12)
2 (V1, V2)=H(1:2)

1 (V2)[1+2H(1:1)
1 (V1)]H(1:2)

1 (V1 +V2). (79)

The calculations for the third order kernel transforms proceed as above; no new features
arise.

3.3.    -     

Now that the response of a non-linear system to harmonic inputs at distinct points has
been discussed, the next step is to deal with physically realizable inputs in the form of
sinusoids. This may then be used to provide a means of numerical verification of the
method. As a sinusoid can be represented by a sum of positive and negative frequency
harmonics this is a relatively straightforward extension. Once again, the basic two-input
problem will be considered. Let the inputs at points a and b be given by

x(a)(t)=A cos (Vat+fa )=
A
2 6cos fa (eiVa t +e−iVa t)−

sin fa

i
(eiVa t −e−iVa t)7,

x(b)(t)=B cos (Vbt+fb )=
B
2 6cos fb (eiVb t +e−iVb t)−

sin fb

i
(eiVb t −e−iVb t)7, (80)

or in terms of frequency,

X(a)(v)= pA{eifad(v−Va )+ e−ifad(v+Va )},

X(b)(v)= pB{eifbd(v−Vb )+ e−ifbd(v+Vb )}. (81)
Substituting for the inputs into equations (47) and (48) gives the response, up to third

order, at point j as,

y( j)(t)=A =H( j:a)
1 (Va ) = cos (Vat+fa +{H( j:a)

1 (Va ))

+B =H( j:b)
1 (Vb ) = cos (Vbt+fb +{H( j:b)

1 (Vb ))

+
A2

2
{=H( j:aa)

2 (Va , Va ) = cos (2Vat+2fa +{H( j:aa)
2 (Va , Va ))+H( j:aa)

2 (Va , −Va )}

+
AB
2

{=H( j:ab)
2 (Va , Vb ) = cos ((Va +Vb )t+fa +fb +{H( j:ab)

2 (Va , Vb ))

+ =H( j:ab)
2 (Va , −Vb ) = cos ((Va +Vb )t+fa −fb +{H( j:ab)

2 (Va , −Vb ))}

+
B2

2
{=H( j:bb)

2 (Vb , Vb ) = cos (2Vbt+2fb +{H( j:bb)
2 (Vb , Vb ))+H( j:bb)

2 (Vb , −Vb )}

+
A3

4
{=H( j:aaa)

3 (Va , Va , Va ) = cos (3Vat+3fa +{H( j:aaa)
3 (Va , Va , Va ))

+3=H(j:aaa)
3 (Va , Va , −Va ) = cos (Vat+fa +{H(j:aaa)

3 (Va , Va , −Va ))}
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+
A2B
4

{=H( j:aab)
3 (Va , Va , Vb ) = cos ((2Va +Vb )t+2fa +fb

+{H( j:aab)
3 (Va , Va , Vb ))+=H( j:aab)

3 (Va , Va , −Vb ) = cos ((2Va −Vb )t

+2fa −fb +{H( j:aab)
3 (Va , Va , −Vb ))

+2=H( j:aab)
3 (Va , −Va , Vb ) = cos (Vbt+fb +{H( j:aab)

3 (Va , −Va , Vb ))}

+
AB2

4
{=H( j:abb)

3 (Va , Vb , Vb ) = cos ((Va +2Vb )t+fa +2fb

+{H( j:abb)
3 (Va , Vb , Vb ))+=H( j:abb)

3 (−Va , Vb , Vb ) = cos (−Va +2Vb )t−fa

+2fb +{H( j:abb)
3 (−Va , Vb , Vb ))

+2=H( j:abb)
3 (Va , Vb , −Vb ) = cos (Vat+fa +{H( j:abb)

3 (Va , Vb , −Vb ))}

+
B3

4
{=H( j:bbb)

3 (Vb , Vb , Vb ) = cos (3Vbt+3fb +{H( j:bbb)
3 (Vb , Vb , Vb ))

+3=H ( j:bbb)
3 (Vb , Vb , −Vb ) = cos (Vbt+fb +{H ( j:bbb)

3 (Vb , Vb , −Vb ))}. (82)

Results of this nature have been presented before by Gifford and Tomlinson [24] for the
more restricted case in which multiple signals are input to a system at the same point.

After consideration of many higher order terms in the series it is possible to obtain, by
inspection, the general expression for the response at point j for this two-input case. This
is given by

y( j)(t)= s
n=a

n=1

s
nb = n

nb =0

A(n− nb )Bnb

2(n−1) 6 s
pa,pb

na !nb !
mpa!pb !(na − pa )!(nb − pb )!

na nb pa (na − pa) pb (nb − pb)
ZCV ZCV ZXCXV ZXCXV ZXCXV ZXCXV

× =H( j:a · · · a b · · · b)
b (Va , . . . , Va , −Va , . . . , −Va , Vb , . . . , Vb , −Vb , . . . , −Vb ) =

×cos ([(2pa − na )Va +(2pb − nb )Vb ]t+[(2pa − na )fa +(2pb − nb )fb ]

+{H( j:a · · · ab · · · b)
n (Va , . . . , Va , −Va , . . . , −Va , Vb , . . . , Vb , −Vb , . . . , −Vb ))7,

(83)

where pa is the number of positive Va’s in the kernel transform; and similarly for pb . The
pa , pb summation is repeated to give all possible frequency combinations. This results in
[(na +1)(nb +1)+1]/2 terms when na and nb are even and [(na +1)(nb +1)]/2 terms
otherwise.

Also, m=2 if pa = na /2 and pb = nb /2 else m=1.

4. VERIFICATION OF KERNEL IDENTIFICATION IN A MULTI-INPUT
MULTI-OUTPUT SYSTEM

In this section a concrete example of a 2-DOF non-linear system is used to verify the
work carried out in the last section and to illustrate the importance of the cross-kernel
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terms. Consider the non-linear system (see Figure 1) specified by the equation of motion

m1ÿ(1) + (c11 + c12)ẏ(1) − c12ẏ(2) + (k11 + k12)y(1) − k12y(2)

+ c2(ẏ(1) − ẏ(2))2 + c3(ẏ(1) − ẏ(2))3 + k2(y(1))2 + k3(y(1))3 = x(1)(t),

m2ÿ(2) − c12ẏ(1) + (c12 + c22)ẏ(2) − k12y(1) + (k12 + k22)y(2)

− c2(ẏ(1) − ẏ(2))2 − c3(ẏ(1) − ẏ(2))3 = x(2)(t). (84)

The first part of this example requires using the harmonic probing expressions developed
in section 3 to obtain the direct and cross-kernel transforms for this system. Once these
have been obtained the equations obtained near the end of section 3 will then be used to
arrive at expressions for the system response.

The required probing inputs are x(1)(t)= eiVt and x(2)(t)=0 and the output probing
expression

y( j:1)
p (t)=H( j:1)

1 (V) eiVt. (85)

Substituting equation (85) into the equations of motion and equating coefficients of eiVt

yields expressions for H(1:1)
1 (V) and H(2:1)

1 (V). Similarly, expressions for H(1:2)
1 (V) and H(2:2)

1 (V)
are obtained by setting x(1)(t)=0 and x(2)(t)= eiVt.

The following matrix expression for all H1’s is obtained:

H(1:1)
1 (V) H(1:2)

1 (V) −V2m1 + (k11 + k12) −k2 −1

+iV(c11 + c12) −iVc12

G
G

G

K

k
H(2:1)

1 (V) H(2:2)
1 (V)

G
G

G

L

l

=G
G

G

K

k
−k12 −V2m2 + (k12 + k22)G

G

G

L

l

.

−iVc12 +iV(c12 + c22)

(86)

Figure 1. A 2-DOF non-linear system.
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Figure 2. Acceleration time responses for mass 1 of the simulation and Volterra series approximations of the
2-DOF non-linear system. x(1)(t)=3 cos (50t+135°), x(2)(t)=4 cos (30t+90°). ——, Simulation; - - -, direct and
cross-terms; – – –, direct terms only.

An expression for the matrix of second order kernel transforms (cross- and direct-) is
obtained in the same manner: i.e., by substituting the appropriate probing expressions (the
reduced versions of equations (54) and (55)) into the equations of motion and equating
coefficients of ei(V1 +V2)t. The matrix can be written as

$H(1:11)
2 (V1, V2)

H(2:11)
2 (V1, V2)

H(1:12)
2 (V1, V2)

H(2:12)
2 (V1, V2)

H(1:22)
2 (V1, V2)

H(2:22)
2 (V1, V2)%

=[H1(V1 +V2)]$a(1:11)

a(2:11)

a(1:12)

a(2:12)

a(1:22)

a(2:22)%, (87)

where

[H1(V1 +V2)]=$H(1:1)
1 (V1 +V2)

H(2:1)
1 (V1 +V2)

H(1:2)
1 (V1 +V2)

H(2:2)
1 (V1 +V2)%

−(V1 +V2)2m1 + (k11 + k12) −k12
−1

+i(V1 +V2)(c11 + c12) −i(V1 +V2)c12

=G
G

G

K

k
−k12 −(V1 +V2)2m2 + (k12 + k22)

G
G

G

L

l
(88)

−i(V1 +V2)c12 +i(V1 +V2)(c12 + c22)

and

a( j:pq) = (−1)jm{(1− dj2)k2H(1:p)
1 (V1)H(1:q)

1 (V2)

+ c2(iV1)(iV2)(H(1:p)
1 (V1)−H(2:p)

1 (V1))(H(1:q)
1 (V2)−H(2:q)

1 (V2))}, (89)

where m=1 if p= q, m=2 if p$ q and dij is the Kronecker delta [25].
This process may be extended to obtain expressions for higher order kernel transforms

for this system.
The values of the constants used in this example were m1 =m2 =1 kg,

c11 = c12 = c22 =20 N/m/s and c2 =500 N(m/s)2, c3 =1×104 N/(m/s)3, k11 = k12 = k22 =
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1×104 N/m, k2 =1×107 N/m2 and k3 =5×109 N/m3. Substituting these parameters into
the above equations yields values for the higher order kernel transforms for this system.
The forcing conditions used in this example were x(1)(t)=3 cos (50t+135°) and
x(2)(t)=4 cos (30t+90°). Substituting these inputs and the previously calculated higher
order kernel transforms into equation (82) yields expressions for the responses at both
masses. This response at mass 1 was then calculated up to O(X10), plotted and compared
(see Figure 2) to the time responses generated via a fourth order Runge-Kutta integration
of the equations of motion (84) [26]. As can be seen, the multi-input Volterra series
approximation of the response gives an extremely close match to the simulated result: in
fact, the responses overlie. Also shown in the figures are the time responses when the
cross-kernel terms are removed. The effect on the response illustrates the importance of
these terms. In Figure 3 are depicted the same results in the frequency domain. It can be
seen that additional spikes at the sum and difference frequencies in Figure 3(a) are entirely
due to the cross-kernel terms.

5. CONCLUSIONS

It has been shown that a simple extension of the harmonic probing algorithm of
Bedrosian and Rice is sufficient to allow the calculation of both direct- and cross-kernel
transforms for the multi-input Volterra series. An example calculation is given to show
the importance of the cross-kernel terms and the application to response prediction is
demonstrated.

Figure 3. Acceleration frequency spectra for mass 1 of the simulation and Volterra series approximations of
the 2-DOF non-linear system. x(1)(t)=3 cos (50t+135°), x(2)(t)=4 cos (30t+90°). (a) ——, Simulation, - - -,
direct and cross-terms. (b) ––, direct terms only.



.   .84

ACKNOWLEDGMENTS

The authors would like to express their thanks to an anonymous referee for a number
of constructive comments which we feel have improved the paper.

REFERENCES

1. S. A. B 1980 Proceedings of the IEE 127, 272–285. Identification of nonlinear systems—a
survey.

2. M. J. K and I. W. H 1990 Annals of Biomedical Engineering 18, 629–654. The
identification of nonlinear biological systems: Wiener kernel approaches.

3. W. J. R 1981 Nonlinear System Theory—the Volterra/Wiener Approach. Baltimore, MD:
Johns Hopkins University Press.

4. M. F, M. L and F. L-L 1983 IEEE Transactions on Circuits and
Systems 30, 554–570. An algebraic approach to nonlinear functional expansions.

5. S. A. B and K. M. T 1989 Mechanical Systems and Signal Processing 3, 319–339.
Spectral analysis for nonlinear systems, part I: parametric non-linear spectral analysis.

6. J. W and G. G. R. G 1995 Biological Cybernetics. Calculation of the Volterra kernels
of nonlinear dynamic systems using an artificial neural network.

7. P. K. M and K. I. N 1974 IEEE Transactions on Biomedical Engineering 21,
88–101. Identification of multi-input biological systems.

8. P. Z. M and V. M 1978 Analysis of Physiological Systems—the White Noise
Approach. New York: Plenum Press.

9. J. J. B, L. E and J. W. G 1974 Proceedings of the IEEE 62, 1088–1119.
Analysis of nonlinear systems with multiple inputs.

10. K. W, S. A. B, P. K. S and G. R. T 1992 Journal of Fluids and
Structures 8, 18–71. Identification of nonlinear wave forces.

11. E. B and S. O. R 1971 Proceedings of the IEEE 59, 1688–1707. The output properties
of Volterra systems driven by harmonic and Gaussian inputs.

12. V. V 1959 Theory of Functionals and Integral Equations. New York: Dover.
13. J. F. B 1963 Journal of Electronics and Control 15, 567–615. The use of functionals in

the analysis of nonlinear systems.
14. M. S 1980 The Volterra and Wiener Theories of Nonlinear Systems. New York:

Wiley–Interscience.
15. S. A. B and K. M. T 1989 Mechanical Systems and Signal Processing 3, 341–359.

Spectral analysis for nonlinear systems, part II: interpretation of nonlinear frequency response
functions.

16. J. C. P J and S. A. B 1989 International Journal of Control 50, 1925–1940.
Recursive algorithm for computing the frequency response of a class of non-linear difference
equation models.

17. I. J. L and S. A. B 1985 International Journal of Control 41, 303–328.
Input–output parametric models for nonlinear systems. part I: deterministic nonlinear systems.

18. I. J. L and S. A. B 1985 International Journal of Control 41, 329–344.
Input–output parametric models for nonlinear systems. part II: stochastic nonlinear systems.

19. G. P and T. P 1977 SIAM Journal on Applied Mathematics 33. The Volterra
representation and the Wiener expansion: validity and pitfalls.

20. G. P and B. P̈ 1985 Quarterly Review of Biophysics 18, 135–164. Volterra representation
and Wiener-like identification of nonlinear systems: scope and limitations.

21. G. F. S 1963 Introduction to Topology and Modern Analysis. New York: McGraw-Hill.
22. J. F. B 1965 International Journal of Control 1, 209–216. The use of Volterra series to

find region of stability of a non-linear differential equation.
23. G. R. T, G. M and G. M. L 1996 Journal of Sound and Vibration 190, 751–762.

A simple criterion for establishing an upper limit of the harmonic excitation level to the Duffing
oscillator using the Volterra series.

24. S. J. G and G. R. T 1989 Journal of Sound and Vibration 135, 289–317. Recent
advances in the application of functional series to non-linear structures.

25. W. T. T 1988 Theory of Vibration with Applications. London: Unwin Hyman; third
edition.

26. W. H. P, B. P. F, S. A. T and W. T. V 1986 Numerical
Recipes—the Art of Scientific Computing. Cambridge: Cambridge University Press.


