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Skew fibre reinforced composite laminates are important structural elements in modern
engineering structures, particularly in the aerospace industry. The natural frequencies of
these skew laminates are of primary significance to structural designers. As far as the
author’s knowledge is concerned, the references on this topic are very limited. In this paper
a B-spline Rayleigh—Ritz method (RRM) is presented for free vibration analysis of thin
skew fibre reinforced composite laminates which may have arbitrary lay-ups, admitting the
possibility of coupling between in-plane and out-of-plane behaviour and general
anisotropy. Various numerical applications are presented, and the method is shown to be
accurate and efficient.
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1. INTRODUCTION

Skew plates and laminates are structural elements of practical importance in applications
such as building floors, bridge decks, ship superstructures and aerospace vehicles. To have
an efficient and reliable design, it is essential to employ an accurate analysis method to
predict the static, stability and dynamic behaviour of such structural elements. This paper
is concerned with the free vibration analysis of thin skew isotropic plates and generally
anisotropic laminates composed of fibre reinforced composite materials by using the
B-spline Rayleigh—Ritz method (RRM).

A large number of references exist on free vibration of thin skew isotropic and
orthotropic plates. An extensive literature survey has been conducted by Liew and Wang
[1], and extra references can be found in Leissa’s excellent reviews [2—4]. Among many
others, a few examples are given here. Durvasula [5] presented the natural frequencies of
thin skew isotropic plates having clamped edges using the Galerkin method with
conventional beam mode functions. By extending this work, Nair and Durvasula studied
the free vibration of thin skew isotropic [6] and orthotropic [7] plates having various
boundary conditions using RRM with conventional beam mode functions: i.e., the
analytical RRM. In reference [8], Mizusawa et al. presented natural frequencies of skew
isotropic plates by using B-spline RRM. Cheung et al. [9] developed a B-spline finite strip
method (FSM) for free vibration analysis of general plates with skewed shape as a special
case. An integral method was used to obtain the natural frequencies of skew orthotropic
plates in reference [10]. Recently, Liew and Lam [11] applied the pb-2 RRM for vibration
analysis of skew isotropic plates. McGee et al. [12] studied the free vibration of cantilevered
skew isotropic plates with corner stress singularities, using the algebraic polynomial RRM.
Bardell [13] used a hierarchial finite element method (FEM) to determine the natural
frequencies and modes of skew isotropic plates.
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Fibre reinforced composite materials are becoming increasingly important in many
engineering applications, especially in the aerospace industry. Skew laminates made of
these materials could be primary structural elements. However, in the open literature
research works on the free vibration analysis of these skew laminates are very limited.
Krishnan and Deshpande [14] carried out free vibration analysis of skew isotropic plates,
single layered laminas and three-layered symmetric cross-ply laminates using FEM based
on both classical plate theory (CPT) and Reissner [15]-Mindlin [16] plate theory. Kapania
and Singhvi [17] developed a Chebyshev polynomials RRM based on CPT for free
vibration analysis of tapered skew composite laminates. Many useful results were reported.
However, it is noted that all of their reported results were concerned with canilevered
laminates. It is worth noting that, in reference [18], Kamal and Durvasula studied stability
problems by considering free vibrations of simply supported skew composite laminates
that are subjected to both direct and shear in-plane forces using a Chebyshev polynomials
RRM. As far as the author’s knowledge is concerned, it seems that there is no systematic
analysis in the open literature for free vibration of skew generally anisotropic composite
laminates which may have arbitrary lay-ups and fibre orientations and various boundary
conditions. Exact solutions for these skew laminates are very difficult, if not impossible,
to obtain. Methods of an approximate nature may be the only choice for general solutions.

B-spline functions have attractive properties for use in structural analysis. Their
piecewise form, high order of continuity and locally non-zero nature offer the prospect of
both efficiency and versatility. In a number of research works [19-25], the author and his
colleague have considered the use of B-splin RRM analyses of the free vibration of
Timoshenko [26] beams and Reissner—Mindlin rectangular plates and laminates. It has
been proved that the B-spline RRM is an accurate and efficient numerical analyzing tool
in these applications. In this paper, the B-spline RRM is extended to embrace skew
geometry. However, the laminates are assumed to have very thin geometry and,
consequently, the CPT is adopted, which ignores the through-thickness shear effects.
Moreover, the effects of through-thickness rotary inertia are also excluded.

In next section, the definition of the problem and the method of analysis are described,
and the numerical applications are given in section 3; these include skew isotropic plates
and skew generally anisotropic composite laminates. Conclusions are given in section 4.

2. METHOD OF ANALYSIS

2.1. PROBLEM DEFINITION

A skew laminate with its orthogonal and oblique co-ordinate systems, i.e., the oxy and
oén systems respectively, is shown in Figure 1. The length of the skewed edge is 4 and
the length of the other edge is B. The laminate is of uniform thickness /# and, in general,
is made up of a number of layers, each consisting of unidirectional fibre reinforced
composite material. The lay-up of layers is arbitrary, admitting the possibility of coupling
between in-plane and out-of-plane behaviour and of anisotropy. The skew angle is «,
measured from the x-axis to the £-axis, and the fibre angle of the /th layer counted from
the surface z = — /2 is 6, measured from the x-axis to the fibre direction. They are defined
positive when measured clockwise; o—x—y—z forms a right-hand co-ordinate system. The
three fundamental displacement quantities are the three mid-surface translational
displacements u, v and w along the x-, y- and z- axes, respectively. It should be noted that
it becomes necessary that the two in-plane mid-surface translational displacements u
and v are included in the analysis due to the coupling between in-plane and out-of-plane



THIN SKEW FIBRE REINFORCED LAMINATES 337
behaviour in laminates with non-symmetric lay-ups. Of course, in the case of laminates

with symmetric lay-ups, only the out-of-plane displacement w is considered.

2.2. STRAIN AND KINETIC ENERGIES

During vibration, the three translational displacements i, © and W at a general point in
the laminate are assumed to have the forms

a(x,y,z,t) =u(x,y, 1) — zw.(x, y, 1), o(x,y,z, 1) =v(x,y, t) — zw,(x, y, ),
wix, y,z, 1) = w(x, y, 1), M
where ¢ is the time dimension. The strains are
& = Uy — ZW,x, & =0V, — IW,,, Yoo = Uy + U — 2ZW 5. 2)

The material properties of each lamina are assumed to be orthotropic. That is, the
stress—strain relationships or constitutive equations are of the form

o1 Qn le 0 En
0y = Q21 sz _0 €22 5, (3)
T2 0 0 Q66 Y12

where the subscripts 1 and 2 represent the principal axes of the material and the O, ;
(i,j=1, 2, 6) are the plane-stress reduced stiffness coefficients and can be expressed in
engineering notation, as

Ql] = EL/(I — VI_TVTL), sz = ET/(l — VLTVTL)a
le = vTLEL/(l - VLTVTL), Qzl = le, st = GLT, (4)

where L and T represent the directions parallel with and perpendicular to the fibre
direction, respectively. By performing a proper co-ordinate transforamtion, the
stress—strain relationships of a single lamina in the oxyz co-ordinate system can be obtained
as

Oy Ql 1 le Q 16 || €x
0, > = QZ] sz Qza &y >y (5)
Ty Q 16 Qze Qes Vxy

Figure 1. The geometry of a skew laminate.
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where the Q; (i,j =1, 2, 6) are
Q= U, + U,cos (20) + Us cos (40), 0x»n = U, — Uy cos (20) + Us; cos (40),
Q1= U, — Uscos (40), Qs = Us — U; cos (40),

06 = —3U, sin (20) — Us sin (40), 0 = —1U, sin (20) + Us sin (40). (6)

Here
Ui =330+ 30» + 201 + 40c), U = 3(0n — 20x),
Us = (00 + 0n — 2012 — 40«), Us =3(0n + O0n + 601 — 40«),
Us =35(0n + 0n — 2012 + 40«). (7

From equation (5) it is noted that there are interactions between the normal stresses o,
and o, and the shear strain y,,. This feature makes the laminate anisotropic, although the
material properties of each lamina are orthotropic.

By performing appropriate through-thickness integration upon equation (5), the
constitutive equations for an arbitrary laminate are obtained as

r Ni - Ay = roUx
N, Ay Axn v,
N,y Aig An A Uy Uy
M,| ~ | Bi Bn B Dy — W ®
M, B, Bn By Dnp Dy — W,y
L M., | B B Bs D Dy De| | —2w.)

Here N,, N, and N,, are the membrane direct and shearing forces per unit length; M., M,
and M,, are the bending and twisting moments per unit length. The laminate stiffness
coefficients in equations (8) are defined as

h2

(dy, By, Dy) = J 0;(1, z, 22) dz, i,j=1,2,6. )

—h2

Equations (8) can be rewritten in a more compact form as

ot = |:‘]§ g}* (10)

The quantities 6* and €* are column matrices of generalized stress resultants and of strains,
the definitions of which will be clear on comparing equations (8) and (10). Similarly, the
definitions of the submatrices appearing in equation (10) will be clear on comparing with
equation (8). It should be noted that the constitutive equations (10) or (8) are very general
indeed. The existence of the B matrix is a major difference between a laminate and a
single-layer plate, where the symmetry about the mid-surface leads the B to be zero.
Consequently, the analysis would be more expensive where B exists, as the two in-plane
mid-surface displacements # and v are involved. Furthermore, there are three types of
anisotropy which are possible following the terms resulting from Qs and Qs which link
normal stresses ¢, and o, to in-plane shear strain y,, respectively. The terms A;s and Az
form the stretching—shearing anisotropy. The terms By and B, form the stretching—twist-
ing anisotropy, while the bending—twisting anisotropy occurs due to the terms D;s and Da.
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These three types of anisotropy make laminate problems rather complicated. Not only do
they prevent any attempt to obtain closed form solutions, but they also make some
approximate solution methods inappropriate. For instance, the analytical RRM based on
beam mode functions will give somewhat over-stiff solutions [20, 21] for some rectangular
laminates due to these anisotropies.

During free vibration the fundamental quantities vary harmonically with time, with
circular frequency p. Let u, v and w now be regarded as amplitudes of the motion. Then
the maximum strain energy of the laminate is

Upae = 4 J o*Te* ddy = | J e*T[g g}* a4, (an
Ao Ay

or, in a full form,
U=1 J {All(u,x)z + An(v,) + A, + v, ) + 240hu,0,
Ao

+ 245u (uy + vy) + 2450, (U, + vy)

+ 2Biu W — 2Bnv,w,, — 4Bs(u, + 0. )W + 2Bin(uw,, + 0,W 1)

— 2BiRuw.y + (U, + v )W ] — 2By[20,w ., + (U, + v )W, ]

+ Duw’, + Dpw?, + 4D’ + 2D 0w oWy + 4D1gW Wy

+ 4Dsw W } dAo, (12)

where A, is the mid-surface area.
The maximum kinetic energy is

Tux = 3p? j ph(? + v* + w?) dA4o, (13)
Ay

where p is the material density, which is assumed here to be uniform through the volume
of the laminate.

w

0 v y

2z

Figure 2. Displacement components at a skew edge.
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The transformation between the orthogonal co-ordinate x,y and the oblique
co-ordinates &, 7 is

x = (cos a)¢&, y=(sin)é + 7. (14)

Suppose that f(x, y) is a function defined in the region of the skew geometry. The
relationships between the first and the second derivatives of f(x, y) for the two co-ordinate
systems are

So=L(f),  fo=LJ),
fo=LXN,  fu=L) f.=LL({), (15)
where
Lo=a 0/0¢ —a,0)dn,  L,=0/on (16)

are linear differential operators and

a, = l/cos a, a, = tana. (17
TABLE 1
Values of Q* for SSSS skew isotropic plates
Modes
r A
o (degrees) ¢ 1 2 3 4 5 6 7 8

0 1 2:0003 5-0146 5-0146  8-0213 14-1444 14-1444 16:6544 166544
2 2:0000 5-0145 50145 80213 10-0406 10-0406 13-0424 13-0424

3 2:0000 5-0002 @ 5-0002  8-0003 10-1831 10-1831 13-1602 13-1602

4 2:0000 5-0002 50002 80003 10-0036 10-0036 13-0031 13-0031

5 2:0000 5-0000 5-0000  8-0000 10-0036 10-0036 13-0031 13-0031

6  2:0000 5-0000  5-0000  8-0000 10-0001 10-0001 13-0005 13-0005

7 2:0000 5-0000  5-0000 8§-0000 10-0001 10-0001 13-0001 13-0001

8 2:0000 5-0000  5-0000  8-:0000 10-0000 10-0000 13-0000 13-0000

[27] 2-0000 5-0000  5-0000  7-9999  9:9999 99999 12-9998 12:9998

30 1 2:5529 54086  7-4892  9-4004 18-6155 18:7983 19-7868 26-5319
2 2:5447 53574 7-3884  8-6802 12:9543 134007 14-4667 19-5583

3 25392 5-3352  7-3131 85548 12-8342 12-8551 14-5982 18-4402

4 2-5335 53339 72989  8-5080 12:5000 12-5363 14-3006 17-6653

S 25331 5-3334  7-2910 85000 12-4606 12-4646 14-2837 17-2960

6  2:5315 5-3333  7-2867 84980 12-4473 12-4480 14-2683 17-1805

7 25302 5-3333  7-2837 84972 12-4450 12-4451 142620 17-1533

8 2:5293 5-3333  7-2815 84967 12-4445 12:4446 142579 17-1481

[27] 2-5294 53333 7-2821  §-4966 124442 12-4442 14-2850 17-1471

45 3-6980 7-0662 11-7664 12-8059 26-5788 28-2498 30-8390 42-8119

3:6567 6-8078 10-9397 11-4095 17-3526 18-8943 22-3173 30-2607
3-6321 67318 104183 11-1543 15-5982 18-1535 21-7197 24:9748
3-6145 6:7189 10-2429 11-0702 14-6754 173770 20-1706 23-1098
3:6020 67159 10-1940 11-0254 143801 17-1574 19-2945 22-5801
3:5927 6:7155 10-1817 11-0011 14-2909 17-0780 18-9275 22-:3932
3:-5856  6:7154 10-1779 10-9848 14-2713 17-0575 18-8128 22:3248
3-5800 67154 10-1759 10-9724 142675 17-0530 18-:7841 22-2957
7] 3-5800 6-7153 10-1756 10-9754 142662 17-0518 18-7806 22:2955

0NN B W~

[\

[
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2.3. B-SPLINE DISPLACEMENT FIELD AND BOUNDARY CONDITIONS

The displacement field is assumed in the oblique co-ordinate system ofnz and is of the
form

u(, n) = 0:@p)d, v(&, 1) = 0. ®Px)dz, w(&, n) = (0, ®P:)ds, (18)

where 0, are the modified B-spline basis functions [20-22] in the é-direction. They contain
g: + k B-spline functions, where ¢g: and k are the number of spline sections in the
&-direction and the polynomial order of B-spline functions, respectively. The B, are
similarly defined in the n-direction. The number of spline sections in the x-direction is g, .
The d; (i =1, 2, 3) are column matrices of generalized displacement parameters.

In the case of rectangular laminates, this displacement field can satisfy any prescribed
geometric boundary conditions in a straightforward manner [20-22]. When skew laminates
are considered, however, an explanation of the introduction of boundary conditions is
required.

The boundary conditions at the two non-skew edges, i.e., £ =0, 4, will not be
considered, since they are identical to those in the case of rectangular laminates. Taking
one of the skew edges, i.e., the edge n =0, as an example, one defines the boundary
conditions as follows.

TABLE 2
Values of Q* for CCCC isotropic plates
Modes

r A A}

o (degrees) ¢ 1 2 3 4 5 6 7 8

0 1 3-6476  7-5278  7-5278 11-0026 — — — —
2 3-6467  7-5171  7-5171 11-0026 13-5603 13-6317 16-8413 16-8413
3 3-6465 74375 74375 109664 14-0397 14-1198 17-2124 17-2124
4 3:6462 74395  7-4395 10-9696 13:3362 13-3998 16-7244 16-7244
5 3-6461  7-4367 74367 109654 13-3583 13-4224 16-7388 16-7388
6 3-6461 74364 7-4364 10-9469 13-3354 13-3988 167211 16-7211
7 3-6461  7-4364 74364 109647 13-3326 13-3959 16-7188 16-7188
8 3-6461 74364 7-4364 109647 13-3321 13-3954 167183 16:7183
[27] 3-6460  7-4362 7-4362 10-9644 13-3315 13-3947 167174 167174

30 1 47555 9-0261 11-8021 15-9440 — — — —
2 4-6816 84857 11-1913 13-1824 18-6042 19-8623 20-5937 27-5626
3 46734 82844 10-7458 12-:3717 18-3054 18-4664 20-1339 25-7796
4 4-6710 82742 10-6877 12-1370 169809 17-1003 18-9646 23-4932
5 4:6703 82686 10-6627 12:0959 16-8250 16-8466 189401 22-5994
6 4-6700 82680 10-6578 12-0852 167394 167688 18-8808 22-2636
7 4:6699 82679 10-6567 12:0834 16-7210 16-7539 18-8695 22-1415
8 4-6699 82679 10-6561 12-0830 167176 16:7511 18-:8665 22-1139
[27] 46698 82677 10-6554 12-0825 167159 16-7496 18-8644 22-1064

45 7-1248 133435 19-0269 25-6419 — — — —

6:7736  11-7279 17-6072 19-0573 28-6706 31-4509 31-4745 45-3370
6:6924 11-0166 16-4948 16-:5019 25-7108 27-1897 31-:2769 40-0063
6:6663 10-8518 15-4997 16-1855 21-9828 24-4788 28-5719 33-3027
6-:6583 10-8017 15-1544 16:0269 20-6643 23-7847 27-1412 30-4010
6-:6550 10-7923 15-:0560 15-9698 20-1369 23-4209 25-9273 29-5868
6:6534 10-7907 15-0344 159493 19-9841 23-:2990 25-3947 29-3251
6:6525 10-7903 15:0297 15-9413 19-9484 23-2646 25-2288 29-2399
] 6:6519 10-7898 150276 159342 19-9365 23-2526 25-1799 29-2107

Nowwaoauhswi—

—
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Clamped edge:
u(x’y)|'7:0:u(éao):0> U(xay)|n:0=17(f,0)=0,
wx, Wy—o=w( 0 =0,  wu(x,y)l-0o=0. (19)

The w,(x, y) in equations (19) is the normal rotation of the edge, as shown in Figure 2,
and it can be expressed as

W, = —w,sina+ w, cos a. (20)
By using equations (15) and noting that w; = 0 at a clamped edge, it follows that
W, = —COS 0W,. 21
Thus, the fourth condition of equations (19) is of the form
Wy (X, P) =0 =w, (£, 0) = 0. (22)

Therefore, it can be seen that the boundary conditions at a clamped edge are the same
as those in the case of a rectangular laminate.
Simply supported edge: the standard simply supported boundary conditions are

uf(xry)|ﬂ:0:u1(éa 0):07 W(x’y)|’1:0:W(£’O):0’ (23)

TABLE 3

Values of Q for SSSS skew composite laminates with five symmetric cross-ply layers

Modes

r A

o (degrees) ¢ 1 2 3 4 5 6 7 8
0 1 19146 39878 66839  7-6872 11:8666 13-7337 21-8628 222937
2 19141 39876 66838 76872 81878 10-6710 14-8530 154489
3 19141 39747 66571  7-6568 83152 10-7545 14-3427 15-0972
4 19141 39747 66571  7-6568 81543 10-6277 14-7886 14:9102
5 19141 39745 66567 7-6564 81543 106275 14-2062 14-7886
6 19141 39745 6:6567 7-6564 81515 10-6253 14-2032 14-7833
7 19141 39745 66567 7-6564 81511 106250 14-1890 14-7825
8 19141 39745 6:6567 7-6564 81511 10-6249 14-1863 14-7824
30 1 28902 53923  9-7640 10-3213 17-0364 19-5677 29-9806 32-1387
2 28630 5-2710 89039  9-4955 12-7993 139755 20-4970 23-9885
3 2:8495 52152 86323  9-3381 12-5730 12-9342 18-8787 18-9566
4 28408 52027 85124  9-2937 122239 12-:3630 17-5677 18:6219
S 2:8348 51967 84897  9:2747 12-1561 12-1897 16:8036 17-6957
6 2:8306 51933  8-4848  9-2662 121260 12-1428 16-5615 17-5444
7 2:8273 5-1909 84839 92611 12-1142 12-1327 16-4944 17-4899
8 2:8248 51891 84836  9-2574 12-1070 12-1301 164804 17-4778
45 47699 8-:0037 15-6248 16-:3919 31:6570 329777 46-8190 57-4490

4-6558 7-4286 12:1928 15-6200 20-4852 22-2890 31-6316 39-1680
4-5981 7-2230 11-1073 15-0462 17-2223 20-9526 26:6890 31-0008
4-5582  7-1591 10-6656 14-6933 15-5780 19-5443 22-7040 28-2140
4-5300 7-1349 10-5103 14:3680 15-0393 18-7915 20-7278 253921
4-5086 7-1241 10-4655 14-1820 14-8730 18-2845 199600 23-9293
44920 7-1173 104544 14-1199 14-8104 18-0466 19-6897 23-1147
44786 7-1121 104512 14-1024 14-7797 17-9628 19-6031 22-7778

0NN B W —
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where u, is the tangential in-plane displacement at the skew edge n = 0, as shown in
Figure 2. By applying the rotational co-ordinate transformation, u, is related to u and v
as follows:

U, = u cos o + v sin a. (24)

Thus the standard simply supported boundary conditions can be expressed as
u(é, 0) = —tan av(é, 0), w(é, 0) = 0. (25)
Free edge: there are no geometric boundary conditions to be applied at a free edge.

2.4. EIGENVALUE EQUATIONS

By substituting the B-spline displacement field (18) into the energy expressions set out
in equations (12) and (13), and in conjunction with the linear differential operators given
in equations (15), one will obtain the total potential energy of the laminate in terms of
the generalized displacement parameters in the oy co-ordinate system. Then, applying
Hamilton’s principle results in the eigenvalue equations

(K — p>M)D = 0. (26)

In equation (26), K and M are the stiffness and consistent mass matrices of the laminate,
respectively. The details of these two matrices can be found in reference [21] and are not

TABLE 4
Values of Q for CCCC skew composite laminates with five symmetric cross-ply layers

Modes
r A A}
o (degrees) ¢ 1 2 3 4 5 6 7 8
0 1 42501 67822 10-6510 11-9967 — — — —
2 42379 67775 10-6508 11-:6639 119967 154283 20-6138 21-4343
3 42380 6:6917 10-4518 11-7846 12-1017 156377 18-9498 21-4810
4 42378  6:6940 10-4573 11-4408 117907 15-1501 20-1636 20-4420
5 42378 6:6916 104516 11-4617 117845 15-1619 18-:2039 20-2054
6 42378 66914 104512 11-4403 11-7840 15-1458 18:2812 20-1626
7 42378  6:6913 104511 11-4377 11-7839 151439 182033 20-1574
8 42378 66913 104511 11-4372 11-7839 15-1435 18-1899 20-1565
30 1 58645 96964 159796 19-8235 — — — —
2 56802 87374 14-4362 15-1005 19-3219 23-7651 29-3435 35-7310
3 56469 83932 13-1762 14-3817 18:4194 19-7706 26-2506 28-6349
4 56359 83438 12:5618 14-2274 17-3317 177180 25-0393 26-3018
5 56326 83287 124425 141550 17-0236 17-1104 22-8532 23-5547
6 56314 83257 12:4052 14-1342 16:8087 16-9973 22-0547 23-2169
7 56309 83249 12:3980 14-1281 16-7508 16-9675 21:7720 22-9948
8 56308 83246 12:3960 14-1260 16-7383 169593 21-6956 22-9389
45 9-5577 167280 269708 35-4504 — — — —

8:8742 139992 239234 247401 35-0525 41-8036 46-9419 63-7236
8:6360 12-6177 19-7874 229087 31-9659 32:3071 45-3810 47-3506
8:5288 12-1111 17-6437 222476 25-9239 28-8321 38-1970 43-8306
8:4855 11-:8960 16-7142 21-8372 23-1157 27-4796 32-:3324 37-6119
84677 11-8256 16-3268 21-6097 21:7530 26-5542 29-0313 35-1138
8:4594 11-8055 16:2000 21-1337 21-5508 25-9947 27-4378 33-2650
8:4550 117993 161667 20-9381 21-5054 25-6527 26-8443 32-0557

0NN AW~
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given here. p is the circular frequency (rad/s), and D is a column matrix of generalized
displacement parameters, which is defined as

D=J)a!. 27)

Before the introduction of any boundary conditions, the number of degrees of freedom
is 3(¢q: + k)(g, + k). After the boundary conditions are introduced, the eigenvalue equation
(26) can be solved in a number of ways to obtain the natural frequencies. In this paper,
the Sturm sequence method is used. Numerical applications are reported in the next
section.

3. NUMERICAL APPLICATIONS

Mainly, free vibrations of skew fibre reinforced composite laminates are considered in
this section. The laminates in sections 3.2-3.5 are selected in such a way that the coupling
between in-plane and out-of-plane behaviour either exists or is absent by choosing either
symmetric or anti-symmetric lay-ups. Furthermore, in either case the fibre orientations
may be either cross-ply or angle-ply in order to examine the effect of different material

TABLE 5

Values of Q for SSSS skew composite laminates with five symmetric angle-ply layers

Modes

r N

o (degrees) ¢ 1 2 3 4 5 6 7 8
0 1 24421 49955 62421  9-1048 14:3750 151158 16:4501 21-4692
2 2:4395 49943 62209  8-5360 104110 11-7325 13-2716 168514
3 24372 49874 61918  8:5286 10-4523 11-8345 13:0115 157619
4 2:4359 49867 6-1879 84917 10-2661 11-6641 12-8905 15-5529
5 24351 49865 61851  8-4882 10-2589 11-6584 12:8373 152642
6  2:4345 49865 6-1836 84872 10-2544 11-6507 12-8283 15-2303
7 24341 49865 61825  8-4871 10-2537 11-6480 12:8264 152194
8  2:4339 49865 6-1818 84870 10-2536 11-6464 12-8260 152173
30 1 26259 57161 69081 10-1011 16:4985 184204 19-0854 23-5530
2 26196 57029 68810  9-5366 12:1187 13-3410 14-9413 18-2857
3 26162 56928 68433  9-5219 12:1327 13:4909 14-5495 17-8724
4 26146 56918 68386  9-4828 11-9122 13-2510 14-3823 17-5595
5 26134 56911 68354  9-4791 11-9010 13-2457 14-3006 17-3807
6 2:6127 56907 6-8336  9-4778 11-8931 13-2389 14-2854 17-3509
7 26122 56904 68324  9-4775 11-8908 13-2367 14-2817 17-3407
8 2:6119 56902 6-:8316 94773 11-8900 13-2355 14-2809 17-3382
45 1 3-3851 7-0728 10-1771 12-:3219 24-9026 252309 27-5401 36-2550
2 33623 69520 99490 11-0927 17-4261 17-4556 19-8013 264198
3 33466 69096 97825 10-8407 16:3495 17-0378 19:9215 24-6479
4 33361 69047  9-7386 10-7462 157679 16-4088 19-4594 22-5241
5 33292 69027 97172 10-7284 155933 16-2344 19-4109 21-7005
6 33244 69016 97056 10-7236 155448 16-1678 19-3767 21-4178
7 33209 69008  9-6972 10-7218 155340 16-1499 19-3593 21-3245
8 33182 69002  9-6908 10-7206 15-5318 16-1447 19-3481 21-3005




THIN SKEW FIBRE REINFORCED LAMINATES 345

anisotropies on the present B-spline RRM. The material properties of each lamina are
identical and have the following values:

EL/ET = 400, GLT/ET = 06, GTT/ET = 05, Vir = 025 (28)

The thickness of each lamina is assumed to be the same, and the laminates are assumed
to have rhombic geometry, i.e., A = B, although the general case 4 # B can be studied
without any complications. Due to the lack of comparative solutions, all of the present
results are presented in a manner of convergence studies with the number of spline sections
q = q: = g, ranging from 1 to 8, and are given in a non-dimensional frequency parameter

defined as
Q = p(B/m’h)(p|Er)"”. (29)

Throughout these exercises, the first eight modes of vibration are considered and the
polynomial order k of B-spline functions is kept to be quintic: i.e., k = 5. The main
purposes of these exercises are twofold. One is to demonstrate the accuracy and efficiency
of the proposed B-spline RRM, and the other is to produce some results which may be
regarded as benchmark solutions for other academic research workers and design
engineers. The arrangement of the applications is as follows: skew isotropic plates, skew
composite laminates with five symmetric cross-ply layers, skew composite laminates with
five symmetric angle-ply layers, skew composite laminates with four anti-symmetric
cross-ply layers and skew composite laminates with four anti-symmetric angle-ply layers.

TABLE 6
Values of Q for CCCC skew composite laminates with five symmetric angle-ply layers

Modes
r A Al
o (degrees) ¢ 1 2 3 4 5 6 7 8
0 1 39220 7-3271  9-1978 13-2512 — — — —
2 39187 72047 87218 11-4655 14-2408 15-2966 17-5855 22-2031
339037 71509  8-4808 11-3483 14-1241 154777 16:7004 20-5827
4 39015 7-1498 84681 11-2257 13-3682 14-7940 16-2781 19-5579
5 39011 7-1473 84608 11-2193 13-3548 14-7818 16-1654 18-9452
6 39009 7-1466 84592 11:2130 133269 14-7501 16-1390 18-8660
7 39009 7-1464 84587 11-2116 13:3226 14-7443 161294 18-8235
8 39009 7-1464 84585 112112 133216 14-7425 16-1271 18-8145
30 1 45533 86805 10-3318 14-5308 — — — —
2 4-5525 85066 10-0826 132456 16-5739 17-8645 20-1048 23-9594
3 45449 83883  9-8937 13-0634 16:6707 18-3806 19-4134 23-4630
4 45434 83854  9-8894 12-8751 157844 17-5090 18:6724 22-4660
5 45432 83824  9-8826 12-8627 157420 17-5276 18-4177 22:0867
6 45431 83820  9-8814 12-8550 15-6987 17-4947 18-3623 21-9913
7 45431 83819  9-8812 128536 156919 17-4900 18-3435 21-9463
8 45431 83819  9-8810 12-8533 156906 17-4889 18-:3396 219364
45 1 64551 122232 161890 21-6989 — — — —
2 6-3272 11-3130 153676 17-6311 253428 27-3906 27-8825 37-6794
3 6:3130 10:9055 14-7236 16:2112 24-5490 24-8386 277741 35-0754
4 63084 10-8464 14-5905 156676 22-1952 22-8907 26:0900 31-6833
5 63064 10-8245 14-5212 155219 21-4677 22-4802 26:0121 29-2082
6 63055 10-8206 14-5019 15-4790 21-1713 22-2067 259137 28-2425
7 6:3050 10-8197 14-4967 154708 21-0829 22-1058 25-8920 27-8261
8 63048 10-8193 14-4949 15-4692 21-0620 22-0759 25-8849 27-6869
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In each category two types of boundary conditions, i.e., fully simply supported (SSSS) and
fully clamped (CCCC), and three skew angles, i.e., « = 0°, 30° and 45°, are considered.
Finally, free vibrations of cantilevered skew (CFFF) composite laminates with two
unsymmetric layers are studied in section 3.6, where details of the laminates are given. The
symbols C, S and F denote clamped, simply supported and free, respectively. The four
boundaries are counted from & = 0 and clockwise.

3.1. SKEW ISOTROPIC PLATES

Due to the lack of comparative results for skew composite laminates, two skew isotropic
plates, i.e., SSSS and CCCC plates, are considered first, so that comparisons can be made
with earlier published solutions. In this application only the out-of-plane displacement w
is considered in the displacement field (18), of course. The results are recorded in Tables 1
and 2 in a non-dimensional frequency parameter, defined as

Q* = p(B*/n*)(ph/D)"", (30)

where D = ER/[12(1 — v?)], in which E is Young’s modulus, and the Poisson ratio v is
taken to be 0-3. It is observed that the rates of convergence are very satisfactory for all
three skew angles, although the rates slow down with the increase of the skew angle. Very
close agreements are found between the present converged results and the comparative
solutions [27] which are obtained by using the pb-2 RRM based on Mindlin plate theory
for a very thin geometry, i.e., #/B = 0-001, in which the through-thickness shear effects

TABLE 7

Values of Q for SSSS skew composite laminates with four anti-symmetric cross-ply layers

Modes

r A A}

o (degrees) ¢ 1 2 3 4 5 6 7 8
0 1 17543 5-0284 50284 70435 16:0392 160392 169131 169131
2 17539 50283  5-0283  7-0435 109516 10-9516 121573 12-1573
3 17539 50095 50095  7-0161 11-1203 11-1203 12-3033 12-3033
4 17539 50093 50093 7-0159 10-9000 10-9000 12-1020 12-1020
5 17539 50091 50091  7-0155 10-8959 10-8959 12:0983 12-0983
6 17539 50090 5-0090 7-0154 10-8917 10-8917 12-0944 12-0944
7 17539 50090 50090 7-0154 10-8910 10-8910 12-:0937 12-0937
8 17539 50090 5-0090 7-0154 10-8908 10-8908 120936 12-:0936
30 1 24914 56131 75733  9-4631 18-3842 19-2028 22-2334 26-9083
2 24782 5-5457  7-4308  8-8265 12:9175 13-7425 15-5108 19-4891
3 24709 55187  7-3383 86625 129039 13-1883 155116 18-6438
4 24663 5-5168  7-3170 86191 12-5998 128275 151044 17-7920
5 24632 55162 73068 86095 12-5678 127532 150398 17-4779
6 24610 55160 73014  8-6063 125552 12-7340 15-0095 17-3639
7 24594 55158  7-2977 86047 12-5519 12:7302 149989 17-3303
8 24583 55158 72950  8-6036 12:5505 12-7294 14-9941 17-3204
45 1 3-8830 7-2788 12-:3950 13-3995 26-8856 27-4045 34-5946 45-0804
2 38349 7-0342 114218 119244 18-1674 18:6687 24:3343 31-6849
3 38050 69598 10-8954 11-5838 16:4201 179311 23-4889 26-2337
4 37835 69462 10-7151 114439 15-5178 17-0882 21-8346 24-3714
5 37680 69419 10-6645 11-3740 152268 16-7889 20-9280 23-4366
6 37567 69403 10-6511 11-3407 151351 16-6618 20-5678 22-7438
7 3-7482  6-9394 10-6468 11-3212 15-1124 16:6210 20-4524 22-4533
8 37415 69388 10-6445 11-3070 151070 16-6083 20-4228 22-3572
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virtually disappear. These close agreements serve to verify the present approach and to
establish the foundation for its application into skew composite laminates where no
comparative solutions are available.

3.2. SKEW COMPOSITE LAMINATES WITH FIVE SYMMETRIC CROSS-PLY LAYERS

The stacking sequence of these laminates is 0°/90°/0°/90°/0°. There is no coupling
between in-plane and out-of-plane behaviour, i.e., B = 0, due to the symmetric lay-ups and
hence only the out-of-plane displacement w in equation (18) is involved. Furthermore,
there is no bending—twisting anisotropy either, i.e., Dis = Dy = 0, due to the cross-ply
lay-ups. The results are presented in Tables 3 and 4 for SSSS and CCCC laminates
respectively. In both cases the manner of convergence is very satisfactory. Of course, with
the increase in skew angle, more spline sections are needed to obtain accurate solutions,
as expected.

3.3. SKEW COMPOSITE LAMINATES WITH FIVE SYMMETRIC ANGLE-PLY LAYERS

The stacking sequence of these laminates is 45°/45°/ —45°/ —45°/45°. Similarly, there is
no coupling between in-plane and out-of-plane behaviour due to the symmeric lay-ups in
these laminates, and only w in equation (18) needs consideration. However, due to the sym-
metric angle-ply lay-ups there exists bending—twisting anisotropy: i.e., Dis 7 0 and D # 0.
This anisotropy makes the conventional analytical RRM inappropriate, even in the case
of rectangular laminates [20, 21]. To test the present B-spline RRM, the same task as in

TABLE 8

Values of Q for CCCC skew composite laminates with four anti-symmetric cross-ply layers

Modes
r A Al
o (degrees) ¢ 1 2 3 4 5 6 7 8
0 1 3-8793 8-1474 8-1474 10-9625 — — — —
2 3-8685 81459 8-1459 10-9625 152898  15-3056  17-0803 17-0803
3 3-8686 80103 8-0103 10-7748 15-8929 159096  17-5680 17-5680
4 3-8685 8-0128 8-0128 10-7785 149645  14-9784  16-7448 16-7448
5 3-8685 8-0088 8-0088 10-7729 149776 149916  16-7548 16-7548
6 3-8685 80084 8-0084 10-7722 149459  14-9598  16-7267 16-7267
7 3-8685 8-0083 8-0083 10-7722 149409 149548  16-7222 16-7222
8 3-8685 8-0083 8-0083 10-7721 149400  14-9539  16:7215 16-7215
30 1 49504 9-3289 12-2109 15-9607 — — — —
2 48792 88866 11-6755 13-6672 182862  20-8932  21-8062 27-6586
3 4-8728 87019 112355 12-8562 183942 19-1434 220292 26-4880
4 48709 86885 111662 12-6221 17-3068  17-7934  20-5632 24-2678
5 4-8704 8-6813 11-1340 12-5584 17-2234  17-4836  20-4417 23-4295
6 48702 8-6803 11-1265 12-5425 17-1591 17-3642  20-3359 22-9382
7 4-8701 8-6801 11-1247 12-5395 17-1452  17-3353  20-3059 22-7680
8 4-8701 8-6801 11-1241 12-5388 17-1424 173294  20-2977 22-7235
45 1 7-4551 13-5952 20-1612 26-8305 — — — —
2 7-0886 11-9603 18-6274 19-6983 28:1656  32:6356  34-6846 47-6851
3 70014 11-2810 17-1535 17-4191 26-5955 267377  34-1261 40-1535
4 69724 11-1330 16-1358 17-0380 229132 243010  30-8734 349118
5 64631 11-0889 157888 16-8247 216107  23-5949  28-9695 32-2820
6 69594 110803 15-6812 16-7305 21-0885 231672 27-6838 31-3417
7 69575 110786 15:6544 16-6928 209229  22-9814  27-1372 30-4514
8 69564 110782 15-6482 166786 20-8790 229147 269540 30-0230
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sections 3.1 and 3.2 is carried out here and the numerical results are presented in Tables 5
and 6. It can be seen that this anisotropy does not have any significant effect on the present
B-spline RRM. The convergence rates for both SSSS and CCCC laminates are very
satisfactory indeed.

3.4. SKEW COMPOSITE LAMINATES WITH FOUR ANTI-SYMMETRIC CROSS-PLY LAYERS

The stacking sequence of these laminates is 0°/90°/0°/90°. Thus there exists coupling
between in-plane and out-of-plane behaviour due to By; and B»,. The full displacement field
(18) should be applied, and hence the solution of these problems would be more expensive.
Numerical results are recorded in Tables 7 and 8 for the respective SSSS and CCCC cases.
Also, very good convergence manner is observed. It should be pointed out that the
frequency parameter Q in this application depends on the thickness-to-width ratio, i.e.,
h/B, due to the existence of the coupling matrix B. Here, /B is taken to be 0-001.

3.5. SKEW COMPOSITE LAMINATES WITH FOUR ANTI-SYMMETRIC ANGLE-PLY LAYERS

The stacking sequence of these laminates is 45°/—45°/45°/—45°. Coupling between
in-plane and out-of-plane behaviour occurs due to the Bis and B, terms. Similarly, the full
displacement field (18) should be used. It should be noted that bending—twisting anisotropy
is absent in these laminates due to D;s = Dy = 0. However, stretching—twisting anisotropy
exists due to Bys and Bi. As the Dy and Dy terms make the analytical RRM inappropriate
in these applications, these Bj, and B terms have the same effect on the analytical RRM

TABLE 9

Values of Q for SSSS skew composite laminates with four anti-symmetric angle-ply layers

Modes
r A A}
o (degrees) ¢ 1 2 3 4 5 6 7 8

0 1 24821 54769 54769 96749 13-4660 13-8734 18-0767 18-:0767
2 24809 54751 54751 96676 10-0671 10-1904 15-0569 150569

3 24804 54632 54632  9-6491 10-1800 10-3063 15-1477 151477

4 24801 54627 54627 9-6477 100333 10-1491 15-0149 150149

S 24800 54622 54622  9-6467 10-0311 10-1461 15-0122 150122

6 24799 54620 54620 9-6462 10-0283 10-1426 15-0092 15-0092

7 24799 54619 54619 9-6460 10-0279 10-1419 15-0085 15-0085

8 24798 54618 54618  9-6458 10-0278 10-1416 15-0082 15-0082

30 1 28736 56074 8-1292 10-1669 17-9377 19-4655 22:0370 29-0288
2 28560 5-5661 79604 92269 12-8196 143139 16-0001 21-3274

3 28438 55476  7-8509  9-1121 12-6572 13-6922 159983 19-1229

4 28360 5-5460  7-8260  9-0587 12-3381 13-3921 15-5910 18-3072

5 28308 55454  7-8112  9-0501 12-2961 13-3094 155117 17-7968

6 28271 55452 7-8018  9-0477 122815 13-2894 15-4676 17-6634

7 28244 55451 77948  9-0469 12-2780 13-2851 154497 17-6250

8 28224 55450 77894  9-0464 122767 13-2842 15-4402 17-6156

45 1 3-8830 7-2788 12-:3950 13-3995 26-8856 27-4045 34-5946 45-0804
2 38349 7-0342 114218 119244 18-1674 18:6687 24:3343 31-6849

3 38050 69598 10-8954 11-5838 16:4201 179311 23-4889 26-2337

4 37835 69462 10-7151 114439 15-5178 17-0882 21-8346 24-3714

5 37680 69419 10-6645 11-3740 152268 16-7889 20-9280 23-4366

6 37567 69403 10-6511 11-3407 151351 16-6618 20-5678 22-7438

7 3-7482  6-9394 10-6468 11-3212 15-1124 16:6210 20-4524 22-4533

8 37415 69388 10-6445 11-3070 151070 16-6083 20-4228 22-3572
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[21]. From the results presented in Tables 9 and 10 it can be concluded that the present
B-spline RRM is not affected by these coupling terms and that the convergence rate is
really good. Similarly, as the frequency parameter Q depends on the thickness-to-width
ratio, i. e., #/B, in this application due to the existence of the coupling matrix B, /B is
taken to be a fixed value of 0-001. It is noted that the values of Q with skew angles 45°
in Tables 9 and 10 are the same as those in Tables 7 and 8, respectively, since at this
particular angle the problems become the same.

3.6. SKEW COMPOSITE LAMINATES WITH TWO UNSYMMETRIC LAYERS

When using the present B-spline RRM for free vibration analysis a cantilevered (CFFF)
skew composite laminate presents less complexity than either a fully simply supported
(SSSS) or a fully clamped (CCCC) one does since either SSSS or CCCC boundary
condition gives more constraints than CFFF boundary condition does. However,
cantilevered skew composite laminates may have practical importance. For instance, they
may be used to approximate aircraft wings and stabilizers. In this final numerical
application, the cantilevered skew composite laminates studied in reference [17] are
reconsidered. The stacking sequence of these laminates is o/(a — 22-5°), where « is the skew
angle and the thickness of each lamina is the same. Due to the arbitrary lay-ups there exist
couplings between in-plane and out-of-plane behaviour and all types of material
anisotropy. The length B is 0-2032m (8-0in) and the thickness / is 0-125 x 1072 m
(0-492 x 10~"'in). The mid-surface area of the laminates is 0-413 x 107" m? (64-0 in?). The

TABLE 10
Values of Q for CCCC skew composite laminates with four anti-symmetric angle-ply layers
Modes
r A A}
o (degrees) ¢ 1 2 3 4 5 6 7 8
0 1 37530 7-5966 7-5966 12-0377 1254-51 — — —
2 37375 7-5381 7-5381 12-0377 13-0359 13-1049 18-1919 18-1919
3 37362 74986 7-4986 12-0348 13-3847 13-4655 18-3810 18-3810
4 37347 7-4954 7-4954 12-0321 12-8656 12-9322 18-1155 18-1155
5 37344 7-4923 74923 12-0226 12-8723 12-9394 18-1123 18-1123
6 37342 74916 7-4916 12-0206 12-8530 12-9196 18-0946 18-0946
7 37341 7-4913 7-4913 12-0197 12-8498 12-9161 18-0904 18-0904
8 37341 74912 74912 12-0194 12-8491 12-9152 18-0891 18-:0891
30 1 49985 9-1728 12-7722 17-3763 125510 — — —
2 49113 85915 11-9195 13-7769 18-3429  21-8687  21-9646 30-2793
3 48967 84168 11-3239 12-9362 17-8361 19-2939 21-8855 26-6840
4 48919 84103 11-2072 126526 16-6521 17-9483  20-4531 24-6495
5 4-8900 84062 11-1614 12-6074 16-4971 17-6348 20-3055 23-2242
6 4-8893 84055 11-1506 12-5935 16-4198 17-5374  20-1780 22-7942
7 48890 8-4053 11-1474 12-5907 16-4030 17-5114 20-1347 22-6260
8 4-8889 84053 11-1461 12-5901 16-3995 17-:5057  20-1206 22-5803
45 1 7-4551 13-5952 20-1612 26-8305 1502-72 — — —
2 7-0886 11-9603 18-6274 19-6983 28-1656 32:6356 34-6846 47-6851
3 7-0014 11-2810 17-1535 17-4191 26-5955 26-7377 34-1261 40-1535
4 69724 11-1330 16-1358 17-0380 229132 24-3010 30-8734 349118
5 6:6931 11-0889 15-7888 16-8247 21-6107 23-5949 289695 32:2820
6 69594 11-0803 15-6812 16-7305 21-0886 23-1672 27-6838 31-3417
7 6:9575 11-:0786 156544 16-6928 20-9229 229814 27-1372 30-4514
8 69564 11-0782 15-6482 166786 20-8790 22-9147 26-9540 30-0230
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material properties of each lamina are E, = 160-54 GPa (23-3 x 10° psi), E; = 12:48 GPa
(1-81 x 10°psi), Grr=672GPa (0976 x 10°psi), v;r=0-22 and the density
p =1909-99 kgm~* (0-069 Ibin~*). The first eight frequencies (Hz) are recorded in
Table 11 with various skew angles, and they are obtained by using ¢ = ¢: = ¢, = 8 and
k = 5. A close agreement is found between the present results and those in reference [17].
The slight difference may be due to neglecting the in-plane inertias in the analysis of
reference [17].

4. CONCLUSIONS

A B-spline RRM is presented for the study of free vibrations of thin skew fibre
reinforced composite laminates with various boundary conditions. The laminates may have
arbitrary lay-ups, which may include couplings between in-plane and out-of-plane
behaviour and any types of material anisotropy due to the interaction terms Qs and Qs
between the normal stresses o, and o, and the shear strain 7y,,.

Numerical applications include skew isotropic plates and various composite laminates.
For the skew isotropic plates, very close agreement is found between the present results
and the comparative solutions. This serves to verify the present method and to establish
the foundation for the analysis of skew composite laminates. Due to lack of comparative
solutions for skew composite laminates, in sections 3.2-3.5 all of the numerical results are
presented in a manner of convergence studies. The laminates are selected in such a way
that the coupling between in-plane and out-of-plane behaviour either exists or is absent
by choosing either symmetric or anti-symmetric lay-ups. Furthermore, in either case the
fibre orientations may be either cross-ply or angle-ply, in order to examine the effect of
the material anisotropy on the present B-spline RRM. All of these applications
demonstrate that the B-spline RRM developed is accurate and efficient in all the cases
considered. Unlike the analytical RRM, the B-spline RRM gives accurate solutions no
matter what types of material anisotropy exist. It is hoped that the tabulated results may

TABLE 11

Frequencies (Hz) of CFFF skew composite laminates with two unsymmetric layers

Modes

r A Al
o (degrees) 1 2 3 4 5 6 7 8

—45 16:86 47-52 104-56 141-41 206-28 281-52 308-42 371-01
[17] 1694 4775 105-04 142-07 207-27 — — —

—30 24-67 52:04 136-87 157-05 203-57 294-94 357-31 433-93
24-78 52:27 137-48 157-75 204-49 — — —

—15 30-96 54-93 129-25 194-05 228-01 279-39 331-71 484-07
31-09 55-17 129-82 194-89 229-00 — — —

0 34-12 56-08 122:86 215-24 245-46 262-29 33845 448-69
34-26 56-34 123-40 216:17 246-57 — — —

15 33-31 54-93 120-18 211-86 245-24 25776 34696 411-63
33:45 55-18 120-71 212-78 246-32 — — —

30 28-45 56-09 120-83 184-16 238-67 245-43 362-07 385-43
28-57 51-34 121-36 185:06 239-73 — — —

45 20-32 44-85 11517 143-93 21896 234-86 330-70 392-20

20-42 45-09 115-75 144-76 219-94 — — —
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be useful to engineers and designers and may also serve as benchmark solutions for other

ac
sk

ademic research workers. In the final numerical application, i.e., section 3.6, cantilevered
ew composite laminates are considered. Close agreements are observed between the

present results and those in reference [17].

Finally, it is worth noting that the present B-spline RRM could be extended to study

free vibration of thick skew composite laminates based on shear deformation laminate
theory. This study will be reported in another paper.
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