
Journal of Sound and Vibration (1997) 201(3), 323–334

OPTIMAL CONSTRUCTION OF A MASS–SPRING
SYSTEM WITH PRESCRIBED MODAL AND
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The problem of constructing a mass–spring system with prescribed natural frequencies
and mode shapes is an overdetermined problem. The independent components of the
eigenpairs consist of more constraints than mass and spring values, the free parameters
in the problem. The nature of this problem requires the use of non-linear approximation
methods. In this paper, two methods of solution, both optimal in some sense, are presented.
One method guarantees the global optimal solution with extensive computational
effort. The second method evaluates a local optimum in an economical way. The results
appearing in this paper may have applications in the design and identification of vibratory
systems.
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1. INTRODUCTION

Inverse vibration problems associated with the construction of vibratory systems from
the known set of desired natural frequencies and mode shapes have many applications
in engineering. These include system reconstruction, modification and design. The
book by Gladwell [1] introduces the theory of inverse vibration problems. In this
paper, we are concerned with the design problem of constructing a physically
realizable mass–spring system with prescribed natural frequencies and mode shapes.
This problem arises when controlling the maximal deflection of vibratory systems. In
reference [2], Zimoch has presented a method for constructing mass and stiffness
matrices with prescribed natural frequencies and mode shapes. However, the resulting
matrices were not physically realizable in general; i.e., they did not necessarily
correspond to real systems with appropriate physical parameters. Ram and Caldwell
[3] have shown how to construct a multiple connected mass–spring system from given
natural frequencies, and Gladwell and Movahhedy [4] have obtained the set of
necessary and sufficient conditions to ensure positive mass and stiffness parameters
for the three-degree-of-freedom case. Starek and Inman [5] have analyzed an inverse
eigenvalue problem of a non-conservative system. The developed method of solution
ensured that the mass, stiffness and damping matrices are real, provided that all
eigenvalues of the system are complex. In reference [6] the authors have improved the
method to ensure that the matrices are also symmetric, thus enhancing the physical
realizability properties of the solution. In reference [7], the method has been further
developed to include systems with real eigenvalues associated with overdamped modes.
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Let us now focus on our problem. Consider the symmetric definite generalized
eigenvalue problem

KF=MFL, (1)

where K is a positive semi-definite symmetric stiffness matrix, M is a positive definite
symmetric mass matrix, F is a mass-normalized modal matrix, L=diag(l1, . . . , ln), is a
spectral matrix, and n is the number of degrees of freedom.

It is well known that the following bi-orthogonality relations hold:

FTMF= In , FTKF=L. (2, 3)

For a multiple connected mass–spring system, the mass matrix M is real, positive and
diagonal. Denote

M=diag(m1, m2, . . . ,mn), mi q 0, mi$R, i=1, 2, . . . , n. (4)

The stiffness matrix K=[kij ] is symmetric, and has the following properties:

(a) kii q 0, i=1, 2, . . . , n,

(b) kij E 0, i$ j, i=1, 2, . . . , n; j=2, 3, . . . , n;

(c) s
n

j=1

kij e 0, i=1, 2, . . . ,n. (5)

In words, K has positive diagonal elements and non-positive off-diagonal elements, and
is weakly diagonally dominant.

Suppose that we want to determine a physically realizable mass–spring system which
has a prescribed eigenvalue matrix L and corresponding mode shapes matrix F. If we use
the orthogonality equations (2) and (3), we have

M=F−TF−1, K=F−TLF−1. (6, 7)

However, in general, this solution would not be physically realizable. Since equations (6)
and (7) represent the unique solution to equations (2) and (3), we conclude that generally
there is no exact physically realizable solution to this problem. However, we may obtain
a physically realizable system with spectral properties that are close to the required data,
by solving the following optimization problem.

Problem 1: Determination of a physically realizable system. Given sets of desired
eigenvalues {l*1 , l*2 , . . . , l*n } and corresponding mass-normalized eigenvectors
{f*1 , f*2 , . . . , f*n }, denote by

F*= [f*1 =f*2 = · · · =f*n ] (8)

the column partitioning of F*, and let

L*=diag(l*1 , l*2 , . . . , l*n ). (9)

Determine physically realizable K and M corresponding to a discrete mass–spring system,
with modal and spectral properties F and L satisfying equation (1), such that the norms
>F*−F> and >L*−L> are minimized.

We realize that the two problems of determining F and L can be solved separately. Also
note that satisfying equations (2) and (3) is a sufficient condition for equation (1) to hold.

Now consider the problem of determining the optimal mode shape matrix F.
Problem 2: Determination of mode shapes. Given F*, determine F such that M=F−TF−1

is a diagonal positive definite matrix, and which minimizes the norm >F*−F>.
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We analyze this problem in section 2. Once the solution F is found, we solve the
following problem.

Problem 3: Determination of eigenvalue matrix. Given L* and F, determine L which
minimizes the norm >L*−L>, such that K=F−TLF−1 satisfies the properties given by
equation (5).

We present the global optimal solution to this problem in section 3. Determining the
global optimal solution in computationally expensive. We therefore present another, local
optimal approximation in section 4. A numerical example demonstrating the algorithms
is presented in section 5, and conclusions are drawn in section 6.

2. MODE SHAPE OPTIMIZATION

Let D=diag(d1, d2, . . . , dn), di $ 0, and let Q be an orthonormal matrix; that is,
QQT = In . If F=DQ, then the mass matrix M obtained by equation (6) is physically
realizable, since

M=F−TF−1 = (D−1Q)(QTD−1)=D−1D−1 (10)

is a positive definite diagonal matrix. Thus a solution to Problem 2 can be obtained by
determining a diagonal matrix D and an orthonormal matrix Q, such that

min
D,Q

>F*−DQ>. (11)

In solving this problem we will make use of the following result. Given two n× n matrices
A and B, the well known orthogonal Procrustes problem is to determine an orthonormal
matrix Q, such that

min
Q

>A−BQ>F . (12)

An algorithm for solving this problem is given below (see, e.g., Golub and van Loan [8,
p. 582]).

Algorithm 1: Orthogonal Procrustes problem

Input: Two n× n matrices A and B.

Algorithm: (1) Set C=BTA.
(2) Compute the singular value decomposition C=USVT.
(3) Evaluate Q=UVT.

Output: Orthonormal Q, which solves equation (12).

Thus we may choose a diagonal matrix D0 as an initial guess and obtain an orthonormal
Q0 which minimizes >F*−D0Q0>F , by using Algorithm 1. We now show how to obtain
a matrix D1 such that

>F*−D1Q0>F E >F*−D0Q0>F . (13)

The Frobenius norm is invariant under orthonormal multiplication. Hence

>F*−D1Q0>F = >F*QT
0 −D1>F , (14)

Define

R=F*QT
0 , (15)
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and denote

o= >R−D1>2
F . (16)

Using the equality

>R−D1>2
F = trace(RTR)+ trace(DT

1D1)−2 trace(DT
1R), (17)

we find that

o= trace(RTR)+ s
n

i=1

[d2
ii −2diirii ] (18)

=trace(RTR)+ s
n

i=1

[dii − rii]2 − s
n

i=1

r2
ii , (19)

where D1 =diag(dii) and R=[rij ]. Then, from (19), it is clear that o is minimized when

dii = rii . (20)

Thus, the residual error o is minimized when the diagonal elements of D1 are equal to the
diagonal elements of R. Having determined a diagonal matrix D1 satisfying equation (13),
we can re-apply Algorithm 1 with F* and D1 as an input and find an orthonormal matrix
Q1 such that

>F*−D1Q1>F E >F*−D1Q0>F . (21)

Continuing in this manner iteratively, we obtain an approximation to Problem 2. The
following algorithm summarizes this result.

Algorithm 2: Approximate solution to Problem 2

Input: An n× n modal matrix F*.

Algorithm: (1) Set initial guess D0 and a tolerance for convergence e.
(2) For i=0, 1, 2, . . . :

(a) Evaluate C=DT
i F*.

(b) Compute the singular value decomposition C=USVT.
(c) Evaluate Qi =UVT.
(d) Obtain R=F*QT

i .
(e) Di+1 =diag(r11, r22, . . . , rnn).
(f) Test convergence:

(i) Set N1 = >F*−DiQi>F , N2 = >F*−Di+1Qi>F .
(ii) If (N1 −N2)E e, go to (3).

(3) D=Di+1, Q=Qi .

Output: A diagonal matrix D and an orthonormal matrix Q which approximate the
solution of equation (11).

It follows from equations (13) and (21) that >F*−DiQi>F is a monotonic
non-increasing function of an iteration index i. Algorithm 2 thus necessarily converges.
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3. GLOBAL OPTIMIZATION FOR EIGENVALUES

Using the method described in section 2, we obtain a matrix F=DQ, which satisfies
the physical realisability criteria for M while minimizing >F*−DQ>F . In this section we
will use this result to obtain a physically realizable K which satisfies equation (3) while
minimizing >L*−L>.

The physical realizability criteria for the connectivity of K, as described in equation (5),
arise from the requirement that the stiffness of all the springs in mass–spring systems must
be non-negative. Thus, if we ensure that all the springs have non-negative stiffness, then
we necessarily satisfy the conditions of (5).

The stiffness matrix K may be written in the following form:

K= s
n−1

p=0

s
n

q= p+1

spqBpq , (22)

where spq is the stiffness of the spring connecting mass p to mass q, sop represents the
stiffness of the spring which connects mass p to the ground, and Bpq is the matrix describing
the spring connection between mass p and mass q:

Bpq =[bij ]= 8bpp = bqq =1,
bpq = bqp =−1
bij =0

(p$ q),
elsewhere.

(23)

Substituting equation (22) into equation (3), we obtain

L= s
n−1

p=0

s
n

q= p+1

spq(FTBpqF). (24)

Each of the ijth elements of L is thus given by

lij = s
n−1

p=0

s
n

q= p+1

spq(fT
i Bpqfj). (25)

Let N= 1
2(n

2 + n) and construct the vectors

y=(y1, y2, y3, . . . , yN)T = (l11, l12, l13, . . . , l1n , l22, l23, . . . , l2n , l33, . . . , lnn)T (26)

and

x=(x1, x2, x3, . . . , xN)T = (s01, s12, s13, . . . , s1n , s02, s23, . . . , s2n , s03, . . . , snn)T. (27)

Denote

F=[fij ]= 1yi/1xj (i, j=1, 2, . . . , N) (28)

then all the elements of F can be evaluated using equation (25). Equation (24) can be
written in a vector form:

Fx= y. (29)

In order to satisfy the physical realizability criteria, we require all of the elements of x to
be non-negative. Setting L=L* we may determine the vector y and solve the following
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non-negative least squares problem:

min
x

>Fx− y>2, subject to xe 0. (30)

An algorithm for the solution of this problem is given in reference [9, p. 161]. (The standard
MATLAB function nnls solves this problem). Thus the stiffnesses spq can be obtained from
the solution x of equation (30), via equation (27), which in turn determines matrix K by
equation (22).

The above process gives an optimal solution to the eigenvalue matrix optimization
problem, because it is the best positive solution in a least square sense. We note that in
order to obtain a solution for the n-degree-of-freedom system, we need to solve an
augmented system (30) of dimension N. This is a computational barrier, and an alternative
approach is presented in the next section.

4. LOCAL OPTIMIZATION FOR EIGENVALUES

Alternatively, the stiffness matrix K may be obtained by a local optimization procedure.
Setting L=L* and multiplying both sides of equation (3) by F−1, we have

FTK=L*F−1. (31)

Denote

A=L*F−1 (32)

and partition A and K as follows:

A=[a1=a2=a3= . . . . =an ], (33)

K=[k1=k2=k3= . . . . . =kn ]. (34)

Then, from equation (31), each column of A is given by

FTkj = aj (j=1, . . . , n). (35)

We now show how to solve equation (35) column by column sequentially. The stiffness
matrix K for a general mass–spring system of order n has the following form

k11 −k12 −k13 −k14 · · · −k1n

−k21 k22 −k23 −k24 · · · −k2n

−k31 −k32 k33 −k34 · · · −k3n

G
G

G

G

G

K

k

G
G

G

G

G

L

l

K=
−k41 −k42 −k43 k44 · · · −k4n

(36)

···
···

···
···

···
···

−kn1 −kn2 −kn3 −kn4 · · · knn

and physical realizability requires that

(a) kij = kji e 0, for all 1E i, jE n,

(b) kjj − s
n

i=1

i$ j

kji e 0 (j=1, 2, . . . , n). (37)
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The physical parameters appearing in the first column of K can be approximated by solving

min
k1

>FTk1 − a1>, subject to G(1)k1 e 0, (38)

where

1 1 1 1 · · · 1

0 −1 0 0 · · · 0

0 0 −1 0 · · · 0
G
G

G

G

G

K

k

G
G

G

G

G

L

l

G(1) = 0 0 0 −1 · · · 0
, G(1)$Rn× n. (39)

···
···

···
···

···
···

0 0 0 0 · · · −1

Then, setting

z1 =G(1)k1 and E(1) =FTG−1
(1) , (40, 41)

we find that equation (38) can be transformed to the standard non-negative least squares
form:

min
z1

>E(1)z1 − a1>, subject to z1 e 0. (42)

The solution z1 of equation (42) then determines the physical stiffnesses in k1, as shown:

k1 =G−1
(1) z1. (43)

In a similar manner, the physical parameters appearing in kj, the jth column of K, can
be approximated. By the symmetry of K, the first j−1 elements in the jth step have already
been determined in the previous steps. Hence, denoting

k
 j =$−k1j , . . . , −kj−1j , s
j−1

i=1

kij , 0, 0, . . . . , 0%
T

, (44)

k�j =[0, . . . , 0, k�jj , −kj+1j , . . . . , −knj ]T, (45)

we may write

kj = k
 j + k�j , (46)

where k
 j is known and k�j is to be determined. Substituting equation (46) into equation (35)
gives

FTk
 j +FTk�j = aj . (47)

Let F be partitioned in the form

F=$ C

F(j)%, F(j)$R(n− j+1)× n. (48)

Define

a*j = aj −FTk
 j , (49)
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and by truncating the zero elements of the vector k�j in equation (45), set

k*j =[k�jj , −kj+1j , . . . , −knj ]. (50)

Then a non-negative k*j which approximates the solution of equation (47) in least square
sense can be obtained by solving

min
k*j

>FT
(j)k*j − a*j >, subject to G(j)k*j e 0, (51)

where

1 1 1 · · · 1

0 −1 0 · · · 0

G
G

G

G

G

K

k

G
G

G

G

G

L

l

G(j) = 0 0 −1 · · · 0 , G(j)$R(n− j+1)× (n− j+1). (52)
··· ··· ··· ··· ···
0 0 0 · · · −1

Denote

zj =G(j)k*j and E(j) =FT
(j)G

−1
(j) . (53, 54)

Then the standard non-negative least square form of equation (51) is given by

min
zj

>E(j)zj − a*j >, subject to zj e 0. (55)

Solving equation (55) for zj , then k*j can be obtained from

k*j =G−1
(j) zj . (56)

This determines the unknown stiffnesses in the jth column of K. Applying this process for
j=2, . . . , n evaluates the complete matrix K in a physically realizable form. The following
algorithm summarizes the above process.

Algorithm 3: Approximate solution of Problem 3

Input: A modal matrix F (as obtained in section 2), and a desired spectral matrix L*.
Algorithm: (1) Calculate A using equation (32) and partition A as in equation (33). This

determines the vectors aj , j=1, 2, · · · , n.
(2) Construct the matrix G(1) as in equation (39).
(3) Determine the matrix E(1) using equation (41).
(4) Determine the vector z1 by solving the non-negative least square problem

(42).
(5) Obtain k1 from equation (43). This determines the first row and column

of K=[kij ].
(6) For j=2, 3, . . . , n:

(a) Set the vector k
 j using equation (44).
(b) Obtain F(j) by partitioning F as in equation (48).
(c) Determine a*j from equation (49).
(d) Construct G(j) as in equation (52) and calculate E(j) by equation (54).
(e) Determine zj by solving the non-negative least square problem (55).
(f) Calculate k*j from equation (56).
(g) Construct vector k�j by augmenting k*j with zero elements as shown in

equations (45) and (50).
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(h) Obtain kj from equation (46). This determines the jth row and column
of K, without destroying the symmetry of its first j−1 rows and
columns.

Output: A physically realizable stiffness matrix K which approximates the solution of
Problem 3 in the local optimization sense.

The computational expense of this process is approximately equal to solving n times a
non-negative least square problem of dimensions n, (n−1), . . . , 1. This is more efficient
than solving an augmented system of dimension N.

5. NUMERICAL EXAMPLE

The local optimization solution obtained by Algorithm 3 is not the optimal solution in
the global sense, such as described in section 3. It is shown in this section, by means of
a numerical example, that the quality of solution is not greatly affected.

Suppose that the desired dynamic properties, L* and F*, for a five-degree-of-freedom
mass–spring system are

L*=diag(50, 100, 200, 400, 800)

and

0·1 −0·1 0·2 −0·4 0·1

0·1 0·1 0·2 0·1 0·3

G
G

G

G

G

K

k

G
G

G

G

G

L

l

F*= 0·1 −0·1 0·3 0·2 −0·4 .

0·1 −0·3 −0·1 −0·1 −0·1

0·3 0·2 −0·1 0·1 0·1

We wish to determine physically realizable M and K which have dynamic characteristics
as close as possible to the above data.

We note that there is no exact solution for these data since, by equations (6) and (7),

6·6406 −4·5515 1·0830 −4·7646 2·7310

−4·5515 13·5005 −0·3195 8·6019 −4·9737

G
G

G

G

G

K

k

G
G

G

G

G

L

l

M=F*−TF*−1 = 1·0830 −0·3195 3·5646 −1·1215 1·0213

−4·7646 8·6019 −1·1215 14·5886 −1·5877

2·7310 −4·9737 1·0213 −1·5877 8·9672

and

2216·1 −2100·0 230·0 −1446·8 476·9

−2100·0 6358·5 −1·6181 2763·1 −1762·7

G
G

G

G

G

K

k

G
G

G

G

G

L

l

K=F*−TL*F*−1 = 230·0 −1618·1 1559·2 −915·4 352·6

−1446·8 2763·1 −915·4 2324·0 −699·3

476·9 −1762·7 352·6 −699·3 945·7

which consists of a non-physically realizable solution. We now show how to determine an
optimal solution.
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Applying Algorithm 2, we obtain a diagonal matrix D and an orthonormal matrix Q,
such that F=DQ is given by

0·1232 −0·0333 0·2107 −0·3988 0·0414

0·0578 −0·0363 0·1922 0·1503 0·2680

G
G

G

G

G

K

k

G
G

G

G

G

L

l

F= 0·1337 −0·0707 0·3292 0·1820 −0·3767

0·1186 −0·2856 −0·1045 0·0061 0·0073

0·3233 0·1725 −0·1021 0·0324 0·0088

and >F*−F>F is minimized.
Substituting F in equations (6) and (7), we obtain

M'=diag(4·5152, 7·3516, 3·2650, 9·3757, 6·8583)

and

1523·9 −216·2 −392·0 −146·0 −240·6

−216·2 4009·4 −1356·4 −48·7 10·5

G
G

G

G

G

K

k

G
G

G

G

G

L

l

K'= −392·0 −1356·4 1597·1 −178·5 −135·7 .

−146·0 −48·7 −178·5 976·0 −47·9

−240·9 10·5 −135·7 −47·9 506·5

The mass matrix M' is now physically realizable, whereas the stiffness matrix K' is not
realizable. Therefore, setting L=L* and applying the global optimization procedure
described in section 3, we obtain the following realizable stiffness matrix:

1512·0 −227·2 −337·7 −144·3 −245·4

−227·2 4012·4 −1277·9 −41·7 0

K0= −337·7 −1277·9 1690·1 −37·6 −36·9 .G
G

G

G

G

K

k

G
G

G

G

G

L

l
−144·3 −41·7 −37·6 939·8 −69·1

−245·4 0 −36·9 −69·1 454·2

Setting M=M' and K=K0, we have a realizable mass–spring system with the following
modal data:

L'=diag(52·8, 101·2, 214·3, 401·3, 795·2),

0·0982 −0·0265 0·2488 −0·3848 0·0335

0·0267 −0·0165 0·1995 0·1600 0·2639

G
G

G

G

G

K

k

G
G

G

G

G

L

l

F'= 0·0553 −0·0273 0·3379 0·2010 −0·3846 .

0·0939 −0·3087 −0·0488 0·0137 0·0002

0·3538 0·1203 −0·0691 0·0375 0·0012

This compares reasonably well with the desired properties L* and F*.
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This solution is computationally expensive. Applying Algorithm 3 to the above example,
we obtain a physically realizable stiffness matrix

1523·9 −216·2 −392·0 −146·0 −240·6

−216·2 4009·3 −1356·4 −48·7 0

G
G

G

G

G

K

k

G
G

G

G

G

L

l

K1= −392·0 −1356·4 1748·4 0 0 .

−146·0 −48·7 0 976·0 −47·9

−240·6 0 0 −47·9 506·5

With M=M' and K=K1, the modal data of the system are

L0=diag(62·6, 104·0, 200·5, 407·6, 821·7),

0·0985 −0·0314 0·2479 −0·3838 0·0454

0·0251 −0·0174 0·2013 0·1683 0·2574

G
G

G

G

G

K

k

G
G

G

G

G

L

l

F0= 0·0471 −0·0255 0·3384 0·1863 −0·3927 .

0·0841 −0·3116 −0·0474 0·0161 −0·0028

0·3578 0·1087 −0·0661 0·0400 −0·0021

We note that the global optimal solution is slightly better than the local one. However,
they both lead to essentially similar systems. In Table 1 are shown the cosines of the angles
between the desired mode shapes and the modes of the physical systems which have been
obtained. Let u be the angle between two eigenvectors. Then cos u=1 indicates identical
eigenvectors.

We sought mass-normalized eigenvectors: hence the amplitude ratio between the desired
mode shapes and their approximation is also of interest. These amplitude ratios are given
in Table 2. The results in Tables 1 and 2 present a good agreement between the desired
mode shapes and the modes obtained.

T 1

Cosines of angles between the desired mode shapes and their approximations

Mode number, j
ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

1 2 3 4 5

Cos (f*j , fj) 0·9885 0·9210 0·9988 0·9586 0·9580
Cos (f*j , f'j ) 0·9648 0·9015 0·9852 0·9541 0·9558
Cos (f*j , f0j ) 0·9587 0·8948 0·9845 0·9506 0·9571

T 2

Amplitude ratios between the desired mode shapes and their approximations

Mode number, j
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

1 2 3 4 5

>fj>/>f*j > 1·0918 0·8617 1·0541 0·9688 0·8773
>f'j >/>f*j > 1·0649 0·8346 1·0835 0·9683 0·8838
>f0j >/>f*j > 1·0657 0·8323 1·0835 0·9605 0·8915
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6. CONCLUSIONS

The problem of constructing a mass–spring system with prescribed eigenvalues and
mode shapes has been addressed. This is a non-linear approximation problem, since the
number of constraints, the eigendata, is larger than the number of free parameters, the
number of masses and springs in the system.

It is shown that the problem of determining the mass and stiffness matrices can be solved
separately. First, an optimal set of mode shapes associated with a physically realizable
mass matrix is obtained. This is done by a convergent iterative algorithm. Then a physically
realizable stiffness matrix is determined using the optimal mode shapes obtained in the
previous stage.

Two methods of obtaining a physically realizable stiffness matrix have been suggested.
One method determines a global optimal solution in a least square sense. This method
involves non-linear optimization of large matrices of order N for a problem with n degrees
of freedom. The other method breaks the problem into n sub-problems of small
dimensions, and determines a local optimal solution for each sub-problem. The result is
a computationally economical method of solution. It is shown through a numerical
example that both methods lead to similar solutions.

The results presented in this paper may be applied in designing physically realizable
systems with prescribed spectral constrains, and in identifying realizable systems from
modal test data.
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