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CALCULATION OF THE NATURAL FREQUENCIES OF COMPOSITE PLATES
BY THE RAYLEIGH–RITZ METHOD WITH ORTHOGONAL POLYNOMIALS
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A summary is presented of an efficient approach to the analysis of the natural frequencies
of composite rectangular plates based on the Rayleigh–Ritz method. Orthogonal
polynomials are used as admissible functions and the approach has been found to be
numerically stable and capable of treating in a uniform manner a wide class of boundary
conditions for which the plate sides are either simply supported, free or clamped.

A composite plate with sides of length a and b is considered. The origin of the
co-ordinate system is taken at the centre of the plate. By restricting analysis to
symmetrically laminated plates and making use of the classical plate theory of composite
plates [1], which is valid for sufficiently thin plates, the amplitudes of the potential and
kinetic energies can be given by the following formulae (see also reference [2]):
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Here the following non-dimensional quantities are used:

j= x/(a/2), h= y/(b/2), r= a/b, W� =W/h, D�ij =Dij/D0,

V=v(a/2)2(r/D0)1/2.

W is the amplitude of transverse vibration, h is the plate thickness, Dij are the bending
stiffnesses of a laminated plate (see reference [1]), r is the mass density per unit area of
the plate, and D0 is the reference stiffness, which can be taken arbitrarily.

According to the Ritz method the plate displacement is approximated by a series,

W�(j, h)= s
M
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gmnfm (j)cn (h), (2)

where the admissible functions fm and cn satisfy at least the geometric boundary
conditions. The orthogonal polynomials in the interval [-1, 1] are generated from the
following recursive formulae previously used in references [3] and [4]:

f2(j)= (j−B2)f1(j), fk(j)= (j−Bk )fk−1(j)−Ckfk−2(j) for kq 2. (3)
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f1 is a properly chosen starting function, satisfying at least the geometric boundary
conditions at j=−1 and j=1. The orthogonal polynomials in the h direction are
generated in a similar way.

The following starting functions have been used in the present analysis, which satisfy
the geometric boundary conditions at j=−1 and j=1:

S–S f1(j)= const (j 2 −1), S–F f1(j)= const (j+1),

S–C f1(j)= const (j+1)(j−1)2, F–F f1(j)= const,

C–F f1(j)= const (j+1)2, C–C f1(j)= const (j 2 −1)2, (4)

where S denotes a simply supported edge, F a free edge and C a clamped one. From the
formulae (3) it follows that if the starting function (4) satisfies one of the geometric
boundary conditions (4), so do all generated polynomials. Also, in the numerical analysis
all polynomials were normalized and orthonormal polynomials were used.

To show the accuracy of the present method, in Table 1 a comparison is made with the
results obtained in reference [2]. The approach in reference [2] used ordinary polynomials
and allowed the calculation of natural frequencies of a plate for which two adjacent sides
were free. Even though the present approach is more general, only the results given in
reference [2] are compared. Both analyses were done for the composite material properties:
E1 =138 [GPa], E2 =8·96 [GPa], G12 =7·1 [GPa], and n12 =0·30, and 8×8 polynomials
were used.

T 1

The non-dimensional frequency va2(r/E1h3)1/2 of an angle-ply (30°, -30°, 30°) square plate

Mode
ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

Boundary conditions 1 2 3 4 5 6

FFFF 1·620 2·078 3·711 5·051 5·069 7·079
(1·620)* (2·078) (3·712) (5·052) (5·071) (7·080)

SFFF 0·916 2·536 3·275 4·517 5·692 7·505
(0·917) (2·536) (3·275) (4·518) (5·693) (7·507)

CFFF 0·651 1·437 3·122 4·183 5·610 6·525
(0·651) (1·437) (3·123) (4·184) (5·611) (6·526)

SSFF 0·465 1·842 3·926 4·654 6·751 8·077
(0·464) (1·842) (3·926) (4·654) (6·751) (8·078)

CSFF 1·061 2·421 4·979 5·637 7·887 9·084
(1·060) (2·421) (4·979) (5·634) (7·877) (9·077)

CCFF 1·291 3·051 5·552 6·270 8·564 10·232
(1·291) (3·050) (5·546) (6·269) (8·551) (10·236)

*Reference [2] values are shown in parentheses.
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T 2

The non-dimensional frequency va2[12(1− n12n21)r/E1h3]1/2 of a single-layer (30°) simply
supported square plate

Mode
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

Number of polynomials (M,N) 1 2 3 4 5 6

(6,6) 11·299 20·340 33·310 35·023 48·158 50·096

(8,8) 11·264 20·307 33·000 34·920 47·247 48·353
(11·69)* (21·00) (33·91) (35·62) (48·72) (49·78)

(10,10) 11·245 20·292 32·995 34·886 47·165 48·285
(11·62) (20·87) (33·73) (35·49) (48·43) (49·45)

(12,12) 11·233 20·282 32·995 34·866 47·133 48·283
(11·56) (20·78) (33·61) (35·40) (48·24) (49·25)

FEM 11·239 20·264 32·941 34·875 47·169 48·236

*Reference [5] values are shown in parentheses.

In Table 2 a comparison is made with the results given in reference [5] for a highly
anisotropic simply supported plate. The material properties used are the same as above.
In reference [5] a double-sine series was used with the Rayleigh–Ritz method. From the
table it is observed that the present approach has a better convergence than the results
obtained with harmonic functions. Also, the finite element results included in the
table agree very well with the present calculations. It should also be emphasized that the
results of the two approaches differ only in the case of a plate with high anisotropy. In
the case of specially orthotropic simply supported plates the results given in reference [5]
have been found practically to coincide with those of the present analysis. These
conclusions agree with an earlier observation made in reference [6] that the convergence
of the Rayleigh–Ritz method using beam functions may be slow for the free vibration
frequencies of highly anisotropic plates with simply supported or free edges.

It is concluded that the Rayleigh–Ritz method with orthogonal polynomials is an
efficient discretization method applicable to anisotropic problems. For all boundary
conditions analyzed 8×8 polynomials showed good convergence for the first six
frequencies. Due to the use of orthogonal functions, the mass and stiffness matrices are
well-conditioned and the approach is very stable.
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