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This work is concerned with the response of an infinite two-dimensional periodic
structure to an impulsive point load or, equivalently, the response of a finite system at times
before the disturbance reaches the system boundaries. Initially, a modal approach is
employed to yield an expression for the response of a finite system under Born–von Kármán
boundary conditions. By allowing the system size to become large, the modal response
summation is converted to an integral and the method of stationary phase is employed,
with due allowance being made for the occurrence of caustics. With this approach, the
response is expressed in terms of the properties of the ‘‘phase constant surfaces’’ which arise
in the analysis of plane wave motion through the system. The method is applied to an
example lumped mass system and a comparison is made with results yielded by direct
numerical simulation. The method is found to be efficient and accurate, and a number of
observations are made regarding the physical nature of the system response.
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1. INTRODUCTION

A two-dimensional periodic structure consists of a number of identical units which are
connected together in a regular pattern to form a repetitive structural geometry—as an
example, an orthogonally stiffened plate can be considered to be a two-dimensional
periodic structure in which the basic unit is an edge stiffened panel. The widespread
occurrence of periodic or near-periodic structures in engineering has lead to much research
regarding the dynamic behaviour of such structures, and the latest developments in this
area have been summarized in two recent review papers [1, 2]. Attention has tended to be
focused on the nature of free elastic wave motion through the structure [3, 4] or on the
response of the structure to pressure wave excitation [5]. The fact that periodic structures
can be subjected to localized excitation sources, arising for example from equipment
mounts, has led to a recent study concerning the response of a two-dimensional periodic
structure to harmonic point loading [6]. It was found that the structural response can at
some frequencies exhibit a very distinctive spatial pattern associated with the occurrence
of caustics, and in particular that ‘‘dead zones’’ of almost zero response can occur. The
aim of the present work is to extend this analysis to the case of an impulsive point load,
in order to investigate the extent to which the nature of the behaviour under harmonic
loading is also evidenced under shock loading.

The present analysis is concerned with the impulse response of an infinite system, or
equivalently the impulse response of a finite system at times before the disturbance reaches
the system boundaries. As in reference [6], the analysis is based on considering initially the
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response of a finite system under periodic or Born–von Kármán boundary conditions. This
leads to a relatively straight forward expression for the impulse response of the system in
the form of a modal summation. By allowing the system size to become large, this
summation is converted into an integral, and the method of stationary phase is then
applied to yield an analytical result for the response of an infinite system. This result is
not valid in the vicinity of a caustic (that is, a time at which there is a change in the number
of stationary points associated with the method of stationary phase) and the analysis is
modified accordingly to cater for this difficulty. The method is applied to an example
system consisting of a two-dimensional array of lumped masses, and a comparison is made
with a direct numerical simulation of the system response. It is found that the method of
stationary phase yields an efficient and accurate solution which helps to reveal physical
aspects of the system response. The spatial distribution of the maximum response is found
to be of a distinctive pattern which is closely related to previous results regarding the case
of harmonic loading [6].

2. THE IMPULSE RESPONSE OF A TWO-DIMENSIONAL PERIODIC STRUCTURE

2.1.        

A two-dimensional periodic structure consists of a basic unit which is repeated in two
directions to form a regular pattern, as shown schematically in Figure 1. Each unit
shown in this figure might represent, for example, an edge stiffened curved panel in an
aircraft fuselage structure, a three-dimensional beam assembly in a roof truss structure,
or a pair of strings in the form of a ‘‘+’’ in a cable net structure. The displacement
w of the system at some time t can be written in the form w(n, x, t), where n=(n1 n2)
identifies a particular unit and x=(x1 x2 x3) identifies a particular point within the unit.
The co-ordinate system x is taken to be local to each unit, and the precise dimension
of both x and the response vector w will depend on the details of the system under
consideration.

The present work is concerned with the response of a two-dimensional periodic structure
to impulsive point loading. In the case of an undamped system of finite dimension, the

Figure 1. A schematic of a two-dimensional periodic structure. The arrow indicates the reference unit (with
n= 0), while the circle represents a general point (n, x). The structure may have a third spatial co-ordinate x3,
which is not shown in the present schematic.
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response at location (n, x) to an impulsive force F applied at (0, x0) can be expressed in
the standard form [7]

w(n, x, t)= s
p

s
q

fpq(n, x)FTfpq(0, x0)(1/vpq) sin vpqt, (1)

where fpq(n, x) are the modes of vibration of the system and vpq are the associated natural
frequencies; the modes fpq which appear in equation (1) are scaled to unit generalized mass,
so that

s
n1

s
n2
gV

r(x)fT
pq(n, x)fpq(n, x) dx=1, (2)

where V represents the volume (or equivalent) of a unit and r(x) is the mass density. The
present concern is with the impulse response of an infinite system or, equivalently, the
impulse response of a finite system at times before the disturbance reaches the system
boundaries. In this case, the response is independent of the system boundary conditions,
and it follows that any analytically convenient set of modes can be employed in equation
(1). As explained in reference [6], it is expedient to consider the Born–Von Kármán (or
‘‘periodic’’) boundary conditions, as in this case the modes of vibration can be expressed
very simply in terms of propagating plane wave components. In this regard it can be noted
from periodic structure theory [8, 9] that a propagating plane wave of frequency v has the
general form

w(n, x, t)=Re{g(x) exp(io1n1 + io2n2 + ivt)}, (3)

where o1 and o2 are known as the propagation constants of the wave (with −pQ o1 E p

and −pQ o2 E p for uniqueness), and g(x) is a complex amplitude function. By
considering the dynamics of a single unit of the system and applying Bloch’s theorem [8],
it is possible to derive a dispersion equation which must be satisfied by the triad
(v, o1, o2)—by specifying o1 and o2 this equation can be solved to yield the admissible
propagation frequencies v. By way of an example, the solutions yielded by this procedure
for a plate which rests on a grillage of simple supports are shown in Figure 2 (after
reference [3]). It is clear that the solutions form surfaces above the o1–o2 plane—these
surfaces are usually referred to as ‘‘phase constant’’ surfaces, and a single surface will be
represented here by the equation v=V(o1, o2). The phase constant surfaces always have
cyclic symmetry of order two, so that V(o1, o2)=V(−o1, −o2); for an orthotropic system
the surfaces also have cyclic symmetry of order four, and therefore only the first quadrant
of the o1–o2 plane need be considered explicitly, as in Figure 2.

The key point about the Born–Von Kármán boundary conditions is that a single
propagating wave can fully satisfy these conditions provided that o1 and o2 are chosen
appropriately. The conditions state that the left-hand edge of the system is contiguous with
the right-hand edge, and similarly that the top edge is contiguous with the bottom edge,
so that the system behaves as if it were topologically equivalent to a torus. If the system
is comprised of N1 ×N2 units, then a propagating wave will satisfy these conditions if
o1N1 =2pp and o2N2 =2pq, for any integers p and q. Following equation (3), the
displacement associated with such a wave can be written in the form

wpq(n, x, t)=Re {gpq(x) exp(io1pn1 + io2qn2 + ivpqt)}, (4)

where o1p and o2q are the appropriate values of the phase constants, and vpq =V(o1p , o2q).
Now since V(o1p , o2q)=V(−o1p , −o2q), it follows that a wave of frequency vpq travelling



. . 238

Figure 2. Phase constant surfaces for a plate which rests on a square grillage of simple supports. V is a
non-dimensional frequency, defined as V=vL2z(m/D), where m and D are, respectively, the mass per unit area
and the flexural rigidity of the plane, and L is the support spacing.

in the opposite direction to wpq will also satisfy the boundary conditions. This wave (w'pq ,
say) will have the form

w'pq(n, x, t)=Re {g*pq(x) exp(−io1pn1 − io2qn2 + ivpqt)}, (5)

where it has been noted from periodic structure theory that reversing the direction of a
wave leads to the conjugate of the complex amplitude function g(x). The two waves
represented by equations (4) and (5) can be combined with the appropriate phase to
produce two modes of vibration of the system in the form

6f1pq(n, x)
f2pq(n, x)7=6Re

Im7gpq(x) exp(io1pn1 + io2qn2). (6)
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By adopting this set of modes, it can be shown [6] that equation (1) can be re-expressed as

w(n, x, t)= s
N1/2

p=1−N1/2

s
N2/2

q=1−N2/2

2g*pq(x)FTgpq(x0) exp(−io1pn1 − io2qn2)(1/vpq) sin vpqt, (7)

where N1 and N2 have been taken to be even, and the amplitude function gpq is scaled so that

gpq =[2r(x)VN1N2]−1/2fpq(x), (1/V) gV

fT
pq(x)f*pq(x) dx=1, (8, 9)

where the normalized amplitude function fpq is defined accordingly. The summation which
appears in equation (7) includes only those modes associated with a single phase constant
surface V(o1, o2); if more than one surface occurs, then the equation should be summed
over the complete set of surfaces. The summation will include N1N2 modes for each surface,
which is consistent with known results for the modal density of a two-dimensional periodic
structure.

Equation (7) yields the response of a finite system of dimension N1 ×N2 to an impulsive
point load—this response is identical to that of an infinite system at times before the
disturbance reaches the system boundaries. If the system size is allowed to tend to infinity
in equation (7), then neighbouring values of the phase constants o1p and o2q become closely
spaced (since do1p = o1,p+1 − o1p =2p/N1 and do2q = o2,q+1 − o2q =2p/N2), and in this case
the summations can be replaced by integrals over the phase constants, to yield

w(n, x, t)= (N1N2/2p2) g
p

−p g
p

−p

g*(x)FTg(x0) exp(−io1n1 − io2n2)(1/v) sin vt do1 do2, (10)

where v=V(o1, o2) and g(x) is the complex amplitude associated with the wave (v, o1, o2).
Equation (10) can also be written in the form

w(n, x, t)= (1/4Vp2)[r(x)r(x0)]−1/2 g
p

−p g
p

−p

f*(x)FTf(x0)

× exp(−io1n1 − io2n2)(1/v) sin vt do1 do2, (11)

which highlights the fact that the response is independent of N1 and N2, as should be the
case for an infinite system. Equation (10) or (11) can be evaluated by numerical integration
for fixed values of n, x and t. If the trapezoidal rule is employed, then the equation
essentially reduces to equation (7), with N1 and N2 in this case representing the number
of intervals which are employed in the numerical method. It is clear that more intervals
are needed as the time t increases, since N1/2 and N2/2 must always exceed the distance
travelled by the disturbance if (real or numerical) reflections from the system boundaries
are to be avoided. Clearly, the numerical evaluation of equation (11) can be
computationally demanding, and thus an approximate analytical approach which is based
on the method of stationary phase [10] is presented in the following sections.

2.2.       

In order to apply the method of stationary phase to equation (11) it is useful to rewrite
the equation in the form
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w(n, x, t)= (1/4Vp2)[r(x)r(x0)]−1/2 Re 6−i g
p

−p g
p

−p

(1/V)f*(x)FTf(x0)

× exp(−io1n1 − io2n2 + iVt) do1 do27, (12)

where use has been made of the properties of V and f with regard to a sign reversal in
o1 and o2 (that is, V is unchanged whereas f is replaced by f*). The method of stationary
phase is based on the premise that the major contribution to the integral which appears
in equation (12) arises from those regions of the o1–o2 plane which are in the immediate
vicinity of points at which the phase −o1n1 − o2 +Vt is stationary with respect to both o1

and o2 [10]. The conditions for a stationary point are

n1 = (1V/1o1)t, n2 = (1V/1o2)t. (13, 14)

These conditions have a clear physical interpretation, since the group velocity of wave
motion in a two-dimensional periodic structure (in units of bays per second) is given by
cg1 = 1V/1o1 in the x1 direction and cg2 = 1V/1o2 in the x2 direction [11]: the values of o1

and o2 yielded by equations (13) and (14) are therefore associated with a wave which travels
from the excited bay to bay n in time t. The method of stationary phase proceeds by
expanding V about a stationary point, (o1s o2s) say, to yield

− o1n1 − o2n2 +Vt1−o1sn1 − o2sn2 +Vst+(t/2){(12V/1o2
1)(o1 − o1s)2

+2(12V/1o1 1o2)(o1 − o1s)(o2 − o2s)+ (12V/1o2
2)(o2 − o2s)2}, (15)

where Vs 0V(o1s , o2s) and all the derivatives of V are evaluated at the stationary point. If
equation (15) is substituted into equation (12), then the double integral can be evaluated
by assuming that (i) all terms which appear in the integrand are constant (and evaluated
at the stationary point) other than those which depend explicitly on o1 and o2 in equation
(15), and (ii) the integration range can be extended from (−p p) to (−a a), since the
contribution from regions which are remote from the stationary point is negligible. The
integral is then of the standard Gaussian type, and can be evaluated to yield [10]

w(n, x, t)= (1/2Vp)[r(x)r(x0)=J=]−1/2 Re{−(i/Vt)f*(x)FTf(x0)

× exp(−io1n1 − io2n2 + iVt+id)}, (16)

where all terms are evaluated at the stationary point (the suffix s is omitted for ease of
notation), and J and d are defined as

J=(12V/1o2
1)(12V/1o2

2)− (12V/1o1 1o2)2, (17)

d=(p/4) sgn (12V/1o2
1){1+sgn (J)}. (18)

In practice, there may be multiple stationary points at which equations (13) and (14) are
satisfied: in this case, equation (16) should be summed over all such points.

Equation (16) will clearly yield a poor approximation to the response if J1 0. Generally,
J will be close to zero in the vicinity of a caustic [10]: that is, a time at which the number
of stationary points yielded by equations (13) and (14) either increases or decreases. The
situation in which the number of stationary points increases at t= t0 is addressed in what
follows, and the two cases tq t0 and tQ t0 (with t1 t0) are considered in detail in the
following sections. For tq t0 it is sufficient to include a number of higher order terms in the
expansion represented by equation (15); for tQ t0 it is necessary to consider a contribution
from the additional stationary point associated with t= t0—although this is not strictly
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a stationary point for tQ t0, the values of the integrand in the vicinity of this point can
make a significant contribution to equation (12) for t1 t0. It can be noted that the analysis
contained in the following sections should be interchanged for the contrary case in which
the number of stationary points decreases at t= t0.

2.2.1. Detailed analysis of the case t1 t0 (J1 0) with tq t0

In this case the approximation afforded by equation (15) can be improved by including
a number of higher order terms in the Taylor series expansion of V. To this end it is helpful
to rotate the (o1 o2) co-ordinate system to a new system (p1 p2), which is chosen to make
12V/1p1 1p2 =0 at the stationary point. This can be achieved by putting
p1 = o1 cos u+ o2 sin u and p2 =−o1 sin u+ o2 cos u, where

tan 2u=2(12V/1o1 1o2)/(12V/1o2
1 − 12V/1o2

2). (19)

Equation (19) yields two solutions for u in the form {u, u+ p/2}, and it is convenient to
adopt that solution for which 12V/1p2

1 =0 at t= t0 (it should be noted that since J=0
at t= t0, and by definition 12V/1p1 1p2 =0, it follows that either 12V/1p2

1 =0 or
12V/1p2

2 =0 at t0). Equation (15) can now be replaced by

− o1n1 − o2n2 +Vt1−o1sn1 − o2sn2 +Vst+(t/2){(12V/1p2
1)(p1 − p1s)2

+ (1/3)(13V/1p3
1)(p1 − p1s)3 + (12V/1p2

2)(p2 − p2s)2}, (20)

where third order terms involving p2 are omitted, since 12V/1p2
2 does not approach zero

in the vicinity of t0. If equation (20) is substituted into equation (12), and the integration
variables are changed from (o1 o2) to (p1 p2), then the double integral can be evaluated as
(i) a Gaussian type integral over p2, and (ii) an Airy type integral over p1. This procedure
yields [6, 10]

w(n, x, t)= (1/4Vp2)[r(x)r(x0)]−1/2 Re{−(i/V)f*(x)FTf(x0)

× exp(−io1n1 − io2n2 + iVt)AG}, (21)

where G is the result of the Gaussian integral, so that

G=(2p)1/2(t12V/1p2
2)−1/2 exp[i(p/4) sgn(12V/1p2

2)], (22)

and A is the result of the Airy type integral, so that [6, 10]

A= p=3a3=−1/3 exp(−2ia3
2/27a2

3){Ai(−z)− i sgn (a2) Bi (−z)}, (23)

where

a2 =−(t/2)12V/1p2
1, a3 =−(t/6)13V/1p3

1, z= =3a3=−1/3=a2
2/3a3=. (24a–26)

It can be confirmed that equation (21) reduces to equation (16) if the third order term
13V/1p3

1 is neglected; for J1 0 this term has a strong influence on the response w, as will
be shown in section 3 for a particular numerical example. In summary, the total response
at time tq t0 is given by the summation of equation (16) over each stationary point,
although for stationary points with J1 0 equation (16) must be replaced by equation (21).

2.2.2. Detailed analysis of the case t1 t0 (J1 0) with tQ t0

It has been supposed that a greater number of stationary points occur for tq t0 than
for tQ t0, so that the time t0 represents a caustic. Typically, as will be shown for a particular
example in section 3, two additional stationary points will occur for tq t0: as t is reduced
towards t0, these stationary points approach each other, and ultimately they become a
single stationary point, (o10 o20) say, at t= t0. For tQ t0, the occurrence of the stationary
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point at t0 can strongly influence the integral which appears in equation (12), even though
this stationary point does not satisfy the stationary conditions, equations (13) and (14),
at times other than t0. An allowance for this effect can be made by expanding the phase
−o1n1 − o2n2 +Vt about (o10 o20), to yield

− o1n1 − o2n2 +Vt=−o10n1 − o20n2 +V0t−(n1 cos u+ n2 sin u)(p1 − p10)

+ (t/2){2(1V/1p1)(p1 − p10)+ (1/3)(13V/1p3
1)(p1 − p10)3 + (12V/1p2

2)(p2 − p20)2}, (27)

where all of the partial derivatives are evaluated at the point (o10 o20), and the co-ordinates
p1, p2 and u are as defined in the previous section, so that 12V/1p1 1p2 = 12V/1p2

1 =0 at
t= t0. It can be noted that first and third order terms in (p2 − p20) are omitted from
equation (27) on the assumption that the second order term will dominate for t1 t0, as
it certainly does for t= t0. If equation (27) is substituted into equation (12), then the
contribution to w arising from the vicinity of (o10 o20) in the o1–o2 plane can be evaluated
as a Gaussian integral over p2 and as an Airy type integral over p1. This again leads to
equation (21), with G given by equation (22), although in this case equation (23) is replaced
by the result [6]

A=2p=(t/2)(13V/1p3
1)=−1/3 Ai (z), (28)

z= =(t/2)(13V/1p3
1)=−1/3=n1 cos u+ n2 sin u− t(1V/1p1)=. (29)

The total response at the time tQ t0 will then consist of (i) a contribution in the form of
equation (16) arising from each stationary point, and (ii) a contribution in the form of
equation (21) (with G and A given by equations (22) and (28) respectively) which accounts
for the effect of the caustic at t0.

3. NUMERICAL EXAMPLE

3.1.   

An example of a two-dimensional periodic structure is shown schematically in Figure 3:
the structure consists of a rectangular grid of lumped masses m which are coupled through

Figure 3. A schematic of a two-dimensional mass–spring periodic system. Each mass has a single out-of-plane
degree of freedom and is attached to earth by a spring of stiffness k.
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horizontal and vertical shear springs of stiffness k1 and k2 respectively. Each mass has a
single degree of freedom consisting of the out-of-plane displacement w, and a linear spring
of stiffness k is attached between each mass and a fixed base. By letting wij represent the
displacement of the ijth mass, where i and j are shown in Figure 3, the equations of motion
of the system can be written in the form

mẅij +(k+2k1 +2k2)wij − k1(wi,j−1 +wi, j+1)− k2(wi−1, j +wi+1, j)=0. (30)

The dispersion relation for harmonic plane wave motion of frequency v can be derived
by employing Bloch’s theorem [8] which, in the present context, states that

wij =eio1 wi, j−1 =e−io1 wi, j+1 =eio2 wi−1, j =e−io2 wi+1, j , (31)

where o1 and o2 are the propagation constants. Equations (30) and (31) yield the result

V2(o1, o2)0v2 = m1(1−cos o1)+ m2(1−cos o2)+v2
n , (32)

where m1 =2k1/m, m2 =2k2/m and v2
n = k/m. The function V can be used in conjunction

with the analysis of the previous sections to yield the impulse response of the system via
equations (16) and (21); in this regard it can be noted that for the present case r(x)=m,
V=1 and f(x)=1.

The function V is shown in Figure 4 for the particular case m1 =1·0, m2 =0·57 and
v2

n =0·25. The group velocity cg =z(c2
g1 + c2

g2) for this case is shown in Figure 5, and
the direction of the energy flow c=tan−1(cg2/cg1) is shown in Figure 6. In considering
Figures 5 and 6, it should be noted that cg1 = 1V/1o1 and cg2 = 1V/1o2, so that the group
velocity is normal to the V contours which are shown in Figure 4; furthermore, the
magnitude of the group velocity is equal to the modulus of the gradient of the V surface
[11]. The method of stationary phase is based on finding the stationary points which satisfy
equations (13) and (14) for a specified time t and response location n=(n1 n2). The
specification of t and n is equivalent to specifying cg and c, and it follows that the
stationary points lie at the intersections of a specified cg contour (see Figure 5(b)) with
a specified c contour (see Figure 6(b)). The cg and c contours are superimposed in
Figure 7 to aid in the visualization of this procedure; as an example, there are four
stationary points associated with n1 =25, n2 =16 and t=96 s (corresponding to
cg =0·309 bays/s and c=32·6°) and these are highlighted in the figure. Contours
corresponding to J=0 are also shown in Figure 7: according to the analysis presented
in section 2.2 these contours are associated with the occurrence of caustics. It is clear from
Figure 7 that any two cg and c curves which meet on a J=0 contour are tangential to
one another at the meeting (stationary) point. In this case a change in cg for fixed c

(equivalent to a change in t for fixed n) will lead to a change in the number of stationary
points, since the two curves will either fail to meet (no stationary point) or they will cross
twice (two stationary points). This supports the statement made in section 2.2.2 that two
additional stationary points arise in traversing a caustic and, furthermore, it is clear that
these two stationary points merge into a single stationary point (with J=0) on the caustic.
A description of the numerical method used here to locate the stationary points, together
with other details regarding the practical implementation of the method of stationary
phase, can be found in the Appendix.

The method of stationary phase is an approximate method of evaluating the double
integral which appears in equation (11). As mentioned in section 2.1, this integral can also
be evaluated numerically, and if the trapezoidal rule is employed then equation (11)
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Figure 4. The phase constant surface V(o1, o2) for the example system: (a) surface plot; (b) contour plot with
evenly spaced contours ranging from V=0·6 to V=1·8 in increments of 0·15.

reduces to equation (7). Now equation (7) is actually an exact result for the impulse
response of a system of dimension N1 ×N2 which is subjected to Born–von Kármán (or
periodic) boundary conditions; for times prior to the disturbance reaching the boundary
this response is identical to that of an infinite system, and equation (7) may therefore be
employed to assess the accuracy of the method of stationary phase. Given that the notion
of periodic boundary conditions underlies all of the present analysis, and that this notion
is somewhat artificial, it is useful to consider an independent analysis of the response of
the system which can be used to validate the present approach. For this reason the
impulse response of the example system has been computed by using direct numerical
simulation, and an outline of the simulation procedure adopted is given in the following
section.
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Figure 5. The group velocity cg(o1, o2) for the example system: (a) surface plot; (b) contour plot with evenly
spaced contours ranging from cg =0·04 to cg =0·49 in increments of 0·05.

3.2.       

For a finite system consisting of N1 ×N2 masses, the equations of motion represented
by equation (30) can be expressed in the matrix form

ẅ=−(1/m)Kw, (33)

where the vector w contains the system displacements wij and the entries of the matrix K

can readily be deduced from equation (30). For simplicity, the masses which lie on the
edges of the system have been taken to be unrestrained here, so that the system has ‘‘free’’
boundary conditions. Equation (33) can be integrated numerically by any one of a variety
of techniques; in the present work a simple difference scheme has been used so that

w(t+Dt)=w(t)+ ẇ(t)Dt, ẇ(t+Dt)= ẇ(t)− (Dt/m)Kw(t), (34, 35)

where Dt is the adopted time step. The initial conditions associated with an impulse of unit
intensity applied to the ijth mass are w(0)= ẇ(0)= 0, apart from ẇij(0)=1/m. The
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Figure 6. The direction of energy propagation c(o1, o2) for the example system: (a) surface plot; (b) contour
plot with evenly spaced contours ranging from c=10° to c=80° in increments of 10°.

application of equations (34) and (35) is computationally intensive in comparison to the
methods presented in section 2, since the time step Dt must be small enough to guarantee
the stability and accuracy of the scheme. Furthermore, the system size must be chosen to
ensure that no reflections arise from the system boundaries over the time span that is
considered.

3.3. 

The results that are presented in this section relate to the example system m1 =1·0,
m2 =0·57 and v2

n =0·25, which was considered in section 3.1. Initially, the concept of using
the modes of vibration associated with periodic boundary conditions has been validated
by comparing the results yielded by equation (7) with numerical simulation results for the
case N1 =N2 =20 (with the reference system positioned so that −10 E ni E 9 for i=1, 2).



     247

Figure 7. Superposition of the group velocity (cg) and energy direction (c) contours for the example system.
w, The intersection of the contours cg =0·309 and c=32·6°; W, those combinations of o1 and o2 for which J=0.

The response at three points on the system produced by an impulse applied at n1 = n2 =0
is shown in Figure 8 for times up to 15 s, which is prior to any reflection from the system
boundaries. The results yielded by the two methods are virtually indistinguishable, and this
confirms the validity of equation (7). It can be noted that the evaluation of equation (7)
for every mass in the system takes a fraction of the computation time needed for the
numerical simulation; furthermore, the numerical simulation requires the response of all

Figure 8. The response of the example system to an impulse of unit strength applied at the position n=(0 0):
(a) the response at n=(0 0); (b) the response at n=(4 1); (c) the response at n=(4 1). In each case, two (nearly
coincident) curves are shown, corresponding to numerical simulation and the use of equation (7).
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the masses to be computed, whereas equation (7) can be applied independently to
individual masses of particular interest. The anisotropy of the periodic system is clearly
visible in the results which are shown in Figure 8, in the sense that the disturbance reaches
the point (4, 1) before it reaches the point (1, 4). This is consistent with the fact that the
group velocity of waves propagating in the n1 direction generally exceeds that of waves
propagating in the n2 direction, as can be deduced from Figures 5 and 6.

A comparison between the results yielded by equation (7) and the method of stationary
phase is shown in Figure 9, where in this case a system of dimension N1 =N2 =100 has
been considered in the evaluation of equation (7). The number of stationary points
occurring in the method of stationary phase is indicated on the figure: for example at
n=(4, 1) there are no stationary points for tQ 8·3, two stationary points for
8·3Q tQ 11·93, and four stationary points for tq 11·93. The times t=8·3 and t=11·93
therefore represent caustics, and the analysis presented in sections 2.2.1 and 2.2.2 must be
employed in the vicinity of these values of t. This procedure is illustrated in Figure 10,
which concerns the effect of the caustic at t=11·93. If equation (16) is employed
throughout the neighbourhood of the caustic, then a very large response is obtained at
times immediately following the caustic (since =J=1 0 at the relevant stationary points),
and a poor response estimate is obtained at times prior to the caustic (due to the neglect
of the presence of the stationary point at the caustic). These effects are corrected by the
application of equations (21), (22) and (28) prior to the caustic and equations (21), (22)
and (23) following the caustic, as shown in Figure 10.

It can be seen from Figure 9 that the method of stationary phase generally yields a good
estimate of the response of the system. The method becomes more accurate with increasing
t and with increasing distance from the impulse location, which is consistent with the basic
assumptions which lie behind the technique [10]. The method is largely analytic, and it

Figure 9. The response of the example system to an impulse of unit strength applied at the position n=(0, 0):
(a) the response at n=(4, 1); (b) the response at n=(9, 1); (c) the response at n=(9, 9). In each case two curves
are shown, corresponding to the use of equation (7) and the method of stationary phase (labelled sp). The values
of n shown on the figure correspond to the number of stationary points arising in the method of stationary phase.



     249

Figure 10. Details of the response at the point (4, 1) in the vicinity of the caustic occurring at t=11·93 s. The
irregular curve is given by equation (16), while the smooth curve has been obtained by using the analysis detailed
in sections 2.2.1 and 2.2.2.

therefore requires significantly less computation time than the direct numerical evaluation
of equation (7)—the computational effort lies mainly in the determination of the stationary
points. Although not reported in detail here, the method has been applied to other systems
covering a range of values of m1, m2 and v2

n . With one exception, the method has been found
to yield results which are of comparable accuracy to those shown in Figure 9; the exception
concerns the case v2

n =0, for which the function V(o1, o2) defined by equation (32) is not
twice differentiable at the origin o1 = o2 =0. In this particular case, the method of
stationary phase is not applicable, although the method continues to perform well for
values of v2

n as low as 0·01. For v2
n =0 resort must be made to equation (7).

The nature of the impulse response of the example system as a whole is shown in
Figures 11–13, where the contours corresponding to w=0 at a particular time are shown
in each figure. The anisotropy of the system, which was mentioned in connection with
Figure 9, is clearly evidenced in the non-circular shape of the disturbance wavefront. Much
more revealing, however, are the results shown in Figure 14, which concern the spatial
distribution of the maximum value of =w= produced by the impulse—this figure has been
constructed by computing the time history of w for each mass and thence finding the
maximum value of =w= achieved by each mass. These results can be compared with the
spatial distribution of the response reported in reference [6] for the case of harmonic
excitation: two distinct types of response were found to occur, depending upon the
excitation frequency. In the first case, the magnitude of the response was found to vary
smoothly with the polar angle c=tan−1 (n2/n1), and all parts of the structure exhibited
a significant dynamic response. In the second case, the response varied in a complex way
with the polar angle c, and a ‘‘dead zone’’ of almost zero response was obtained for a
region centred on c=90° (and also, symmetrically, at c=−90°). This latter behaviour
was traced to the existence of a critical angle of c at certain frequencies (referred to as
the caustic direction cc in reference [6]): at such frequencies all possible propagating waves
transmit energy at a heading less than cc to the n1-axis, and thus the response at polar
angles greater than cc (in fact, cc EcE 180−cc and −cc ece−180+cc) is
extremely low. Now, in accordance with the Fourier theorem, the impulse response which
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Figure 11. Contours of w=0 at t=7·5 s.

is shown in Figure 14 contains contributions from all frequencies, and therefore the spatial
distribution of =w= can be expected lie somewhere between the two distinct forms of
response reported in reference [6]. This is in fact the case, and the response shown in
Figure 14 retains a distinctive spatial pattern. Clearly, =w= has a strong dependency on c

and, as mentioned in reference [6], this introduces the possibility of using the periodic
structure as a spatial filter to isolate a sensitive item of equipment from an excitation
source.

Figure 12. Contours of w=0 at t=15 s.
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Figure 13. Contours of w=0 at t=30 s.

4. CONCLUSIONS

It has been shown that the response of a two-dimensional periodic structure to an
impulsive point load can be computed efficiently by using the method of stationary phase.
Equation (16) forms the key result of the method, although this equation must be replaced
by equation (21) in the vicinity of a caustic. As discussed in section 2.2. the details of the
functions G and A which appear in equation (21) depend upon whether the time of interest
lies before or after the occurrence of the caustic: in the first case, equation (22) and (28)
should be employed; whereas in the second case, equations (22) and (23) are appropriate.
The information needed for the application of the method to an arbitrary two-dimensional
periodic structure consists of the phase constant surface(s) V(o1, o2) and the associated

Figure 14. Contours of the maximum response =w=; the levels shown are 0·06, 0·08, 0·1, 0·12 and 0·2.
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waveform(s) f(x), both of which are yielded by standard techniques for the analysis of free
wave motion in periodic structures [2, 9]. It can be noted that the impulse response of a
periodic system can also be computed by using equation (7); this approach is
computationally more intensive than the method of stationary phase, although it avoids
the need for higher order derivatives of the phase constant surface V(o1, o2)—equation (7)
might therefore offer advantages for a complex structure in which V(o1, o2) is found
numerically rather than analytically.

The application of the method of stationary phase to a simple lumped mass system has
shown that the spatial distribution of the maximum response =w= can display a complex
pattern which is closely related to the behaviour of the system under harmonic point
loading [6]. As discussed in reference [6], this behaviour could possibly be exploited to
reduce vibration transmission along a specified path, although the practicality of this
approach for a complex system has yet to be investigated.
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APPENDIX: DETAILS OF THE ANALYTICAL METHOD

The method of stationary phase which is presented in section 2.2. is based on solving
equations (13) and (14) to yield the stationary points in the o1–o2 plane for a specified
response location n=(n1 n2) and time t. As discussed in section 2.2. the specification of
n and t is equivalent to specifying the group velocity of a periodic wave, since it follows
from equations (13) and (14) that cg1 = 1V/1o1 = n1/t and cg2 = 1V/1o2 = n2/t (in the
notation of section 3.1. cg1 = cg cos c and cg2 = cg sin c). The phase constants o1 and o2

which are associated with specified values of cg1 and cg2 can be found by noting from
equation (32) that

cg1 = m1 sin o1/2V, cg2 = m2 sin o2/2V. (A1, A2)

The numerical solution of these two simultaneous non-linear algebraic equations in o1 and
o2 yields the stationary points; in the present work the equations have been solved by first
expressing o2 in the form o2 = sin−1[(cg2m1/cg1m2) sin o1], and then substituting this expression
into equation (A1) to yield a non-linear equation in o1, which is solved by a search
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technique (with due account taken of the fact that the expression for o2 yields two values
over the range 0 to p). Having found the stationary points, equation (16) or equation (21)
is then used to yield the system response: as explained in sections 2.2.1. and 2.2.2. equation
(21) should be used in the vicinity of a caustic, which can be identified as a time at which
the number of stationary points either increases or decreases. The partial derivatives of
V which are needed for the evaluation of the terms G and A which appear in equation
(21) are given by

1n+mV

1np1 1mp2
=0cos u

1

1o1
+ sin u

1

1o21
n

0−sin u
1

1o1
+ cos u

1

1o21
m

V, (A3)

where u is given by equation (19) and the partial derivatives of V with respect to o1 and
o2 are readily found from equation (32).


