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The problem considered is an initially stressed viscoelastic string subjected to steady state
and harmonic variation of axial motion. The string material is assumed to be constituted
by the hereditary integral type. The partial differential–integral equation of motion is
derived first. Then by applying Galerkin’s method, the governing equation is reduced to
a set of second order non-linear differential–integral equations which are solved by finite
difference numerical integration procedures. The viscoelastic string with a linear
spring–dashpot model is considered as the Voigt element in series with a spring
(three-parameter model). The qualitative aspect of parametric excitation due to the
non-uniform travelling velocity of a viscoelastic string is investigated. Finally, the results
are compared with those obtained by a constitutive law of a differential type method. The
effects of elastic and viscoelastic parameters, constant and non-constant transport speeds,
the wave propagation speed ratio, and the non-linear term on the transient amplitudes are
also investigated.
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1. INTRODUCTION

The vibration problems of initially stressed plate studied by past investigators [1, 2]
have been mainly concerned with in-plane stress. The effects of arbitrary initial stress
on the vibration and stability problems of a thick rectangular plate were studied by
Brunelle and Robertson [3, 4]. Chen and Doong [5, 6] extended Brunelle’s theory to study
the effect of an arbitrary state of initial stress on a non-linear vibration problem. All of
the above studies [3–6] were based on Mindlin’s plate theory. To the authors’ knowledge,
the initially stressed theories developed in [1–6] were not extended to string vibration
problems.

The non-linear vibration of axial moving strings has been studied extensively by
many investigators [7–10]. Mote [7] employed the method of characteristics and
demonstrated the importance of non-linear considerations even for small amplitude
oscillations. Bapat and Srinivasan [8] used the method of harmonic balance to obtain
approximate results of the period–tension relationship. A Mathieu–Hill type of system
existed for a moving band or belt and conditions for stable operation were determined in
[9]. Results were verified experimentally. In Mote’s study [10], stable–unstable boundaries
were predicted by application of Hsu’s method for one-dimensional systems. Recently,
Huang et al. [11] studied the dynamic stability of a moving string under three-dimensional
vibration.

In all of these works, the string was assumed to be elastic. However, new materials are
now widely used in industry; and many of them, such as plastics and composite materials,
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do not obey Hooke’s Law. Coleman and Noll [12] proved that simple isotropic material
under small deformations can be modelled by integral or differential types of linear
viscoelastic models. Stevens [13] considered the stability of an initially straight, simply
supported viscoelastic column subjected to an harmonically varying axial load. The
column material was assumed to be adequately represented by simple spring–dashpot
models.

There are many engineering designs which require viscoelastic behavior of structures;
for example, creep analysis of magnetic tapes and vibration problems of conduits. In
particular, damping of viscoelastic materials can be used to reduce vibration of structures.
Various methods have been presented for the analysis of such problems. Lee [14] studied
the stress analysis for linear viscoelastic material using an integral type of stress–strain
relation and a simple finite difference numerical procedure for integration. The application
of Laplace transform to viscoelastic beams was presented by Flügge [15]. Findley et al.
[16] used the correspondence and superposition principles to solve the governing equations
of the viscoelastic beam. Christenden [17] used Fourier transform to solve the transient
response of viscoelastic beams. The above studies were based on the fact that the governing
equations of viscoelasticity can be converted to equations of elasticity by integral
transforms. The application of the finite element method to structures with complex
geometry has been presented by a number of authors. White [18] used a constitutive law
of hereditary integral type, in which time integration is approximated by the finite
difference method, to perform a finite element analysis in a static plane strain problem.
Chen and Lin [19] studied the dynamic response of a beam using a creep law of time
hardening to model viscoelastic material. Recently, Chen {20] used the Laplace transform,
and the associated equation was solved by the finite element method for the linear
viscoelastic beam problem.

In this paper, the initially stressed theory [3] is extended to investigate the transverse
vibration of an axially moving viscoelastic string. It is further assumed that the string
material is represented adequately by the linear spring–dashpot model. The model
considered is the Voigt element in series with a spring (three-parameter model). The
constitutive law of hereditary integral type is used to lead to a set of integral equations.
Galerkin’s method is used to approximate the system to a set of two-order, gyroscopic and
non-linear ordinary differential–integral equations. Finally, the associated equation is
solved using a finite difference numerical integration procedure. Numerical results are
emphasized on the effects of material parameters, the axial travelling speed, the wave speed
ratio, and linear and non-linear terms.

2. EQUATION OF MOTION

The physical model of a viscoelastic travelling string is shown in Figure 1. The string
is initially stressed. Following a technique described by Bolotin [21], the non-linear

Figure 1. A model of an axially moving viscoelastic string system.
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dynamic equation of motion in tensor form can be expressed in terms of Trefftz stress
components as [22]

1

1xi
[(tij + sij)u2

, j + sis]+Xs − rüs =0, i, j, s=1, 2, 3, (1)

where the xi are material (Lagrangian) co-ordinates that originally coincided with a spatial
(fixed) Cartesian co-ordinate system. tij is the initial (deformed) stress tensor, sij and sis

are the perturbed stress tensors, r is the mass per unit volume, us is the perturbed
displacement tensor, and us

, j is the covariant derivative notation. The contravariant indices
are adopted for tij, sij, us and the body force Xs in order to coincide with the tensor analysis
of motion of an elastic body in a generalized coordinate system [23]. A brief derivation
of these component forms of the equations from vector form was given by Brunelle and
Robertson [3].

Consider that the viscoelastic string is in a state of uniform initial stress, and only
transverse vibration in the y direction is taken into consideration. The body force is also
neglected. From equation (1), we can obtain the equation of motion in the y direction as

0TA+ s1vxx + vxsx = r
d2v
dt2 , (2)

where s is the perturbed stress and n is the displacement in the transverse direction. A is
the area of cross-section of the string. The Lagrangian strain component in the x direction
related to the displacement is given by

o(x, t)= 1
2v

2
x (x, t). (3)

3. INTEGRAL CONSTITUTIVE LAW

We adopt the one-dimensional constitutive equation of an integral type material (called
a Boltzmann material) which is given by the Boltzmann superposition principle [23] as

s(x, t)= o(x, t)E0 +g
t

0

E� (t− t')o(x, t') dt', (4)

where E(t) is the stress relaxation function while E0 is its value at t=0, i.e., the initial
Young’s modulus of the material.

Substituting equation (3) into equation (4), we obtain the tensile stress of the string, and
then substituting the tensile into equation (2), with some manipulations, we obtain

rvtt (x, t)+2rxtvxt (x, t)+ (rx2
1 −T/A)vxx (x, t)+ xttvx (x, t)

= 3
2E0v2

x (x, t)vxx (x, t)+ 1
2vxx (x, t)g

t

0

E� (t− t')v2
x (x, t') dt'

+ vx (x, t)g
t

0

E� (t− t')vx (x, t')vxx (x, t') dt'] (5)

The non-linear partial differential–integral equation (5) governs the dynamic behavior
of the initially stressed, viscoelastic travelling string. In this paper, it is assumed that the
initial tension T is characterized as a small periodic perturbation T1 cos vft superimposed
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on the steady state tension T0, i.e., T=T0 +T1 cos vft, which is the same as that of Huang
et al. [11].

4. DISCRETIZATION OF LINEARIZED SYSTEM

In order to simplify the analysis, the following non-dimensional parameters are defined

V= v/L, j= x/L, n̄=T1/T0, Vf =vfL/c2, k1 = c1/c2,

E�(t− t')=E(t− t')/rc2
2 , t= c2t/L,

where c1 =zE0/r and c2 =zT0/rA. By the definitions of j and t, jr = x1/c2. Then the
following non-dimensional equation of motion can be obtained:

Vrr +2jtVjt +(j2
t −1− n̄ sin Vft)Vjj + jttVj

= 3
2k

2
1V2

jVjj − 1
2Vjj g

t

0

1

1t'
E�(t− t')V2

j (j, t') dt'

−Vj g
t

0

1

1t'
E�(t− t')Vj (j, t')Vjj (j, t') dt'. (6)

It is seen that terms related to the axial travelling motion include the velocity jt and
acceleration jtt . Equation (6) is used to investigate the transient amplitudes of the string
with non-uniform axial motion. Equation (6) is a non-linear partial differential–integral
equation. Neglecting the non-linear terms for small oscillation, the linear equation of
motion becomes

Vtt +2jtVjt +(j2
t −1− n̄ sin Vf t)Vjj + jttVj =0. (7)

First, the spatial dependence must be eliminated from the equation of motion, yielding
a set of ordinary differential–integral equations in time which can be solved for the system
response. Due to the complexity of the problem, the solution for equation (6) cannot be
obtained exactly. Therefore, Galerkin’s method [24] is used here to separate the spatial
co-ordinates from the temporal variable. Based on this method, the assumed displacement
satisfies the geometric boundary conditions V(0, t)=V(1, t)=0. That is,

V(j, t)= s
a

n=1

fn (t)sin(npj). (8)

Substituting equation (8) into equation (5) and using the orthogonality condition, we
have

f� m + s
a

n=1

[2jtAmn f� n + jttAmn fn +(j2
t −1− n̄ sin Vf t)Bmn fn ]− s

a

n=1

s
a

i=1

s
a

j=1 $3
2k

2
1 fn fi fjCmnij

−(1
2Dmnij +Cmnij ) fn g

t

0

1

1t'
E�(t− t') fi (t') fj (t') dt%=0, m=1, 2, . . . , (9)
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where

Amn =g
1

0

f'nfm dj=g
G

G

F

f

0,

2nm(cos np cos mp−1)
n2 −m2 ,

m= n,

m$ n,

Bmn =g
l

0

f0n fm dj=6−(np)2,
0,

m= n,
m$ n,

Cmnij =g
1

0

f'nf'i f0j fm dj, Dmnij =g
1

0

f0n f'i f'j fm dj.

For the elastic string vibration, the ordinary differential–integral equation (9) is reduced
to an ordinary differential equation, as

f�m + s
a

n=1

[2jtAmn f� n +(j2
t −1− n̄ sin Vf t)Bmn fn ]− 3

2k
2
1 s

a

n=1

s
a

i=1

s
a

j=1

fn fi fjCmnij =0,

for m=1, 2, . . . .

5. FINITE DIFFERENCE INTEGRATION

In order to solve the non-linear ordinary differential–integral equation (9), the finite
difference numerical procedure proposed by Lee and Rogers [14] is adopted. First, the time
scale is divided into intervals by the time values, tr , r=1, 2, . . . (R+1), with t1 =0 and
tR+1 = t. The last term in equation (9) can be written in the form

g
tR+1

t1

1

1t'
E�(tR+1 − t') fi (t') fj (t') dt'= s

R

r=1 g
tr+1

tr

1

1t'
E�(tR+1 − t') fi (t') fj (t') dt. (10)

Each of the integrals in (10) is transformed into the finite approximation

g
tr+1

tr

fi (t') fj (t')
1

1t'
E�(tR+1 − t') dt'

2 1
2[ fi (tr+1) fj (tr+1)+ fi (tr ) fj (tr )]g

tr+1

r

1

1t'
E�(tR+1 − t') dt'

= 1
2[ fi (tr+1) fj (tr+1)+ fi (tr ) fj (tr )][E�(tR+1 − tr+1)−E�(tR+1 − tr )]. (11)

Substituting equation (11) into equation (9) yields the following equation:

f�m + s
a

n=1

[2jtAmn f� n + jttAmn fn +(j2
t −1− n̄ sin Vf t)Bmn fn ]− s

a

n=1

s
a

i=1

s
a

j=1 6[3
2k

2
1 fn fi fjCmnij
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Figure 2. Three-parameter model of the viscoelastic string material.

− (1
4Dmnij + 1

2Cmnij ) fn s
R

r=1

[ fi (tr+1) fj (tr+1)+ fi (tr ) fj (tr )][E�(tR+1 − tr+1)

−E�(tR+1 − tr )]7=0. (12)

Equation (12) is the most general form of differential–integral equation of a
one-dimensional string which is made of integral constitutive law of linear viscoelastic
material.

6. NUMERICAL RESULTS AND DISCUSSION

In order to obtain numerical results, the string material is considered as a three-element
model, shown in Figure 2, which is the simplest spring–dashpot model. It can be used to
simulate the behavior of linear viscoelastic materials of ‘‘solid’’ type with limited creep

Figure 3. The relaxation modulus.
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Figure 4. A comparison of the transient amplitudes of the two-, three- and four-term approximations for
k1 =20, k2 =0·5, k3 =1000, jt =0·2, Vf =0 and n̄=0. (a) Amplitude of the first approximation; (b) amplitude
of second approximation; (c) amplitude of third approximation; (d) amplitude of fourth approximation. ——,
Four-term approximation; – – – , three-term approximation, · · ·, two-term approximation.

deformation when E2 is non-zero, and of ‘‘fluid’’ type with unlimited viscous deformation
when E2 =0. The behavior of this type of material is described by the following
expression:

E(t)=
E1E2

E1 +E2
+

E2
1

E1 +E2
e−(E1+E2)/h2

2. (13)

That has E(0)=E0 =E1. The values of E1 =E2 =30 000 MPa and h2 =300 MPa days are
used here. A detailed derivation of equation (13) can be found in the Appendix. The plot
of E(t) is shown in Figure 3. The transient curve approaches a steady state value E1/2.
Using equation (13) and the definition of the non-dimensional parameter E�, the following
equations are obtained from equation (12):

f� m + s
a

n=1

[2jrAmn f� n + jttAmn fn +(j2
t −1− n̄ sin Vft)Bmn fn ]− s

a

n=1

s
a

i=1

s
a

j=1 63
2k

2
1 fn fi fjCmnij
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Figure 5. A comparison of the transient amplitudes on the basis of different time step. (a) Amplitude of first
approximation; (b) amplitude of second approximation. ——, Differential method; – – – , D=0·001; · · ·,
D=0·01.

− (1
4Dmnij + 1

2Cmnij )k2
1k2 fn s

R

r=1

[ fi (tr+1) fj (tr+1)+ fi (tr ) fj (tr )%
×[e−k3(tR+1 − tr+1) − e−k3(tR+1 − tr ]7=0, (14)

where k2 =E1/(E1 +E2) and k3 = (E1 +E2)/h2c2L. It can be seen that the integral term in
equation (9) has been reduced to an algebraic summation term in equation (14). The
parameter k3 is primarily a measure of the degree of viscoelastic behavior of the string,
with a decreasing k3 value corresponding to an increasing viscoelasticity. For the
three-parameter model, the case for k3 approaching infinity corresponds to the elastic string
system.

Figure 6. The influence of the transport speed jt on the transient amplitudes. The other parameters are the
same as in Figure 4. (a) Amplitude of first approximation; (b) amplitude of second approximation. ——, jt=0·2;
– – –, jt =0·5; – · –, jt =0·8.
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Figure 7. The influence of the material parameter k3 on the transient amplitudes. The other parameters are
the same as in Figure 4. (a) Amplitude of first approximation; (b) amplitude of second approximation. ——,
Elastic; – – –; k3 =0·1; – · –, k3 =1; · · ·, k3 =10.

The numerical results shown here are dynamic behavior of a travelling string with
constant velocity and non-uniform velocity.

6.1.   

The examples given here are chosen to study the transient amplitudes of the viscoelastic
string system. The parameter values are as follows: T=100 N, r=7860 kg/m3 and
L=1 m. The Runge–Kutta numerical method with initial conditions f1(0)=0·01 and the
others zero in Figures 4–7 is used to integrate equation (14). In the present analysis, up
to four-term approximations based on the eigenfunctions of the stationary string are
considered (i.e., m=1, 2, 3, 4). Takng four terms, the resulting four ordinary differential
equations are coupled and have periodic coefficients. The transient amplitudes of the two-,
three- and four-term approximations are shown and compared in Figure 4(a)–(d). While

Figure 8. The influence of the wave speed ratio k2
1 on the transient amplitudes. The other parameters are the

same as in Figure 4. (a) Amplitude of first approximation; (b) amplitude of second approximation. ——, Linear
case, k1 = k3 =0; – – –, k1 =20; · · ·, k1 =25.
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Figure 9. The effect of the axial variational velocity b1 on the transient amplitudes for V0 = pz1− b2
0 and

b0 =0·5. The other parameters are the same as in Figure 4. (a) Amplitude of first approximation; (b) amplitude
of second approximation. ——, b1=0; – – –, b1 =0·4; · · ·, b1 =0·6.

a qualitative agreement is evident among the two-term approximations, increasing the
number of terms in the approximation improves the quantitative results.

In Figures 5–10, only the first two approximate amplitudes are shown in the figures, to
save space. The time increment is determined by D= tr+1 − tr , which gives a constant time
step. The computations are carried out for D=0·01 and 0·001, and the results are
compared to provide a practical assessment of the reduction in the truncation error with
a decreasing step size. In Figure 5 are shown the results of the integral method compared
with that obtained by the differential method [26]. The result clearly indicates that the error
increases with increasing time step size.

In Figures 6–8 are shown the transient amplitudes, in which the effects of the transport
speed jt , material parameter k3 and wave speed ratio k2

1 are considered, respectively. In
Figure 6 are presented the different values of the transport speed jt =0·2, 0·5 and 0·8 for

Figure 10. The effect of the axial variational velocity b1 on the transient amplitudes for V0 =2pz1− b2
0 and

b0 =0·5. The other parameters are the same as in Figure 4. (a) Amplitude of first approximation; (b) amplitude
of second approximation. ——, b1=0; – – –, b1 =0·3; · · ·, b1 =0·4.
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an axial moving viscoelastic string. From the figure, we find that an increase in transport
speed is related to a decrease in vibration frequency. In Figure 7 is shown the influence
of the material parameter k3 on the frequency. From the figure, we find that an increase
in the value of parameter k3 is related to a decrease in vibration frequency.

Consider the metal strings with the wave speed ratio k2
1 = c2

1 /c2
2 =EA/T=O(400–1000)

[27]. The natural frequency depends strongly on the rigidity of the string. The higher the
rigidity of the string, the higher will be the natural frequency. In Figure 8 are shown the
responses of the viscoelastic system for the different value of the wave speed ratio k2

1 . The
initial conditions are given by f1(0)=0·05, and the others are zero. It can be seen that an
increase in k2

1 is related to an increase in frequency of the transient amplitude.

6.2. -  

In this section, we investigate the transverse vibration of an axial accelerating viscoelastic
string. In many studies of the dynamic behavior of axial moving material systems, the axial
velocity has been taken to be constant. However, when a system is subjected to
acceleration, it may alter the stability of the system. The equation of motion for an
accelerating elastic string, in which there is no mean velocity but it is harmonically varying
at about zero value, was derived by Pakdemirli et al. [25]. In this paper, the interesting
case is that a prescribed function of time is treated instead of constant velocity. The
time-dependent axial velocity function jt (t) is characterized as a small periodic
perturbation superimposed on the steady state velocity.

The equation of motion for the system is obtained from equation (12). Taking two terms
in the series solution (8), equation (9) is reduced to a set of coupled ordinary
differential–integral equations:

$10 0
1%$f� 1f� 2%+$ 0

16
3 jt

−16
3 jt

0 %$f� 1f� 2%
+$(1+ n̄ cos Vft− j2

t )p2

8
3jtt

−8
3jtt

(1+ n̄ cos Vft− j2
r )4p2%$f1

f2%
K L−3

2k
2
1p

4(1
2 f 3

1 +4f1 f 2
2 )+ k2

1k2p
4 s

R

r=1

[e−k3(tR+1 − tr+1) − e−k3(tR+1 − tr )]{2f2[ f1(tr+1)f2(tr+1)
G G
G G+f1(tr )f2(tr )]+ f1[ f 2

2 (tr+1)+ f 2
2 (tr )+ 3

8 f1[ f 2
1 (tr+1)+ f 2

1 (tr )]}G G
G G=

−3
2k

2
1p

4(4f 2
1 f2 +8f 3

2 )+ k2
1k2p

4 s
R

r=1

[e−k3(tR+1 − tr+1) − e−k3(tR+1 − tr )]{2f1( f1(tr+1)f2(tr+1)
.

G G
G G

+f1(tr )f2(tr )]+ f2[ f 2
1 (tr+1)+ f 2

1 (tr )]+6f2[ f 2
2 (tr+1)+ f 2

2 (tr )]}k l
(15)

Consider the string system to have an harmonic variation of axial velocity superimposed
on a steady state velocity, i.e.,

jt = b0 + b1 sin V0t, (16a)

where b0 is the steady state velocity, b1 is the amplitude of the perturbed axial velocity and
V0 is the frequency of the perturbed velocity. The axial velocity represented by equation
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(16a) is in non-dimensional form, and it is typically observed in physical systems. Using
the identities

jtt = 1
2b

2
1V0 sin 2V0t, (16b)

j2
r = b2

0 + 1
2b

2
1 +2b0b1 sin V0t− 1

2b
2
1 cos 2V0t, (16c)

and substituting equations (16) into equation (15), it is of interest to note that the
time-dependent coefficients of equation (15) include sin V0t, sin 2V0t and cos 2V0t terms.
Thus, the parametric excitation occurs at both frequencies V0 and 2V0 of the perturbed
velocity.

These condition, for which the axial velocity frequency V0 is equal to pz1− b2
0 and

2pz1− b2
0 , are shown in Figures 9 and 10, respectively. The initial conditions are given

by f1(0)=0·05 and the others are zero. We take b1 to be of the same order as b0 in order
to diverge rapidly in the transient amplitude and save the time in the simulation. It can
be seen that the transient amplitudes increase with time and that the string system is
unstable.

For the elastic string vibration, we can set the value of h2 to approach zero and set
E1 =E2 =2E. We then have a set of coupled equations, as follows:

$10 0
1%$f� 1f� 2%+$ 0

16
3 jt

−16
3 jt

0 %$f� 1f� 2%
+$(1+ n̄ cos Vf t− j2

t )p2

8
3jtt

−8
3jtt

(1+ n̄ cos Vf t− j2
t )4p2%$f1

f2%

+G
G

G

K

k

−( 3
16 f 3

1 + 3
2 f1 f 2

2 )
c2

1

c2
2
p4

G
G

G

L

l
=0. (17)

−(3
2 f 2

1 f2 +3f 3
2 )

c2
1

c2
2
p4

Neglecting the non-linear terms in equation (17) and letting b0 =0 in equation (16a), the
resulting equation will be the same as that of reference [22]. Also, it is of interest to note
that equation (17) includes both sin V0t and cos 2V0t. Thus the parametric excitation
occurs at both frequencies V0 and 2V0.

7. CONCLUSIONS

In this paper, the general form of a differential–integral equation of a string is derived
with the integral constitutive law of linearly viscoelastic material. The three-parameter
model is adopted in the linear and non-linear vibration systems. The partial
differential–integral equation governing the string behavior is discretized as gyroscopically
and non-linearly coupled ordinary differential–integral equations by using Galerkin’s
method. The integral term of the equation is therefore reduced to a set of simultaneous
algebraic equations by the use of finite difference. The vibration response of a viscoelastic
string is investigated with the constant and non-uniform axial velocities.

From the above numerical results, the following conclusions can be drawn.
(1) The method of solution can be applied directly to a wide range of problems for a

general linear viscoelastic material with an integral constitutive law; that is, it is not
restricted only to the three-element model material.
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(2) A decrease in the value of parameter k3 is related to a decrease in vibration
frequency.

(3) As the parameter k1 of the wave propagation increases, the frequency of the transient
amplitude will increase.

(4) The parametric excitation occurs at both frequencies V0 and 2V0 of the harmonic
variation of the axially traveling velocity. The transient amplitudes increase with time and
the string system is unstable.
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APPENDIX

The one-dimensional constitutive equation [13] of differential type material (called a
Rivlin material) obeys the relation

s
R

j=0

aj
d js

dtj = s
P

j=0

bj
d jo

dtj (a0 $ 0, b0 =1). (A1)

Equation (A1) may also be written as

As=Bo, (A2)

where A and B are differential operators:

A= s
R

j=0

aj
d j

dt j, B= s
P

j=0

bj
d j

dt j.

The three-element model shown in Figure 2 is the simplest spring–dashpot model. The
differential constitutive law of a linear viscoelastic material can be written as

s+
E1 +E2

h2
s=E1o+

E1E2

h2
o. (A3)

From equation (A3) we can obtain the coefficients a0 = (E1 +E2)/h2, a1 =1, b0 =E1E2/h2,
b1 =E1 and R=P=1.

Applying the Laplace transform to equations (4) and (A3), one obtains

E�(s)=
1
s

s̄(s)
ō(s)

, a0s̄(s)− a1(ss̄(s)− s(0))= b0 ō(s)− b1(sō(s)− o(0)). (A4, A5)

From initial condition, a1s(0)= b1o(0), so that equation (A5) can be written as

s̄(s)
ō(s)

=
b0 − sb1

a0 − sa1
. (A6)

Substituting equation (A6) into equation (A4), one obtains

E�(s)=
1
s

b0 − sb1

a0 − sa1
. (A7)
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Applying the inverse Laplace transform, the stress relaxation function can be determined
as

E(t)=
E1E2

E1 +E2
+

E2
1

E1 +E2
e−(E1 +E2)t/h2, (A8)

and E(0)=E0 =E1.


