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An impedance-based model to describe the in-phase, out-of-phase and unsymmetric
actuation of induced strain actuators bonded to the surface of a circular ring has been
developed. The essence of the impedance approach is to match the actuator impedance with
the structural impedance at the ends of the actuators, which includes the dynamic effects
of the system. In the model derivation, the dynamics of the ring are based on the
Rayleigh–Ritz method. The appropriate representation of the loading due to induced strain
actuation is discussed. The in-phase and out-of-phase actuation authority is compared. It
is shown that out-of-phase actuation has higher authority in exciting the lower order
bending modes, while in-phase actuation has higher authority in exciting the higher order
circumferential modes. In-phase actuation does excite the lower order bending modes
through the in-plane and out-of-plane displacement coupling, but with an order of
magnitude lower than out-of-phase actuation. A good correlation between the dynamic
finite element analysis using piezoelectric elements available in ANSYS 5.0 is found.
Experimental results of a circular ring actuated in-phase and out-of-phase are also
presented. Different methods of bonding straight actuators on curved surfaces are
investigated. Experimental verification of the impedance-based models is conclusive,
particularly for the out-of-phase actuation.
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1. INTRODUCTION

Structural vibration control has always been important in the design of efficient and
reliable mechanical systems. Recently, a novel approach using induced strain actuators for
such vibrational control has been presented, which can also be extended to acoustic
control. Induced strain actuators are particularly interesting because they can be fully
integrated in or on the structure itself. By applying forces directly on the structure at
critical locations, efficient structural control can be obtained. In vibrational and acoustic
control, the undesirable dynamic effects are eliminated by modifying the apparent
structural impedance through the induced strain actuators. This approach eliminates the
moving parts encountered in the bulky shaker-type actuators which are conventionally
used. Such actuators, since they are bonded right on the surface of the structure, do not
need a back reaction to function.

When induced strain actuator patches, such as piezoelectrics, are symmetrically bonded
to the surface on each side of the structure, they generate a set of forces along the edges
of the actuators. The two actuators can be activated in-phase or out-of-phase. In-phase
actuation refers to the case in which both actuators expand and contract together. This
type of actuation creates extensional in-plane forces on the structure. Out-of-phase
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actuation refers to the case in which one actuator expands and the other contracts, and
vice versa. Bending moments distributed along the edges of the actuator patch are applied
to the structure when out-of-phase actuation is used. Thus, depending upon the type of
actuation used, the same actuator set-up can generate a very different structural actuation
and response.

Theoretical studies based on the static application of piezoelectric forces and moments
on beam structures have been proposed [1–4]. Models have also been extended to
two-dimensional plate structures [5, 6], and adaptations of plate models to shells structures
have been proposed [7, 8]. Models based on shell equations have also been proposed [9–11].

Theoretical impedance-based models that include the dynamic interaction between the
actuators and the structure have also been proposed for beams [12], plates [13] and shells
[14, 15]. The essence of the impedance approach is to match the actuator impedance to
the structural impedance at the edges of the actuators. The impedance models are more
accurate in the modelling of the structural response. Most of the models mentioned have
been developed for pure out-of-phase loading, except for the in-phase model presented by
Lester and Lefebvre [7].

All of the theoretical models referred to above were developed independently, without
any comparison of the authority of in-phase and out-of-phase actuation. Only Lester and
Lefebvre [7] performed such a comparison and some drawbacks are presented in the
modelling. No self-equilibrium considerations for the in-phase actuation were included,
and the shell model is a simple plate adaptation. It has been shown that special
considerations need to be made to eliminate the rigid body transverse forces inherent in
curved structures when in-phase actuation is used [16]. The action of the actuators has to
be represented by an equivalent in-plane force and a transverse pressure applied in the
region of the actuator patch.

The previously developed impedance models for shell structures have some weaknesses.
Zhou et al. [15] modelled the out-of-phase actuation of a circular cylinder with a discrete
line moment applied along the edges of the actuator in which the transverse shear stress
was neglected as a simplification. Rossi et al. [14] studied the out-of-phase actuation of
a circular ring using a uniform induced moment on the actuator footprint, in which the
structural mechanical impedance definition was not appropriate: the mechanical
impedance was defined as the tangential force divided by the tangential velocity at the end
of the actuator bonded on the top surface of the ring only. This definition would be
appropriate if a single actuator were bonded to the ring on the top surface. For
out-of-phase actuation, the ring is subjected to a pure moment generated by forces applied
on the ring by actuators bonded on the top and bottom surfaces of the ring. Since the
forces are coupled, the force applied on the ring by the actuator on the bottom surface
should also be included, since it will have an impact on the displacements on the top surface
of the ring, and vice versa. Thus, the proper definition of the impedance based on the
tangential force and the tangential velocity at the end of the actuator should be as follows:

6 Ftop

Fbottom7=$Ztt

Ztb

Zbt

Zbb%6 v̇top

v̇bottom7. (1)

This equation can be simplified by substituting Ftop =−Fbottom =F for out-of-phase
actuation. Also, the mechanical impedance can be defined as the moment divided by the
rotational velocity at the ends of the actuator, as in Zhou et al. [14]. This latter approach
will be used for its accuracy as well as its simplicity. Both impedance definitions can be
shown to be equal through simple geometrical relations.
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Figure 1. The in-phase equivalent loading to maintain self-equilibrium of the shell structure.

In this paper, a discussion of the appropriate representation of the equivalent induced
strain loading for rings is first presented. Then, an impedance-based model of a circular
ring actuated in-phase, out-of-phase and unsymmetrically is derived. The Rayleigh–Ritz
method is used to model the structural dynamic characteristics. A comparison of the
authority of in-phase and out-of-phase actuation is presented. This is followed by a
theoretical case study and a finite element analysis. Also, an experimental verification of
the impedance models for both in-phase and out-of-phase actuation is presented.

2. INDUCED STRAIN EQUIVALENT LOADING

In a recent paper, Chaudhry et al. [16] considered the modelling of piezoelectric actuator
patches bonded on the surface of circular cylinders. When the piezoelectric actuators are
actuated in phase, it was found that the point force model used to represent the actuator
creates a rigid body motion, since the equivalent line forces are not collinear due to the
curvature of the ring (see Figure 1). Since the PZT actuators are integrated within the
structure, self-equilibrium must be satisfied. Also, when the piezoelectric actuators are
actuated out of phase, the loading coming from the shear stress resultant is often neglected
compared to the tangential stress resultant.

To eliminate this non-equilibrium state of the ring, a transverse uniform pressure is
added (see Figure 2) to the in-phase actuation loading and the shear stress resultant is
added to out-of-phase actuation loading. This self-equilibrating equivalent loading is
included in the ring governing equations as external loading. The magnitude of the
transverse pressure from simple statics is then

pr =−N/R, (2)

Figure 2. A one-dimensional ring with bonded PZT actuators in-phase, out-of-phase and unsymmetric. The
force applied by the actuators at the edge is shown.
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where the static force and moment magnitudes are

N=
2Ysts

2+c
L, M=Ysts

ts + ta

6+c
L, (3a, b)

with

c=Ysts /Yata , (4)

where Y, t, L and R are the Young’s modulus, the thickness, the free induced strain and
the radius of the ring, respectively, while the subscripts s and a denote the shell and
actuator, respectively. Another approach to maintaining equilibrium is to include induced
strain actuation as induced uniform loading on the actuator footprint. A comparison
between the external loading and the induced uniform loading will now be presented.

Using the thin ring theory of a circular ring [17], the equations of motion can be written
in terms of the internal membrane force, Nuu , with the actuator-induced uniform tangential
force, n, and in terms of the internal bending moment Muu , with the actuator
induced-uniform moment m:

1(Nuu − n)
R 1u

+
1(Muu −m)

R2 1u
= rstsv̈o,

12(Muu −m)
(R 1u)2 −

(Nuu − n)
R

= rstsẅo, (5a, b)

where the discrete induced uniform tangential and axial forces and moments can be written
using Heaviside functions:

n=N[H(u− u1)−H(u− u2)], m=M[H(u− u1)−H(u− u2)]. (6a, b)

The actuator-induced uniform tangential and axial forces and moments can be
transferred to the right side of the equation:

1Nuu

R 1u
+

1Muu

R2 1u
= rstsv̈o +

1n
R 1u

+
1m

R2 1u
, (7a)

12Muu

(R 1u)2 −
Nuu

R
= rstsẅo −

n
R

+
12m

(R 1u)2. (7b)

Similarly, for external loading, the ring governing equations can be written in terms of
the equivalent external loading, the tangential line force and moment, n* and m*, and the
uniform radial pressure, p*r [17]:

1Nuu

R 1u
+

1Muu

R2 1u
= rstsv̈o +

n*
R

+
m*
R2 , (8a)

12Muu

(R 1u)2 −
1Nuu

R
= rstsẅo + p*r +

1m*
R2 1u

, (8b)

where the external equivalent loading can be written using Dirac delta functions:

n*=N[d(u− u1)− d(u− u2)], p*r =−
N
R

[H(u− u1)−H(u− u2)], (9a, b)

m*=M[d(u− u1)− d(u− u2)]. (9c)

From equations (6–9), it can be seen that whether actuator-induced uniform loading or
external equivalent loading are used, the equations of motion are the same. Thus, the
tangential force and moment produced by the actuators can be included in the governing
equations either as induced uniform loading on the actuators’ footprint or as external
equivalent loading on the actuators’ edges.
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Figure 3. Different representations of the induced strain actuation loading: (a) external equivalent loading
m*=M[d(u− u1)− d(u− u2)]; (b) induced uniform loading m=M[H(u− u1)−H(u− u2)].

The external equivalent loading can be seen as the pin-force approach, since the actuator
is simply replaced by line force and moment of appropriate magnitude on the actuator
edges using Dirac delta functions (Figure 3(a)) along with a uniform pressure to maintain
self-equilibrium for in-phase actuation. The induced uniform loadings are not considered
to be external and are included in the equilibrium equations in a similar fashion to thermal
loading. The induced forces and moments are considered uniform over the actuator
footprint and are represented using Heaviside functions (Figure 3(b)).

3. ACTUATOR RESPONSE SUPERPOSITION

The superposition of the response due to a single actuator to obtain a pure in-phase or
out-of-phase response is now considered [18]. If the displacements due to the inside
actuator are subtracted from the displacements due to the outside actuator, the pure
out-of-phase solution is obtained exactly (equation (10a)). If the displacements are added,
the pure in-phase solution is also obtained exactly (equation (10b)):

ui =Outside − ui =Inside = ui =Outphase , ui =Outside + ui =Inside = ui =Inphase . (10a, b)

The converse is also true. The structural response of a single actuator bonded on the
inside or outside surface of the shell can be obtained from the in-phase and out-of-phase
structural responses (equation (11)):

1
2ui =Inphase + 1

2ui =Outphase = ui =Outside , 1
2ui =Inphase − 1

2ui =Outphase = ui =Inside . (11a, b)

Any unsymmetrical voltage application on the actuators can be expressed as a linear
combination of pure in-phase loading and pure out-of-phase loading. The appropriate
weighting factors for in-phase (ji) and out-of-phase actuation (jo), which are based on the
free induced strains (L) applied on each actuators, are

ji =
Linside +Loutside

2Lmax
, jo =

−Linside +Loutside

2Lmax
, (12a, b)

where Lmax is the absolute value of the largest actuator free induced strain (inside or
outside). On the basis of this definition, the free induced strain ratios ji and jo will vary
from −1/2 to 1, jo =1 being pure out-of-phase and ji =1 being pure in-phase. The j

ratios are dependent only on the free induced strain, assuming that identical actuators are
bonded on both sides of the shell. For cases in which the actuators do not have the same
thicknesses, the equation derivation becomes more complicated due to different actuator
impedances. However, a simple superposition of the structural response to actuators
bonded on the inside and on the outside of the shell can still be used to predict the dynamic
response using this method.
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4. IMPEDANCE MODEL DERIVATION

An impedance model of a free floating thin circular ring excited by a pair of PZT
actuators is presented (see Figure 2). The impedance model is derived in four major steps:
(1) calculation of the structural impedance at the edges of the actuators using the ring
governing equations and appropriate boundary conditions; (2) calculation of the actuator
impedance; (3) calculation of the actuator output force based on the structural and
actuator impedances interaction; and (4) application of the frequency dependent actuator
output force to the ring governing equations to obtain the ring response. The PZT patches
are assumed to be perfectly bonded to the structure, so that the action of the PZT actuators
can be replaced by discrete line forces along the edges of the actuators. The linear
Love–Kirchhoff theory [19, 20] is used since the ring is assumed to be thin and the stress
distribution through the thickness of the actuators is assumed to be constant. The
symmetry of the system will be considered in the development of the impedance model.

4.1.     

The structural impedance is defined on the basis of discrete applied loads and velocities
at the ends of the actuators. For in-phase actuation, the mechanical admittance, Hin , is
defined on the basis of the tangential velocity, v̇ (equation (13a)) while for out-of-phase
actuation, Hout , it is defined on the basis of rotational velocity, u� (equation (13b)):

Hin =−v̇/N, Hout =−u� /M, (13a, b)

where the minus sign in the previous equations is necessary to take account of the opposite
or negative reactions of the structure to the output forces of the actuators. The mechanical
impedance, Z, is simply the inverse of the mechanical admittance, H. The discrete applied
in-phase tangential force and out-of-phase moment on the structure are (see Figure 2)

N=2Fji, M=(ta + ts )Fjo, (14a, b)

where F is the actuator output force.
The impedance calculation at the ends of the actuator can be carried out using the

Rayleigh–Ritz technique. The equation of motion for the ring can be written in matrix
form (equation (7)) as [1]

g
G

G

G

G

F

f

K $ 12

R2 1u2%+
D
R2 $ 12

R2 1u2%
−

K
R $ 1

R 1u%+
D
R $ 13

R3 1u3%

K
R $ 1

R 1u%−
D
R $ 13

R3 1u3%
−

K
R2 −D$ 14

R4 1u4%
h
G

G

G

G

J

j

6vo

wo7− rsts 6 v̈o

ẅo7

=g
G

G

F

f

1mu

R2 1u
+

1nu

R 1u

1
R 0 12mu

R 1u21−
nu

R

h
G

G

J

j

, (15)

where the bending and extensional stiffnesses are

D=Yst3
s /12, K=Ysts , (16a, b)
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respectively, Ys is the complex Young’s modulus of the ring, and rs is the density of the
ring. The complex Young’s modulus is used to include the damping through the structural
damping factor. The Poisson ratio is not present in the stiffness expressions due to the
one-dimensional state of the ring. Taking into consideration the free floating boundary
conditions of the ring, the tangential and radial neutral axes displacements, vo and wo,
respectively, have the following assumed solutions [21]:

vo(t, u)= s
a

n=0

Vn sin (nu) eivt, wo(t, u)= s
a

n=0

Wn cos (nu) eivt. (17a, b)

Introducing the tangential and radial displacement expressions (17) in the equation of
motion (15), a linear system of equations is obtained:

G
G

G

K

k

−
D
R4 n2 −

K
R2 n2 + rstsv

2

−
D
R4 n3 −

K
R2 n

−
D
R4 n3 −

K
R2 n

−
D
R4 n4 −

K
R2 + rstsv

2

G
G

G

L

l
6Vn

Wn7=g
G

G

F

f

M
R

+N

Mn
R

+
N
n

h
G

G

J

j

sin (nup )
pR

,

(18a)

and, for n=0,

G
K

k

rstsv
2

0

0

−
K
R2 + rstsv

2G
L

l6V0

W07=g
F

f

0

−
Nup

2pR
h
J

j
. (18b)

Making use of linear superposition, the admittance for unsymmetric loading can be
separated into two parts, representing pure in-phase actuation admittance and pure
out-of-phase actuation admittance:

Hin =
2iv
pR

ji s
a

n=1 6 [rstsv
2 + (D/R4)n2(1− n2)] sin2 (nup )

(DK/R6)(n2 −1)2 − (n2 +1)(Dn2/R4 +K/R2)rstsv
2 + (rstsv

2)27, (19a)

Hout =
2iv
pR3 jo s

a

n=1 6 [(Kn2/R2)(1− n2)+ rstsv
2] sin2(nup )

(DK/R6)(n2 −1)2 − (n2 +1)(Dn2/R4 +K/R2)rstsv
2 + (rstsv

2)27. (19b)

4.2.     

With the structural impedance now determined, the next step in the impedance approach
is to calculate the actuator impedance. The actuators bonded on the ring are excited by
applying an electric field in the radial polarization direction. Under Love’s assumptions
for thin rings, the equation of motion of a ring vibrating in the tangential direction can
be expressed as

rav̈o(t, u)=YE
a 1ou /R 1u, (20)

where ra is the PZT density and YE
a is the PZT complex Young’s modulus at zero electric

field, such that the mechanical dissipation of the actuator can be included.
The piezoelectric actuator patch is thin and has a large radius of curvature with a limited

length in the tangential direction. In other words, the actuator’s patches are almost flat.
These characteristics enable us to simplify the problem by assuming the actuators to be
flat, and the strain–displacement relation is given by equation (21). As a practical matter,
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for practical cases, the bending of the flat PZT actuator patches on the structure is very
limited due to the brittle nature of piezoelectric material:

ou = 1vo(t, u)/R 1u. (21)

Thus, the equation of motion in the tangential direction will be used:

rav̈o(t, u)=YE
a 12vo(t, u)/R2 1u2. (22)

Solving equation (22) and assuming harmonic excitation by separating the displacement
into time and spatial domain, the tangential displacement response of the actuator is given
by

vo(t, u)= [A sin kRu+B cos kRu] eivt, (23)

where v is the input angular velocity, and the wavenumber is given by

k2 =v2(ra /YE
a ). (24)

The short-circuit input impedance of the piezoelectric actuator is defined as [12]

Za =YE
a tak/iv tan kRup . (25)

The constitutive equation of the piezoelectric actuator is

ou = 1vo/R 1u=F/YE
a ta + d32E, (26)

with d32 and E being the piezoelectric constant of the actuators and the electric field applied
to the actuators, respectively.

4.3. /  

In this section, the dynamic interaction between the actuators and the ring structure is
under study. The essence of impedance modelling is to match the structural impedance
with the actuator’s impedance at its ends; the dynamic actuator force output is thus
obtained.

Using the constitutive equations of the PZT actuator (equation (26)) and applying the
proper boundary conditions [14, 15], the actuator force output of the actuator at up is given
by

F=−Z =upd32EtaYE
a /(Z =up +Za ), (27)

At this point, the dynamic actuator force output has been calculated based on the
structural and actuator impedances.

4.4.   

Using the dynamic actuator force output, the ring response can be calculated on the
basis of the ring governing equation developed in section 4.1. The tangential and radial
displacements are given in equation (17).

5. THEORETICAL RESULTS

The impedance model is applied to a case study of a circular steel ring with G1195
piezoelectric actuator patches. The theoretical results will be limited to in-phase and
out-of-phase actuation. The material and geometric properties of the system are shown
in Table 1. The size of the PZT actuator was kept small enough (10°) to satisfy the
impedance model assumptions. The results from the static approach are compared to those
from the impedance model. A comparison between the in-phase and out-of-phase
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T 1

Material and geometric properties of the PZT actuator and the steel ring

Steel ring PZT actuator

Young’s modulus (Pa) 190·5×109 63×109

Density (kg/m3) 7850 7650
Loss factor 0·006 0·001
Piezoelectric coefficient, d32 (m/V) N/A −166×10−12

Applied electric field (V/m) N/A 6·0×105

Radius/length (cm) 30·16 3·76
Width (cm) 3·175 3·175
Thickness (mm) 6·3 0·25

actuation of a ring structure is also performed. The comparison focuses on the structural
radial displacements produced by the actuators and on the efficiency to excite the structural
resonant modes. These are the most relevant factors needed when vibration and noise
control is considered.

In Figure 4 are shown the structural impedances for both in-phase and out-of-phase
actuation. The in-phase impedance, for the case being considered, has a greater magnitude
than the out-of-phase impedance. For comparison, the actuator impedance (the dashed
curve) is also shown in Figure 4. Good actuation authority is obtained when the structural
and actuator impedances are of the same order of magnitude [15]. On the basis of this
observation, in-phase actuation will have limited authority on the structure compared to
out-of-phase actuation. If a thicker actuator is used, the actuator impedance is increased
and the dynamic interaction between the actuator and the structure is increased. However,
for in-phase actuation, an unreasonable thickness is needed to obtain a good interaction.
The first six bending modes, which are the lower peaks, are shown in Figure 4.
Out-of-phase actuation has a larger impact on the structure at resonant frequencies as

Figure 4. The structural impedance for in-phase and out-of-phase actuation. ——, Out-of-phase actuation;
· · · · , in-phase actuation; ----, actuator impedance.
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Figure 5. Actuator output forces for in-phase and out-of-phase actuation based on impedance and static
model. Out-of-phase: ——, impedance model; ----, static model. In-phase: · · · · , impedance model; -·-·-·, static
model.

compared to in-phase actuation. Indeed, when the ring is actuated in phase, the bending
modes are only slightly excited through the in-plane/out-of-plane coupling property of
shells. However, as opposed to out-of-phase actuation, the in-phase actuation has the
capability of exciting the higher frequency circumferential modes.

In Figure 5 is shown the actuator output force for in-phase and out-of-phase actuation.
The dotted horizontal line is the actuator force output calculated with the static
approach [2]. It can be observed that the actuator force output is heavily dependent on
the excitation frequency in the case of out-of-phase actuation, which is not the case
for in-phase actuation. It can be concluded that the first natural modes, which are
bending modes, are only slightly excited by the in-phase actuation of the ring. The
difference in the force magnitude between impedance and the static model is less than 1%
at v=0.

The radial displacement frequency response at 30° from the actuator is presented in
Figure 6. The displacements produced by in-phase actuation are an order of magnitude
smaller than those obtained by out-of-phase actuation, for the same electrical field applied
to the piezoelectric actuators. Unlike in-phase actuation, out-of-phase actuation is very
effective in exciting the natural bending modes of the structure. Since the frequency range
of interest in structural vibration control is low, out-of-phase actuation is thus more
efficient than in-phase actuation for ring structures. The dotted lines are from the finite
element analysis, which will be discussed in the next section.

Based on an impedance model developed for two-dimensional shells (by Lalande et al.
[18]), the response of a shell of the same dimension as the ring (Table 1) but 75 cm long
has been calculated. The actuator center is at co-ordinates x=37·5 cm, u=0°. The radial
displacement frequency response at x=15 cm, u=30° is presented in Figure 7. Once
again, the displacements produced by in-phase actuation are smaller than those produced
by out-of-phase actuation. However, the clear advantage of using out-of-phase over
in-phase that was found for one-dimensional rings is not as obvious for two-dimensional
shells.
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Figure 6. An authority comparison of in-phase and out-of-phase actuation for a one-dimensional ring. ——,
Impedance model; · · · · , finite element analysis.

This conclusion is different from that reported by Lester and Lefebvre [7]. In their paper,
a theoretical model based on a static approach was presented for in-phase and out-of-phase
actuation of cylinders. It is stated that in-phase actuation excites the lower bending modes
more efficiently than out-of-phase actuation. The reason for this erroneous conclusion is
simply the omission of the self-equilibrating pressure that needs to be used for in-phase
actuation. Without the pressure loading, the shell response will produce erroneous larger
displacements.

Figure 7. An authority comparison of in-phase and out-of-phase actuation for a two-dimensional shell. ——,
Out-of-phase actuation; · · · · , in-phase actuation.
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Figure 8. The finite element model (a) without and (b) with actuators.

6. FINITE ELEMENT ANALYSIS

The finite element technique has been used and compared to the theoretical impedance
model. The dynamic analysis was performed using piezoelectric elements available in
ANSYS 5·0. An harmonic electrical field was applied to the piezoelectric elements in two
finite element models. The first model does not include the actuators that are bonded to
the surface of the ring. Instead, the structure itself in the region of the actuator is modelled
with the piezoelectric elements, to which the harmonic electrical field is applied
(Figure 8(a)). The second model includes the piezoelectric actuators on the structure, to
which the electrical field is applied (Figure 8(b)). The theoretical results are expected to
match the finite element model without the actuators’ since the stiffness and mass added
by the actuators is not considered in the structural response calculations. The finite element
results, including the actuator mass and stiffness, should be close to the theoretical
predictions due to the small thickness and size of the actuators. For both finite element
models, the symmetry of the structure was used to reduce the size of the models. The
structure was modelled using plane stress elements and the actuators (with the actuator
model) or actuator region (without the actuator model) were modelled using piezoelectric
plane stress elements. Free floating boundary conditions have been used for both models.
In the modelling of the piezoelectric elements, great care must be taken in the input of
the piezoelectric material properties to obtain accurate results.

The frequency response of the ring using finite elements at 30° from the actuators is
shown in Figure 6, along with the impedance models’ frequency responses. The frequency
response of the impedance model matches the dynamic finite element analysis with great
accuracy. The finite element natural frequencies are a little lower than those obtained from
the impedance models, due to the increased stiffness provided by the actuators in the finite
element model. With an increasing actuator size, this discrepancy increases too.

The next step is to look at the structural response at low frequency (5 Hz), where the
response of the ring will be similar to the static response. The radial displacement
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Figure 9. The radial displacements in the impedance and finite element models under dynamic out-of-phase
loading at 5 Hz. ——, Impedance model; ----, FEM, with actuators; · · · · , FEM, without actuators.

amplitudes are shown in Figures 9 and 10 for out-of-phase and in-phase actuation,
respectively. It can be observed that the impedance model matches the results of the finite
element model without actuators. When the actuator stiffness is included, the
displacements do not match the theoretical results. The discrepancies mainly occur in the
actuator region, where the increased stiffness will reduce the radial displacement amplitude.
Nevertheless, the results are comparable to those obtained by the impedance model.

At very low frequencies, the dynamic results should converge towards the static results.
The static model for in-phase actuation developed by Lalande et al. [9] is also shown in

Figure 10. The radial displacements in the impedance, static and finite element models under dynamic in-phase
loading at 5 Hz. ——, Impedance model, ----, FEM, with actuators; · · · · , FEM, without actuators; -·-·-·, static
model.
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Figure 11. The radial displacements in the impedance and finite element models under dynamic out-of-phase
loading at 450 Hz. ——, Impedance model; ----, FEM, with actuators; · · · · , FEM, without actuators.

Figure 10. It can be seen that the displacement based on the static model matches the
displacements based on the impedance model. A co-ordinate transformation, from free
floating to fixed at 180°, was applied to the impedance and finite element models so that
it could be compared with the static model.

The structural radial displacements at 450 Hz for out-of-phase and in-phase actuation,
where the fourth mode is dominant, are shown in Figures 11 and 12, respectively. Once
again, the displacements predicted by the impedance model match those obtained with the
finite element model without actuators. If the actuator stiffness and mass are included, the

Figure 12. The radial displacements in the impedance and finite element models under dynamic in-phase
loading at 450 Hz. ——, Impedance model; ----, FEM, with actuators; · · · · , FEM, without actuators.
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Figure 13. Methods for bonding flat actuators on curved structures.

displacements are slightly different, but still close enough for the theoretical model to be
conclusive.

7. EXPERIMENTAL VERIFICATION

A steel ring actuated in-phase and out-of-phase by surface-bonded PZT actuators was
to verify experimentally the impedance models. Before presenting the experimental
apparatus and the experimental results, a discussion of the bonding of piezoceramic
actuators on curved surfaces is presented.

7.1.       

Due to their brittle nature, piezoceramic materials can only tolerate a very small
curvature before they will break. This creates a problem when actuators need to be used
with curved structures. A possible way to obtain a curved piezoceramic actuator is to
machine the desired curvature in a thick actuator. This method involves high machining
accuracy, only provides limited curvatures and is expensive. It is also possible directly to
fabricate actuators with a curvature, but this is also expensive. Thus, there is a need to
adapt flat piezoceramic actuators to curved structures.

The most convenient way to apply an actuator on a curved structure is to machine a
flat surface on the structure (Figure 13). This provides an easy and inexpensive means of
obtaining the desired actuation/sensing. However, this technique is not possible for all
situations. For large radius:thickness ratios, the matching of the flat surface can be done
without affecting the structural properties of the shell; but for thin shells, the structural
properties can be greatly modified. Also, the machining of a flat surface can be simply
impossible due to the location or the size of the actuator/sensor.

An alternative to bonding flat piezoceramic actuators is to cut them into small pieces,
and bond them next to each other on the structure (Figure 13). The piezoelectric pieces
are bonded as closely as possible, but leaving a gap to avoid any electrical short-circuit.
The space between the actuators is small enough to be neglected, so that all pieces can
be considered as a single actuator. With a sufficient number of pieces, the actuator could
be considered to be curved. This technique does not involve the machining of the structure
and places no limits on the size of the actuator, but has other drawbacks. The first difficulty
is the bonding of the actuators itself on the curved surface. For each piece, a non-uniform
adhesive layer must be present to accommodate the flatness (Figure 14). Because of this,

Figure 14. A schematic illustration of a non-uniform adhesive layer accommodating a flat PZT on a curved
structure.
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Figure 15. The experimental set-up used to measure the out-of-plane velocities of the structure.

it is very difficult to obtain bonding comparable to a flat actuator on a flat surface that
will transfer the actuator’s induced strain to the structure. A second difficulty is to bond
each piece as close as possible to the next one, in order to obtain a global uniform patch,
but leaving a gap for the electrical insulation. In this technique, it is assumed that each
actuator piece will cancel the effect of the adjacent actuator, only producing a global effect
on the structure.

7.2.  

A random signal produced by the WCA Zonic and amplified with a Trek 50/750 high
voltage power amplifier was applied to the piezoelectric actuators. The ring velocity
response was measured using a Polytec laser vibrometer system and data was acquired with
WCA Zeta software on a Macintosh Quadra. The experimental set-up is shown in
Figure 15. The ring was suspended using fishing line to simulate free-floating boundary
conditions. Finally, the out-of-plane velocity measurements were carried out at angles of
30° and 150° from the actuator. The laser vibrometer system is able to measure accurately
velocities up to 1 mm/s. The experimental ring was chosen such that the velocities produced
by the actuators, which are driven at half of the depoling electrical field, will be large
enough to be measured accurately. The two bonding techniques discussed previously were
used. First, a flat surface was machined on the ring. The structural integrity was not
affected by the machining process due to the relatively large thickness and radius of the
ring and the small actuator patch. Second, the actuators were bonded on the curved
surface, breaking it into four pieces of 9 mm each and leaving a thin gap between each
piece. For the remainder of the paper, the single piece continuous actuators bonded on
the machined flat surface will be referred to as ‘‘flat actuators’’, while the segmented
actuators bonded on the curved surface will be referred to as ‘‘segmented actuators’’.

7.3.  

The ring’s radial frequency response at 30° from the actuator subjected to out-of-phase
actuation is shown in Figure 16. The flat actuators show a better match to the impedance
model than the segmented actuators. The segmented actuators produce smaller
displacements than the flat actuators, due to the increased bonding layer thickness and
gaps between each piece, which will reduce the actuators’ authority on the structure.
Nevertheless, both the flat and segmented actuators show a conclusive match with the
theoretical impedance model.

The ring’s frequency response at the same location due to in-phase actuation is shown
in Figure 17. In this case, the match between the impedance model and the experimental
results is not as conclusive. The differences might be attributed to the actual bonding of
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Figure 16. The experimental and impedance model ring response to out-of-phase actuation. ——, Impedance
model; ----, experimental segmented actuators; · · · · , experimental flat actuators.

the actuators on the curved surface. The theoretical model cannot exactly model the actual
experimental set-up, the bonding layer having an impact on the structural response, and
likewise for the machined flat surface. Taking account of those considerations, the
theoretical and experimental results show a good match at the resonant frequencies. The
structural responses at 150° from the actuator are not presented, since the same conclusions
would be drawn.

Figure 17. Experimental and impedance model ring response to in-phase actuation. ——, Impedance model;
----, experimental segmented actuators; · · · · , experimental flat actuators.
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8. CONCLUSIONS

An impedance model for the actuation of induced strain actuators bonded to the surface
of a circular ring has been developed. A discussion of the appropriate representation of
the induced strain loading has shown that the actuation loading can be included either as
induced uniform forces on the actuator footprint or as external equivalent loading. A
comparison of the authority of in-phase and out-of-phase actuation of thin rings was
performed. Based on the radial response of the ring, it is shown that in-phase actuation
has lesser authority on the ring than out-of-phase actuation. Also, out-of-phase actuation
is more efficient in exciting the lower order bending modes of the ring, while in-phase
actuation has the capability of exciting the higher circumferential modes. The analytical
results were verified using a dynamic finite element analysis with piezoelectric elements
available in ANSYS 5.0. A good correlation between the impedance model and the finite
element results validated the analytical model.

The experimental verification of the out-of-phase impedance model was very conclusive.
An excellent match between the theoretical and experimental results was observed.
However, the match is more difficult for the in-phase actuation case. Greater discrepancies
are found due to the smaller displacements involved and to the greater sensitivity to the
bonding of the actuators on the structure. Nevertheless, the in-phase actuation
experimental results are still similar to the theoretical results, both in shape and magnitude.
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