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Structural sensitivities are often required in dynamic analyses of engineering structures,
such as system identification and control, structural modification and optimization. Many
different methods have been developed in the last three decades for the efficient
computation of such sensitivities. Though these existing methods have proven to be very
useful tools to structural analysts, they are restricted to those cases where accurate
analytical or finite element models are available. In many practical applications where
sensitivities are needed in the solution of troubleshooting problems only limited measured
data are available; existing methods being inapplicable. In this paper, a new and effective
method has been developed to derive structural design sensitivities, both frequency response
function sensitivities and eigenvalue and eigenvector sensitivities, from limited vibration
test data. Design sensitivities calculated directly from measured data are more accurate than
those calculated from analytical or finite element models since structural modelling errors
are inevitable due to the complexity of almost all engineering structures. The relationship
between frequency response function sensitivities and eigenvalue and eigenvector
sensitivities has been established. This relationship provides the theoretical basis for the
experimental determination of eigenvalue and eigenvector sensitivities. The effect of residue
(contribution of out-of-range modes) upon analysis accuracy has been examined. Detailed
numerical assessment based on a turbine bladed disk model as well as experimental
investigation of a beam structure have been conducted and the results have demonstrated
the practicality of the proposed method.
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1. INTRODUCTION

Sensitivity analysis, the study of changes in system characteristics with respect to parameter
variation, is being used in a variety of engineering disciplines ranging from automatic
control theory to the analysis of large-scale physiological systems [1]. Early applications
of sensitivity analyses were mainly in the analysis of control systems—for example, the
effect of system parameter changes on system stability and controllability [2]. Research
interests in optimal control and automated structural optimization led to the development
of gradient-based mathematical programming methods [3] in which sensitivities are used
to find the search direction towards optimum solutions. More recently, research effort has
been more focused on the applications of sensitivity analysis to systematic structural
optimization as a practical tool for design engineers when large and complicated
engineering structures are considered [4]. Because design optimizations of large structural
systems require excessively long computational time and hence enormous computational
cost due to calculation of structural sensitivities, much interest has recently been directed
towards the development of efficient computational procedures. Also, sensitivity analyses
have been applied to structural modification analysis, system identification and assessment

0022–460X/97/150613+19 $25.00/0/sv960836 7 1997 Academic Press Limited



. .   . . 614

of design trends and has become a versatile design tool in its own right [1]. Three basic
types of structural sensitivity frequently used in engineering practice are the sensitivities
of structural response (both static and dynamic), sensitivities of eigenvalues and
eigenvectors, and sensitivities of optimum structural design with respect to problem
parameters [1]. This paper is limited to structural sensitivities of dynamic response under
harmonic loading, which are equivalent to sensitivities of frequency response functions,
and those of eigenvalues and eigenvectors. Specifically, the paper focuses on the
experimental determination of such sensitivities since no analytical model is assumed to
be available, but some limited measured data are available.

There have been a number of different methods described in the open literature to
calculate sensitivites of structural responses from analytical or finite element models. Gill
et al. [5] developed an algorithm based on the concept of finite differences to compute
response sensitivities with optimum finite difference step size. An effective analytical
method was proposed by Haug and Arora [6] to compute design sensitivities of elastic
mechanical systems. For second order derivatives of structural response which are often
needed in approximate engineering analysis and design, an efficient method was proposed
by Haftka [7] which requires all the first order derivatives to be available. In the case of
dynamic loading, a sensitivity analysis method was proposed by Hsieh and Arora [8] which
uses the adjoint variable approach by defining a vector of adjoint variables which satisfies
a given differential equation. For the case of dynamic response to harmonic excitation
which has special significance in structural dynamic analysis, the concept of receptance
sensitivity and method for its calculation was discussed by Yoshimura [9]. The derivation
of such receptance sensitivity was further improved by Lin and Ewins [10] in its application
to the practice of structural finite element model improvement.

Alongside these studies, extensive research effort has also been devoted towards the
development and application of eigenvalue and eigenvector sensitivity analysis. Jahn [11]
derived complete formulae for first-order eigenvalue and eigenvector sensitivities for
standard eigenvalue problems and applied them to improve an approximate set of
eigenvalues and eigenvectors. The theory was later extended to the case of generalized
symmetric eigenvalue problems by considering changes of physical parameters in the mass
and stiffness matrices by Fox and Kapoor [12]. This method, later named as the ‘‘modal
method’’, requires all the modes of the system to be available. This complete eigensolution
is sometimes computationally expensive, especially when systems with large dimensions are
considered. To avoid such difficulty, Nelson [13] developed an effective method to calculate
eigenderivatives of a specific mode by just using the modal parameters of that mode.
However, a matrix inverse of system dimension (in fact, of dimension N−1 where N is
the dimension of the system) is required for each mode in order to solve the linear algebraic
equations involved. In order to improve computational efficiency, an improved modal
method, which aims to derive the required eigenderivatives approximately by using the
calculated lower modes and the known flexibility matrix, was proposed by Lim et al. [14].
Recently, an improved method for the derivation of eigenderivatives has been proposed
by Lin et al. [15] and has been successfully applied to the case of analytical model
improvement. For eigenvalue and eigenvector sensitivities of repeated modes and for
higher order sensitivity derivatives, discussions can be found in references [16, 17].

The existing methods which have been mentioned have proven to be very useful tools
for structural analysts. However, they are restricted to those cases where accurate
analytical or finite element models are available. In many practical applications, when a
detailed analytical model of a structure under consideration is not available, but
sensitivities are needed to solve troubleshooting problems, these existing methods become
inapplicable. It is necessary therefore to develop alternative methods to calculate the
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required sensitivities using vibration test data. In this paper, a new and effective method
is developed to calculate frequency response function sensitivities, and eigenvalue and
eigenvector sensitivities from limited measured data. These sensitivities, derived
experimentally, are more accurate than those from analytical models since structural
modeling errors are inevitable in the analytical models due to the complexity of almost
all engineering structures. The relationship between frequency response function
sensitivities and eigenvalue and eigenvector sensitivities is established. This relationship
provides the theoretical basis for the experimental determination of eigenvalue and
eigenvector sensitivites. the effect of residue (contribution of out-of-range modes) upon
analysis accuracy is examined. Detailed numerical assessment based on a turbine bladed
disk model as well as experimental investigation of a beam structure are carried out and
the results demonstrate the practicality of the proposed method.

2. THEORETICAL DEVELOPMENT

In a typical structural vibration test, only those frequency response functions (FRFs)
corresponding to those co-ordinates of interest are measured. These measured FRFs can
be in the form of inertance (acceleration over force ẍ/f ), mobility (velocity over force ẋ/f )
or receptance (displacement over force x/f ) [18]. Throughout the discussions in this paper,
it is assumed that the measured FRFs are in the form of receptance data [a(v)]. What is
of interest here is the development of a method which can be applied to compute structural
sensitivities to given structural modifications from these measured receptances. Derivation
of receptance sensitivities to given structural modifications is discussed first. Then the
relationship between receptance sensitivities and those of eigenvalue and eigenvector is
established from which, a method for the determination of eigenvalue and eigenvector
sensitivities is then developed.

2.1.       

For a practical structure, which in theory, possesses an infinite number of degrees of
freedom, the receptance matrix corresponding to those co-ordinates of interest is written
as,

[a(v)]= s
a

r=1

{f}r{f}T
r

lr −v2 , (1)

where lr and {f}r are the rth complex eigenvalue and reduced (to those co-ordinates of
interest) mass-normalised eigenvector of the structure under consideration, and v is the
excitation forcing frequency. The derivation of equation (1) is directly from the definition
of the receptance corresponding to the response at co-ordinate xi due to pure excitation
applied at co-ordinate xj , aij (v), which is given in reference [18] as,

aij (v)= s
a

r=1

firfjr

lr −v2 , (2)

where fir and fjr are the ith and jth element of the rth reduced eigenvector {f}r .
Assume that the receptance matrix [a(v)] corresponding to those co-ordinates of interest

in a specified frequency range has been measured and imagine a small mass modification
Dmi is made at a certain co-ordinate location, xi . From the theory of mechanical coupling
[18], the dynamic stiffness matrix of the original unmodified structure [Z(v)] and the
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dynamic stiffness matrix [Z	 (v)] of the modified structure corresponding to those measured
co-ordinates of interest are related to the mass modification Dmi by,

[Z	 (v)]=[Z(v)]−v2Dmi [Eii ], (3)

where [Eii ] is a matrix with its (i, i) element to be unity and all the others zero in the case
of mass-spring system models. A more complicated form of [Eii ] in the case of mass
modification of practical structures will be discussed later.

Upon inverting both sides of equation (3) and letting [Z	 (v)]−1 = [ã(v)] and
[Z(v)]−1 = [a(v)] by definition, the following relationship in terms of receptance matrix
[ã(v)] of the modified structure and the receptance matrix [a(v)] of the original structure
can be established,

[ã(v)]=[[a(v)]−1 −v2Dmi [Eii ]]−1. (4)

By taking [a(v)] out of the brackets, equation (4) can be rewritten as,

[ã(v)]=[[I]−v2Dmi [a(v)][Eii ]]−1[a(v)]. (5)

since Dmi is assumed to be small, then >v2Dmi [a(v)][Eii ]>�>[I]>, based on the theory of
matrix perturbation [19], one has,

[[I]−v2Dmi [a(v)][Eii ]−1 = [I]+ s
a

k=1

v2k(Dmi [a(v)][Eii ])k, (6)

which is a convergent matrix power series. Upon substitution of equation (6) into equation
(5), one has,

[ã(v)]=[[I]+ s
a

k=1

v2k((Dmi )[a(v)][Eii ])k][a(v)]

=[a(v)]+v2Dmi [a(v)][Eii ][a(v)]+[O((Dmi )2)], (7)

where [O((Dmi )2)] denotes a matrix whose elements are of the same order as (Dmi )2. From
equation (7), receptance sensitivities with respect to mass modification Dmi , can be
calculated as,

1[a(v)]/1mi 0 lim
Dmi:0

([ã(v)]− [a(v)])/Dmi =v2[a(v)][Eii ][a(v)]. (8)

One can see from equation (8) that once the receptance matrix [a(v)] has been measured,
receptance sensitivities can be determined.

2.2.       

In the case of a stiffness modification, assuming Dkij has been made between co-ordinates
xi and xj , then equation (3) accordingly becomes,

[Z	 (v)]=[Z(v)]+Dkij [Eij ]. (9)

Then, the receptance of the modified structure [ã(v)] becomes,

[ã(v)]=[[a(v)]−1 +Dkij [Eij ]−1, (10)

where [Eij ] is a matrix with its (i, i) and ( j, j) elements to be 1, (i, j) and ( j, i) elements
to be −1 and all the others zero in the case of mass-spring system models. A more
complictated form of [Eij ] for practical structures will be discussed later. Following a
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similar procedure as that in the case of mass modification leads to receptance sensitivities
with respect to a stiffness modification as,

1[a(v)]/1kij =−[a(v)][Eij ][a(v)]. (11)

Again, once the receptance matrix [a(v)] has been measured, receptance sensitivities with
respect to stiffness modifications can be readily calculated based on equation (11).

2.3.    

For eigenvalue sensitivities, it has been established [20] that the eigenvalue derivative of
the rth mode is related to the modal parameters of the mode itself only and is expressed
as equations (12a) and (12b) for mass modification Dmi and stiffness modification Dkij ,
respectively,

1lr /1mi =−{f}T
r [Eii ]{f}r , 1lr /1kij = {f}T

r [Eij ]{f}r , (12a, b)

where [Eii ] and [Eij ] have been previously defined and the modeshape vector of the rth mode
corresponding to those co-ordinates of interest {f}r is assumed, throughout the discussion
of this paper, to have been identified from modal analysis of measured receptance data.
Modal analysis [18] has been very well developed in the last 30 years and provided
measured receptance data are accurate, the identified modeshape vectors will, in general,
be very accurate.

Having derived receptance sensitivities and eigenvalues sensitivities, and having
measured and analysed receptance data to establish the eigenvalues and eigenvectors at
those co-ordinates of interest, it is now possible to derive eigenvector sensitivities of the
structure under study. Upon separating the contributions from those modes which are
measured and from those are not measured, equation (1) can be rewritten as,

[a(v)]= s
a

r=1

{f}r{f}T
r

lr −v2 = s
m

r=1

{f}r{f}T
r

lr −v2 + s
a

r=m+1

{f}r{f}T
r

lr −v2 , (13)

where m is the number of identified modes. Since in the frequency range of interest,
v2�Re(lm+1), the second term on the right side of equation (13) can be written as,

s
a

r=m+1

{f}r{f}T
r

lr −v2 = s
a

r=m+1

{f}r{f}T
r

lr 01−
v2

lr1
−1

= s
a

r=m+1

{f}r{f}T
r

lr
s
a

k=0 0v
2

lr1
k

. (14)

By retaining just the first order term and substituting equation (14) into equation (13),
equation (13) becomes,

[a(v)]= s
m

r=1

{f}r{f}T
r

lr −v2 + s
a

r=m+1

{f}r{f}T
r

lr
=[f[ l−v2 ]−1[f]T + [R], (15)

where [ l ] and [f] are the m identified eigenvalues and modeshape matrix from modal
analysis of the measured receptance data, [R] is a constant residue matrix representing the
contribution of higher unmeasured modes. Though it is accurate only to a first order, such
an approximation as equation (15) is indeed very accurate (as will be shown later in the
numerical case studies) especially when data points around resonances are considered. To
eliminate the residue term [R], receptance data at two different measurement frequencies
v=vq and v=vs (preferably neighbouring frequency points) can be used,

[a(vq )]−[a(vs )]=[f][[ (l−v2
q ) ]−1 − [ (l−v2

s ) ]−1][f]T. (16)
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Upon differentiation with respect to structural modification pk (pk can be mass modification
Dmi or stiffness modification Dkij ), equation (16) becomes,

1[a(vq )]
1pk

−
1[a(vs )]

1pk
=

1[f]
1pk

[[ (l−v2
q ) ]−1 − [ (l−v2

s ) ]−1][fT

+[f][[ (l−v2
q ) ]−1 − [ (l−v2

s ) ]−1]
1[f]T

1pk

+[f][[ (l−v2
s ) ]−2 − [ (l−v2

q ) ]−2]
1[ l ]

1pk
[f]T. (17)

Substituting the known eigenvalue sensitivites of equations (12a) or (12b) into equation
(17) and rearranging, gives.

[Z][Aqs ]+[Aqs ]T[Z]T = [Bqs ], (18)

where [Aqs ], [Bqs ] and [Z] are defined as,

[Bqs ]=
1[a(vq )]

1pk
−

1[a(vs )]
1pk

−[f][[ (l−v2
s ) ]−2 − [ (l−v2

q ) ]−2]
1[ l ]

1pk
[f]T,

[Aqs ]=[[ (l−v2
q ) ]−1 − [ (l−v2

s ) ]−1][f]T, [Z]= 1[f]/1pk . (19)

Equation (17) represents the relationship between receptance sensitivities and
eigenvector sensitivities. Once receptance sensitivities are known, eigenvector sensitivities
can be computed from equation (17). Also, it has to be mentioned that the number of
co-ordinates measured has, in theory, no effect upon the accuracy of computed eigenvector
derivatives, provided those co-ordinates associated with the points where structural
modifications are of interest have been measured. From equation (18), when two sets of
receptance data at two frequency points are used, eigenvector derivatives [Z] can be solved.
However, the solution for [Z] from equation (18) can sometimes be numerically difficult
to achieve due to the non-symmetric nature of [Z][Aqs ], especially when the number of
measured co-ordinates and number of modes of interest become large. To overcome this
difficulty, it is recommended that the eigenvector sensitivities of each individual mode be
solved one at a time in the case of separated modes, and a pair of modes at a time in the
case of two close modes. This is discussed next.

2.4.  

For measurement frequency v around the rth resonance v1vr , the ith column of the
measured receptance matrix [a(v)] can be written as,

{a(v)}i =(fir /lr −v2){f}r + {Rr}, (20)

where the contribution of all the other modes to the mode under consideration is
considered as a constant residual vector {Rr}. Considering two frequency points v=vq

and v=vs around the resonance and eliminating the residue term {Rr}, one has,

{a(vq )}i − {a(vs )}i =(1/(lr −v2
q )−1/(lr −v2

s ))fir{f}r (21)

Upon differentiation of equation (21) with respect to pk , one has,

1{a(vq )}i

1pk
−

1{a(vs )}i

1pk
=0 1

[lr −v2
s ]2

−
1

[lr −v2
q ]211lr

1pk
fir{f}r
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+0 1
lr −v2

q
−

1
lr −v2

s11fir

1pk
{f}r

+0 1
lr −v2

q
−

1
lr −v2

s1fir

1{f}r

1pk
(22)

By substituting known eigenvalue derivative 1lr /1pk , equation (22) can be transformed as,

bqs{Z}+ {Uqs}zi = {Vqs}, (23)

where {Vqs}, {Uqs}, bqs and {Z} are defined as,

{Vqs}=
1{a(vq )}i

1pk
−

1{a(vs )}i

1pk 1−0 1
[lr −v2

s ]2
−

1
[lr −v2

q ]211lr

1pk
fir{f}r

{Uqs}=0 1
lr −v2

q
−

1
lr −v2

s11fir

1pk
{f}r , bqs =0 1

lr −v2
q
−

1
lr −v2

s1fir ,

{Z}= 1{f}r /1pk (24)

The vectors {Vqs}, {Uqs} and the scalar bqs are all known since the eigenvalues and
eigenvectors involved have ben identified from the process of modal analysis of measured
receptance data. The procedure for the solution of {Z} from equation (23) is
straightforward by first solving zi as,

bqszi +U(i)
qs zi =V (i)

qs c zi =V (i)
qs /(U(i)

qs + bqs ), (25)

where U(i)
qs is defined as the ith element of {Uqs}. Once zi is solved, {Z} can be easily

computed from equation (23) by substituting known values of zi . When more measured
receptance data at different pairs of frequencies around the resonance are used, least
squares procedure [21] can be employed to solve for {Z}. Assume L different sets of
receptance data around the rth mode are used, the least squares solution of equation (23)
becomes,

s
L

m'=1

(b(m')
qs

2){Z}+ s
L

m'=1

b(m')
qs {Uqs}(m')zi = s

L

m'=1

b(m')
qs {Vqs}(m') (26)

where index m' denotes m'th data set. From equation (26), {Z} can be solved in the same
way as discussed. A least-squares procedure is important to improve the solution accuracy
in the practical case where measured data are contaminated by random measurement
errors.

2.5.  

In the case of close modes, receptance data around the two close resonances v1vr can
be expressed as,

{a(v)}i =
fir

lr −v2 {f}r +
fir'

lr' −v2 {f}r' + {Rr}, (r'= r+1), (27)

where the contribution of all the other modes to the two modes under consideration is
considered as a constant residual vector {Rr}. Similarly, considering receptant data at two
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different measurement frequencies around the resonances to eliminate the residue term, one
has,

{a(vq )}i − {a(vs )}i =0 1
lr −v2

q
−

1
lr −v2

s1fir{f}r +0 1
lr' −v2

q
−

1
lr' −v2

s1fir'{f}r'. (28)

Upon differentiation with respect to pk , equation (28) becomes,

1{a(vq )}i

1pk
−

1{a(vs )}i

1pk
=0 1

[lr −v2
s ]2

−
1

[lr −v2
q ]211lr

1pk
fir{f}r

+0 1
[lr' −v2

s ]2
−0 1

[lr' −v2
q ]211lr'

1pk
fir'{f}r'

+0 1
lr −v2

q
−

1
lr −v2

s11fir

1pk
{f}r

+0 1
lr' −v2

q
−0 1

lr' −v2
s11fir'

1pk
{f}r'

+0 1
lr −v2

q
−

1
lr −v2

s1fir

1{f}r

1pk

+0 1
lr' −v2

q
−

1
lr' −v2

s1fir'

1{f}r'

1pk
(29)

After some mathematical manipulation, equation (29) can be rewritten as,

{V}= {U1}z1i + b1{Z1}+{U2}z2i + b2{Z2}

= b1[A1]{Z1}+b2[A2]{Z2}=[b1[A1] b2[A2]]6{Z1}
{Z2}7=[A]{Z}, (30)

where b1, b2, {V}, {Z1}, {Z2}, {U1}, {U2}, [A1] and [A2] are defined as,

b1 =0 1
lr −v2

q
−

1
lr −v2

s1fir , b2 =0 1
lr' −v2

q
−

1
lr' −v2

s1fir',

{V}=
1{a(vq )}i

1pk
−

1{a(vs )}i

1pk
−0 1

[lr −v2
s ]2

−
1

[lr −v2
q ]

211lr

1pk
fir{f}r

−0 1
[lr' −v2

s ]2
−

1
[lr' −v2

q ]211lr'

1pk
fir'{f}r', {Z1}=

1{f}r

1pr
, {Z2}=

1{f}r'

1pr'
,



x2i–2 x2i–3

c
m

kMkg

K

x2i x2i–1

c
m

kMkg

K

x2i+2 x2i+1

c
m

kMkg

K K
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{U1}=0 1
lr −v2

q
−

1
lr −v2

s1{f}r , {U2}=0 1
lr' −v2

q
−

1
lr' −v2

s1{f}r',

[A1]= [I]+ [{0}1, . . . , {0}i−1{U1}/b1{0}i+1, . . . , {0}n ],

[A2]= [I]+ [{0}1, . . . , {0}i−1{U2}/b2{0}i+1, . . . , {0}n ]. (31)

In principle, only two sets of receptance data are needed in order to solve for {Z} and
hence {Z1} and {Z2} from equation (30). When L sets of receptance data around the
resonances are used, equation (30) can be solved using least-squares as,

$ s
L

m'=1

[A(m')]T[A(m')]%{Z}=6 s
L

m'=1

[A(m')]T{V(m')}7 . (32)

Again, such least-squares procedure becomes important in improving solution accuracy
in cases where measured receptance and identified modal data are contaminated by
random measurement errors.

3. NUMERICAL ASSESSMENT

A method has so far been developed to compute sensitivities of receptance and
eigenvalues and eigenvectors from vibration test data. In order to assess the practical
applicability of the proposed method, extensive numerical simulations have been
conducted to test its numerical accuracy, the validity of the assumption made in deriving
eigenvector sensitivities and the effect of random measurement errors. The system model
used is a lumped parameter model shown in Figure 1 which represents a practical bladed
disc system [22]. The number of blades is assumed to be 24 and the values for the
parameters used in the study are shown in Figure 1. The equations of motion for the
ith blade and ith disc sector are,

mẍ2i−1 + c(ẋ2i−1 − ẋ2i )+k(x2i−1 − x2i )=0,

Mẍ2i + k(x2i − x2i−1)+kgx2i +K(2x2i − x2i−2 − x2i+2)=0. (33)

From equation (33), system mass, stiffness and damping matrices can be assembled by
considering all the blade and disc sectors (i=1, 24). The values of kg are chosen according
to equation (34) that the first mode of the system becomes a non-rigid body mode and

Figure 1. A 24 bladed disc lumped parameter model, M=0·7 kg, m=0·3 kg, K=2·4E7 N/M,
k=2·6E6 N/M.
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Figure 2. Typical point receptance of the system a22(v).

the second and the third become close modes instead of repeated ones as shown in the
point receptance plot of co-ordinate x2 of Figure 2,

8kg =1·0 E7 N/m
kg =1·3 E7 N/m
kg =0 N/m

(i=1, 7, 13),
(i=19),
otherwise.

(34)

To simulate the practical case where generally only receptances at a few co-ordinates
of interest are measured at a certain frequency range, 12 co-ordinates x2, x4, x5, x8, x11,
x16, x19, x24, x29, x34, x39, x44 (out of 48 in total) are assumed to have been measured in this
numerical case study. Three different cases are devised to fully test the practicality of the
proposed method: (i) undamped separate and close modes, (ii) damped modes and (iii)
receptance data with measurement errors. Before embarking on these case studies, it is
necessary to verify first the assumption made in equations (20) and (27) that the
contribution of other modes to the receptance of the mode or modes under consideration
{Rr}=v1vr is constant. For receptance data around the first mode, the contribution of the
first mode itself and that of other modes to the point receptance of co-ordinate x2 are
calculated and shown in Figure 3. From Figure 3, one can see that the contribution of
other modes is really very much a constant and is very small (the difference is more than
35 dB which is less than 1·8%). Also, one might have noticed that in the derivation of
eigenvector sensitivities, it is implicitly assumed that the derivative of the residue with

Figure 3. Comparison of contributions of the mode and the residue: ——, 20 log =a22(v)–R1(v)=; .....,
20 log =R1(v)=.
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respect to design parameter 1{Rr}/1pk =v1vr should also be a constant since from equation
(20), one has the following relationship by taking differentiation with respect to pk ,

1{a(v)}i

1pk
=−

1
[lr −v2]2

1lr

1pk
fir{f}r +

1
lr −v2

1fir

1pk
{f}r

+
1

lr −v2 fir

1{f}r

1pk
+

1{Rr (v)}
1pk

. (35)

Considering the receptance sensitivities v=vq and v=vs and taking their difference, one
has,

1{a(vq )}i

1pk
−

1{a(vs )}i

1pk
=0 1

[lr −v2
s ]2

−
1

[lr −v2
q ]21 1lr

1pk
fir{f}r

+0 1
lr −v2

q
−

1
lr −v2

s1 1fir

1pk
{f}r

+0 1
lr −v2

q
−

1
lr −v2

s1fir

1{f}r

1pk
+

1{Rr (vq )}
1pk

−
1{Rr (vs )}

1pk

(36)

By comparing equation (36) with equation (22), it is not difficult to see that an assumption
of constant 1{Rr}/1pk was made during the derivation of equation (22). Indeed, when data
around resonances are considered, 1{Rr}/1pk remains very much a constant vector and its
magnitudes are very small when compared with those of the receptance sensitivities as is
illustrated in Figure 4.

The case of an undamped system is investigated first by setting the damping coefficient
c in Figure 1 to be 0. Receptance sensitivities with respect to the mass change of co-ordinate
x8 are calculated based on equation (8) by using the ‘‘measured’’ receptance terms and the
receptance sensitivity 1a22(v)/1m8 is given in Figure 5 which shows similar characteristics
to those of receptance but with larger dynamic range, since receptance sensitivity is given
by the product of receptances as shown in equation (8). By applying the proposed method
and using receptance sensitivity data points around the resonance under study, eigenvector
sensitivities corresponding to the ‘‘measured’’ co-ordinates of interest with respect to the

Figure 4. Comparison of derivatives of the mode and the residue: ——, 20 log =(1a22(v)/1pk )–(1R1(v)/1pk )=;
······, 20 log =(1R1(v)/1pk )=.
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Figure 5. Receptance sensitivity of undamped system 1a22(v)/1m8.

mass change Dm8 of co-ordinate x8 and the stiffness change Dk24 between co-ordinates x2

and x4 are calculated for the first (separate) and second (close) modes. The results are
shown in Table 1 and Table 2 together with comparisons with their exact values which
are computed based on the formula proposed by Fox and Kapoor [12]. It can be seen from
these results that the proposed method is indeed very accurate.

Practical structures possess some degree of damping and in order to assess the effect of
damping upon the numerical accuracy of the proposed method, viscous damping is added
to the system by setting c=25·0 Ns/m which is supposed to represent the energy
dissipation mechanism due to friction at the blade disc root connections. In this case, the
receptance of the system becomes complex and so is the receptance sensitivity. Again,
receptance sensitivities are calculated and 1a22(v)/1m8 is given in Figure 6 which shows that
for some modes, the real part of the sensitivity drops significantly around the resonance
due to the domination of the imaginary part of receptance when damping exists. The
proposed method is applied to calculate the eigenvector derivatives of mode 2 and the
results are shown in Table 3. Again, the results are very accurate for all the real parts which
are always dominant. For some imaginary parts, a few percent error has been introduced
due to their small magnitudes, but the results are generally quite accurate.

T 1

Predicted and exact eigenvector sensitivities of mode 1 (undamped case)

Co-ord. Predicted Exact Predicted Exact
number 1{f}1/1m8 1{f}1/1m8 error (%) 1{f}1/1k24 1{f}1/1k24 error (%)

x2 0·455134 E-2 0·455283 E-2 0·03274 0·327367 E-9 0·327398 E-9 0·00947
x4 0·115614 E-1 0·115617 E-1 0·00259 −0·103066 E-8 −0·103067 E-8 0·00097
x5 0·195798 E-1 0·195825 E-1 0·01378 −0·110410 E-8 −0·110408 E-8 0·00181
x8 0·249898 E-1 0·249903 E-1 0·00200 −0·845672 E-9 −0·845665 E-9 0·00083
x11 0·103179 E-1 0·103176 E-1 0·00291 −0·563145 E-9 −0·563120 E-9 0·00444
x16 −0·260231 E-2 −0·260291 E-2 0·02305 −0·206142 E-9 −0·206173 E-9 0·01504
x19 −0·159615 E-1 −0·159649 E-1 0·02130 0·122488 E-10 0·122492 E-10 0·00327
x24 −0·146539 E-1 −0·146559 E-1 0·01365 0·121591 E-9 0·121581 E-9 0·00822
x29 −0·261210 E-1 −0·261235 E-1 0·00957 0·443812 E-9 0·443780 E-9 0·00721
x34 −0·190231 E-1 −0·190241 E-1 0·00526 0·398103 E-9 0·398095 E-9 0·00201
x39 −0·151721 E-1 −0·151733 E-1 0·00791 0·520345 E-9 0·520301 E-9 0·00846
x44 −0·794764 E-2 −0·794810 E-2 0·00579 0·494681 E-9 0·494633 E-9 0·00970
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T 2

Predicted and exact eigenvector sensitivities of mode 2 (undamped case)

Co-ord. Predicted Exact Predicted Exact
number 1{f}2/1m8 1{f}2/1m8 error (%) 1{f}2/1k24 1{f}2/1k24 error (%)

x2 −0·0321394 −0·0321460 0·02053 −0·808732 E-9 0·809075 E-9 0·04239
x4 0·0406503 0·0406481 0·00546 −0·188998 E-8 −0·189025 E-8 0·01428
x5 0·1514802 0·1514478 0·02139 −0·448480 E-8 −0·448257 E-8 0·04975
x8 0·1666576 0·1666498 0·00468 −0·405940 E-8 −0·405845 E-8 0·02341
x11 0·2509612 0·2509326 0·01140 −0·617908 E-8 −0·617810 E-8 0·01586
x16 0·1666809 0·1666777 0·00192 −0·407641 E-8 −0·407603 E-8 0·00932
x19 0·2023554 0·2023333 0·01092 −0·489879 E-8 −0·489903 E-8 0·00490
x24 0·0391543 0·0391724 0·04621 −0·106506 E-8 −0·106340 E-8 0·15610
x29 −0·2122185 −0·2123515 0·06263 0·471875 E-8 0·472019 E-8 0·03051
x34 −0·2140478 −0·2141323 0·03946 0·471314 E-8 0·471696 E-8 0·08098
x39 −0·3172522 −0·3172797 0·01440 0·690309 E-8 0·690379 E-8 0·01014
x44 −0·2217501 −0·2217606 0·00473 0·484400 E-8 0·484381 E-8 0·00392

Since the proposed method is intended for the application of experimental determination
of structural sensitivities from test data which are inevitably contaminated by measurement
errors, it becomes necessary to evaluate the performance of the method when measurement
errors are involved. In this study, 3% random noise is added to the ‘‘measured’’
receptances and the derived eigenvectors and 0·5% random errors are added to the derived
eigenvalues considering the fact that natural frequencies can be more accurately identified.
In this case, it is recommended that more data points should be used in order to minimize
the effect of measurement errors using least squares to improve solution accuracy. For
mode 2, 20 frequency data points (L=10) around the resonance are used to estimate the
eigenvector sensitivities based on equation (32) and the results are shown in Table 4. It
is found that when more than 10 sets of frequency data (Le 10) are used, the improvement
on the accuracy of the results obtained is negligible. From Table 4, it can be seen that the
results obtained are quite accurate and should perhaps be considered adequate for practical
applications.

Figure 6. Receptance sensitivity of damped system 1a22(v)/1m8: ·····, Re [1a22(v)/1m8]; ——, Im [1a22(v)/m8].
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T 3

Predicted and exact eigenvector sensitivities of mode 2 (damped case)

Co-ord. Predicted Exact Predicted Exact
number Re[1f2/1m8] Re[1f2/1m8] error (%) Im[1f2/1m8] Im[1f2/1m8] error (%)

x2 −0·0321485 −0·0321541 0·01742 −0·330897 E-3 −0·328685 E-3 0·67298
x4 0·0406631 0·0406542 0·02189 0·226937 E-3 0·231104 E-3 1·80308
x5 0·1514723 0·1514466 0·01694 −0·210193 E-3 −0·196594 E-3 6·91730
x8 0·1666873 0·1666812 0·00366 0·122602 E-2 0·122944 E-2 0·02782
x11 0·2509455 0·2509311 0·00574 −0·359217 E-3 −0·348249 E-3 3·13614
x16 0·1667298 0·1667116 0·01038 0·133161 E-2 0·133834 E-2 0·50286
x19 0·2023528 0·2023319 0·01033 −0·306028 E-3 −0·300852 E-3 1·72044
x24 0·0391935 0·0391823 0·02858 0·378519 E-3 0·395044 E-3 4·36569
x29 −0·2122403 −0·2123499 0·05161 0·253883 E-3 0·282579 E-3 10·1550
x34 −0·2141034 −0·2141737 0·03282 −0·165245 E-2 −0·162185 E-2 1·88673
x39 −0·3172545 −0·3172782 0·00237 0·445333 E-3 0·453962 E-3 1·90081
x44 −0·2217971 −0·2218066 0·00428 −0·182010 E-2 −0·181743 E-2 0·14670

4. EXPERIMENTAL INVESTIGATION

The method has been rigorously assessed based on extensive numerical case studies and
here in this section, an experimental investigation is carried out and some considerations
regarding the practical applications of the proposed method are highlighted. The test
structure considered is an aluminum beam with rectangular cross-section as shown in
Figure 7. The measurement set-up is schematically shown in Figure 8. Sine sweep testing
was used to measure the required receptance data since it is the most accurate measurement
technique to date due to its high signal to noise ratio [18]. The whole measurement process
is controlled by an in-house software in which measurement parameters such as starting
frequency, finishing frequency, number of frequency points, integration time, delay time,
measurement accuracy, vibration and excitation amplitudes can be set appropriately. The
excitation point was chosen to be co-ordinate x3 and 6 frequency response functions
(receptances) were measured along the beam and are shown in Figure 9. In the measured
frequency range, 3 bending modes are clearly identified. Based on equation (8), one typical
sensitivity of receptance a33(v) with respect to mass modification at co-ordinate x3 is

T 4

Predicted and exact eigenvector sensitivities of mode 2 (polluted data)

Co-ord. Predicted Exact Predicted Exact
number 1{f}2/1m8 1{f}2/1m8 error (%) 1{f}2/1k24 1{f}2/1k24 error (%)

x2 0·501495 E-2 0·455283 E-2 10·1501 0·298740 E-9 0·327398 E-9 8·75312
x4 0·109609 E-1 0·115617 E-1 5·19638 −0·111348 E-8 −0·103067 E-8 8·03412
x5 0·191711 E-1 0·195825 E-1 2·10097 −0·129286 E-8 −0·110408 E-8 17·0986
x8 0·284827 E-1 0·249903 E-1 13·9752 −0·823295 E-9 −0·845665 E-9 2·64523
x11 0·101560 E-1 0·103176 E-1 1·56732 −0·581438 E-9 −0·563120 E-9 3·25289
x16 −0·218911 E-2 −0·260291 E-2 15·8976 −0·224654 E-9 −0·206173 E-9 8·96372
x19 −0·167404 E-1 −0·159649 E-1 4·85765 0·106887 E-10 0·122492 E-10 12·7399
x24 −0·130293 E-1 −0·146559 E-1 11·0984 0·131278 E-9 0·121581 E-9 7·97621
x29 −0·284885 E-1 −0·261235 E-1 9·05312 0·513756 E-9 0·443780 E-9 15·7682
x34 −0·176102 E-1 −0·190241 E-1 7·43211 0·389356 E-9 0·398095 E-9 2·18634
x39 −0·145686 E-1 −0·151733 E-1 3·98518 0·548084 E-9 0·520301 E-9 5·33986
x44 −0·904240 E-2 −0·794810 E-2 13·7681 0·474920 E-9 0·494633 E-9 3·98534
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Figure 7. An aluminum beam structure.

Figure 8. Schematic illustration of measurement setup.

computed as shown in Figure 10 which exhibits similar characteristics as those of the
lumped parameter model. The measured receptances were then analysed using ICATS
commercial modal analysis software [23] to establish the eigenvalues and eigenvectors of
the structure. These eigenvalues and eigenvectors were then employed together with the
receptance sensitivities to compute the eigenvector sensitivities required based on the
proposed method. Eigenvector sensitivities of all the 3 modes with respect to mass
modification at co-ordinate x3 were derived and they are shown in Table 5. The imaginary
parts of the eigenvector sensitivities are very small as compared with their real parts and
this makes sense since in theory, eigenvector sensitivities of a uniform beam should be
virtually real since the damping distribution of the beam is virtually proportional and
hence its eigenvectors are real.

The method has been so far verified based on extensive numerical case studies as well
as experimental investigation. Nevertheless, some practical considerations need to be
addressed regarding the practical implementation of the proposed method. In practice,
when mass modification is made at one node, all 6 degrees of freedom should be taken
into account. So, for a unit mass, the modification matrix [Eii ] becomes,

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
[Eii ]=G

G

G

G

G

K

k

0 0 0 Ix 0 0
G
G

G

G

G

L

l

(37)

0 0 0 0 Iy 0

0 0 0 0 0 Iz
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where Ix , Iy and Iz are the second moments of inertia which can be determined when the
geometry of the mass modification is known. However, rotation co-ordinates are very
difficult to measure in practice [18]. Fortunately, the effect of the second moment of inertia
is generally not significant in the case of mass modification, [Eii ] can be condensed to
become,

[Eii ]= &100 0
1
0

0
0
1' (38)

In the special case where only one translational motion needs to be considered such as
beams and plates, [Eii ] can be further simplified to become that which was discussed in
section 2. So, in the case of mass modification, provided translational degrees of freedom
are measured, structural sensitivities with respect to mass changes can be accurately

Figure 9. Measured frequency response functions: (a) measured receptance a13(v); (b) measured receptance
a23(v); (c) measured receptance a33(v); (d) measured receptance a43(v); (e) measured receptance a53(v); (f)
measured receptance a63(v).
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Figure 10. Receptance sensitivities of 1a33(v)/1m3; (a) real part of 1a33(v)/1m3; (b) imaginary part of
1a33(v)/1m3.

determined based on the proposed method. In the case of stiffness modification, the
modifications are often made in the form of stiffeners. The important step here is to
determine the modification matrix [Eij ] when rotational co-ordinates are not measured.
This can be done by establishing the element stiffness matrix of the added stiffener first

T 5

Eigenvector sensitivities of the test beam structure

Co-ord. Mode 1 Mode 2 Mode 3
No. Re(1{f}1/1m3) Im(1{f}1/1m3) Re(1{f}2/1m3) Im(1{f}2/1m3) Re(1{f}3/1m3) Im(1{f}3/1m3)

x1 0·78796 0·10527 −2·38918 −0·08621 −2·64051 0·12901
x2 1·22051 −0·09862 1·92124 0·11902 1·86763 −0·05873
x3 1·50423 −0·13654 2·31390 −0·13982 1·57124 0·11762
x4 1·61001 0·09672 1·65142 −0·06892 1·48253 −0·08962
x5 0·67887 −0·04561 0·13975 0·04481 −1·35315 −0·14021
x6 −0·97411 0·10881 −1·18073 0·06742 1·99709 0·15082
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by methods such as finite element analysis and then condense the element stiffness matrix
by retaining only those measured translational co-ordinates using reduction techniques
such as a Guyan reduction [24]. From the condensed element stiffness matrix, modification
matrix [Eij ] can be established in a similar way as in the case of mass modification.

5. CONCLUDING REMARKS

Many different methods have been developed for the efficient computations of structural
sensitivities which are often required in structural dynamic analyses. Though these existing
methods have been proven to be very useful tools to structural analysts, they are restricted
to those cases where accurate analytical or finite element models are available. In many
practical applications, where only limited measured data are available, while sensitivities
are needed in the solution of troubleshooting problems such as modifications of existing
structural systems, condition monitoring and failure detection, existing methods are
inapplicable and the development of some alternative methods becomes necessary. In the
present paper, a new and effective method has been developed to calculate the receptance,
eigenvalue and eigenvector sensitivities from limited vibration test data. Such sensitivities
are more accurate than those calculated from analytical or finite element models since
structural modelling errors are inevitable due to the complexity of engineering structures.
Extensive numerical case studies as well as systematic experimental investigations have
been conducted and results have demonstrated the practicality of the proposed method.
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