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A theory is presented to predict the influence of non-linearities associated with the wall
of the shell and with the fluid flow on the dynamics of elastic, thin, orthotropic and
non-uniform open cylindrical shells submerged and subjected simultaneously to an internal
and external fluid. The open shells are assumed to be freely simply supported along their
curved edges and to have arbitrary straight edge boundary conditions. The method
developed is a hybrid of thin shell theory, fluid theory and the finite element method. The
solution is divided into four parts. In part one, the displacement functions are obtained
from Sander’s linear shell theory and the mass and linear stiffness matrices for the empty
shell are obtained by the finite element procedure. In part two, the modal coefficients
derived from the Sanders–Koiter non-linear theory of thin shells are obtained for these
displacement functions. Expressions for the second and third order non-linear stiffness
matrices of the empty shell are then determined through the finite element method. In part
three, a fluid finite element is developed; the model requires the use of a linear operator
for the velocity potential and a linear boundary condition of impermeability. With the
non-linear dynamic pressure, we develop in the fourth part three non-linear matrices for
the fluid. The non-linear equation of motion is then solved by the fourth-order
Runge–Kutta numerical method. The linear and non-linear natural frequency variations
are determined as a function of shell amplitudes for different cases.
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1. INTRODUCTION

The analysis of thin shells containing flowing fluid has been the focus of many
investigations. Most of these studies have involved linear analysis of thin shells both with
and without interaction between the structure and the surrounding fluid medium. Results
proved to be satisfactory where wall deflections of the shell are very small compared to
the wall thickness [1–11]. In several practical reports, however, the linear analysis was not
sufficiently accurate for satisfactory design. In those cases, a non-linear analysis was
required.

Several methods have been developed for the analysis of dynamic, non-linear thin
cylindrical shells. Among these were Galerkin’s method [12–14], the small perturbation
method [15, 16], the Rayleigh–Ritz method [17], the modal expansion method [18, 19], the
finite element method [20–22] and the hybrid finite element method [23].

The finite element method appears to be ideally suited to the analysis of complex shell
structures. Numerous general computer programs are available for industrial use for the
linear and non-linear analysis, where the displacement functions of the finite elements used
are assumed to be polynomial. Precise prediction of both the high and the low frequencies
requires the use of a great many elements in the classical finite element method.
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Figure 1. The open cylindrical shell geometry.

In order to achieve this, the present study presents a general approach to the non-linear
analysis of elastic, thin, orthotropic and circumferentially non-uniform open cylindrical
shells submerged in liquid under flow or no-flow condition (Figure 1). We investigate the
effect of non-linearities associated with the wall of the shell and with fluid flow on the
natural frequencies of an interactive fluid–shell system. The shells are assumed to be freely
simply supported along their curved edges and to have arbitrary straight edge boundary
conditions. The finite element method is employed, but it is a hybrid, a combination of
the finite element method, shell theory and fluid theory. This choice allows us to derive
the displacement functions from the shell’s equations of equilibrium and, furthermore, the
mass, stiffness and damping matrices for the shell and the fluid element.

The analytical solution involves four steps.

(1) Using the linear strain–displacement and stress–strain relationships which are
inserted into Sanders’ equations of equilibrium [24], we determine the displacement
functions by solving the linear equation system. We then determine the mass and linear
stiffness matrices for an empty finite element and assemble the matrices for the
complete shell.

(2) Using strain–displacement relationships from the Sanders–Koiter non-linear theory
[25, 26], the modal coefficients are obtained from the displacement functions. The second
and third order non-linear stiffness matrices for an empty finite element are then calculated
by precise analytical integration with respect to modal coefficients.

(3) To account for the effect of the fluid on the structure, a panel finite fluid element
bounded by two nodal lines is considered. By solving the linear equations of motion for
the fluid element, an expression for linear fluid pressure as a function of the displacement
of the element is obtained. Analytical integration for the pressure distribution along the
element yields three components: the mass, linear stiffness and linear damping matrices
for a fluid element.

(4) With the non-linear dynamic pressure, we develop in the fourth part three non-linear
matrices for the fluid: stiffness, damping and combination of the two.

The linear and non-linear natural vibration frequency ratio is then obtained by solving
the non-linear equations of motion.

2. DISPLACEMENT FUNCTIONS

Sanders’ [24] linear equations for thin cylindrical shells, in terms of axial, tangential and
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radial displacements (U, V, W) of the mean surface of the shell (Figure 1) and in terms
of elements pij of the orthotropic matrix of elasticity [P] are

Li (U, V, W, pij )=0, (1)

where Li (i=1, 2, 3) are three linear differential operators. These equations, where inertia
terms are not included, are given in Appendix A.

The shell is subdivided into several finite elements defined by two nodes i and j and by
components U, V, W and dW/du, representing axial, tangential and radial displacements
and the rotation, respectively (Figure 2).

The displacement functions are assumed to be

U(x, u)=A ehu cos (mpx/L), V(x, u)=B ehu sin (mpx/L),

W(x, u)=C ehu sin (mpx/L), (2)

where m is the axial mode and h is a complex number.
Substituting equation (2) into equations of motion (1), a system of three homogeneous

linear functions of constants A, B and C are obtained. For the solution to be non-trivial,
the determinant of this system must be equal to zero. This brings us to the following
characteristic equation in h:

h8h
8 + h6h

6 + h4h
4 + h2h

2 + h0 =0, (3)

where h0, h2, h4, h6 and h8 are listed in Appendix B.
Each root h of this equation yields a solution to the linear equations of motion (1). The

complete solution is obtained by adding the eight solutions independently with the
constants Ap , Bp and Cp (p=1, . . . , 8). The constants Ap , Bp and Cp are not independent.
We can therefore express Ap and Bp as a function of Cp , for example,

Ap = apCp , Bp = bpCp , p=1, . . . , 8. (4)

The values of ap and bp can be obtained from linear system (1) by introducing

Figure 2. (a) Finite element idealization. (b) Nodal displacements at node i, where Umi , Vmi and Wmi are,
respectively, the axial, tangential and radial displacements; (dWm/du)i is the rotation and f is the opening angle
for one finite element.
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relations (4). Substituting expressions (4) into equations (2), the displacements U(x, u),
V(x, u) and W(x, u) can then be expressed in conjunction with the eight Cp constants.
We then have

{U(x, u)W(x, u)V(x, u)}T = [Tm ][R]{C}, (5)

where [Tm ] and [R] are matrices given in Appendix C and {C} is an eighth order vector
of the Cp constants.

To determine the eight Cp constants, it is necessary to formulate eight boundary
conditions for the finite elements. The axial, tangential and radial displacements, as
well as rotation, will be specified for each node. The elements which have two nodes and
eight degrees of freedom will have i(u=0) and j(u=f) as nodal displacements at the
boundaries:

6di

dj7=6UiWi0dW
du 1i

ViUjWj0dW
du 1j

Vj7
T

= [A]{C}, (6)

where the terms of matrix [A], given in Appendix C, are obtained from matrix [R] by
successively setting u=0 and u=f.

Multiplying equation (6) by [A−1] and substituting into equations (5) we obtain

8U(x, u)
W(x, u)
V(x, u)9=[Tm ][R][A−1]6di

dj7=[N]6di

dj7, (7)

where the matrices [Tm ], [R] and [A] are given in Appendix C. [N] represents the
displacement functions matrix.

3. MASS AND LINEAR STIFFNESS MATRICES FOR AN EMPTY ELEMENT

Introducing the displacement functions (equation (7)) into the linear deformation vector
{oL} (Sanders [24]), we obtain

{oL}=$[Tm ]
[O]

[O]
[Tm]%[Q][A−1]6di

dj7=[B]6di

dj7, (8)

where the matrices [A] and [Q] are given in Appendix C.
For an orthotropic laminated material, the stress resultants may be expressed as

{s}= {Nxx Nuu N� xu Mxx Muu M� xu}T = [P]{eL}, (9)

where [P] is the elasticity matrix, in which the general term is designated by pij . It may
be written as

p11 p12 0 p14 p15 0

p21 p22 0 p24 p25 0

[P]=G
G

G

G

G

K

k

0 0 p33 0 0 p36 G
G

G

G

G

L

l

. (10)
p41 p42 0 p44 p45 0

p51 p52 0 p54 p55 0

0 0 p63 0 0 p66
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Referring to equation (8), the stress vector (9) may be rewritten as

{s}=[P][B]6di

dj7. (11)

The mass and linear stiffness matrices can then be expressed as

[ms ]= rst gg [NT][N] dA, [k(L)
s ]=gg [BT][P][B] dA, (12)

where dA=R dx du, rs is the density of the shell, t is its thickness, [P] is the elasticity
matrix given by equation (10), and the matrices [N] and [B] are derived from equations
(7) and (8), respectively. The matrices [ms ] and [k(L)

s ] were obtained analytically by carrying
out the necessary matrix operations and integration over x and u in equation (12). These
matrices are also given in Appendix C.

4. NON-LINEAR STIFFNESS MATRICES FOR AN EMPTY ELEMENT

The non-linear Sanders–Koiter [25, 26] theory for thin shells describes the behaviour of
open cylindrical shells. This theory is derived by approximation from the three-dimen-
sional elasticity equation. In common with linear theory, it is based on Love’s ‘‘first
approximation’’ but the assumption concerning the order of magnitude of the bending has
been modified. The displacement gradients are small and the squares of the rotation do
not exceed the reference surface deformation in order of magnitude.

The following approach, developed by Radwan and Genin [18], is used with particular
attention to geometric non-linearities. The coefficients of the modal equations are obtained
through the Lagrange method. Thus, the non-linear stiffness matrices, once calculated, are
overlaid onto the linear system. Before we embark on formulation, however, a brief
summary of the method is in order.

(1) Shell displacements are expressed as generalized product coordinate sums and
spatial functions:

u= s
i

qi (t)U(x, u), v= s
i

qi (t)V(x, u), w= s
i

qi (t)W(x, u), (13)

where the functions qi (t) are the generalized co-ordinates and the spatial functions U, V
and W are given by equation (2).

(2) The non-linear Sanders–Koiter [25, 26] theory for thin shells postulated differences
in the first and second fundamental forms between the reference surfaces, deformed and
non deformed, as deformation measures in elongation and bending, respectively. The
deformation vector is written as a function of the generalized coordinates by separating
the linear portion from the non-linear:

{o}= {oL}+ {oNL}= {oxx ouu 2oxu kxx kuu 2kxu}T, (14)

where subscripts ‘‘L’’ and ‘‘NL’’ mean ‘‘linear’’ and ‘‘non-linear’’, respectively; oxx,
ouu , and oxu represent the deformations of reference surface and kxx , kuu and kxu
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are the changes in curvature and torsion of the reference surface. In general, these
terms can be expressed as

oxx = s
j

ajqj + s
j

s
k

Ajkqjqk , ouu = s
j

bjqj + s
j

s
k

Bjkqjqk , oxu = s
j

cjqj + s
j

s
k

Cjkqjqk ,

(14a)

kxx = s
j

pjqj , kuu = s
j

sjqj , kxu = s
j

tjqj . (14b)

For a cylindrical shell, the expressions for {oL} and {oNL} are given in Appendix D.
(3) In the usual way, using equations (13) and Hamilton’s principle leads to Lagrange’s

equations of motion in the generalized co-ordinates qi (t),

d
dt 01T

1q̇i1−
1T
1qi

+
1V
1qi

=Qi, (14c)

where T is the total kinetic energy, V is the total elastic strain energy of deformation and
the Qi’s are the generalized forces.

(4) After developing the total kinetic and elastic strain energy and substituting
equation (14) into Lagrange equations (14c), we obtain the dynamic behaviour of an
empty cylindrical shell, in the absence of external loads, in terms of the following
non-linear modal equations:

s
r

mprd� r + s
r

k(L)
pr dr + s

r

s
s

k(NL2)
prs drds + s

r

s
s

s
q

k(NL3)
prsq drdsdq =0, p=1, 2, . . . , (15)

where mpr and k(L)
pr are the terms of mass and linear stiffness matrices given by

equation (12); the terms k(NL2)
prs and k(NL3)

prsq which represent the second and third non-linear
stiffness may be obtained by the following integrals in the case of the laminated orthotropic
open cylindrical shell:

k(NL2)
prs =gg {p11Aprs + p22Bprs + p12(Dprs +Eprs )+ p33Cprs} dA, (16)

k(NL3)
prsq =gg {p11Aprsq + p22Bprsq + p12(Dprsq +Eprsq )+ p33Cprsq} dA, (17)

where dA=R dx du, pij are the terms of the elasticity matrix [P], and the terms Aprs , Bprs ,
Cprs , Dprs , Eprs and Aprsq , Bprsq , Cprsq , Dprsq , Eprsq represent the coefficients of the modal
equations mentioned in step (4). These coefficients are given by

Aprs = apArs + arAsp + asApr , Aprsq =2ApqArs,

Bprs = bpBrs + brBsp + bsBpr , Bprsq =2BpqBrs,

Cprs = cpCrs + crCsp + csCpr , Cprsq =2CpqCrs, (18)

Dprs = arBsp + asBpr + bpArs , Dprsq =2ApqBrs,

Eprs = brAsp + bsApr + asBrs , Eprsq =2BpqArs,
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with

ap =Up,x , bp =
1
R

(Vp,u +Wp ), cp = 1
20Up,u

R
+Vp,x1, (19)

Apq =
1

8R2 (RVp,x −Up,u ) · (RVq,x −Uq,u )+ 1
2Wp,xWq,x , (20)

Bpq =
1

8R2 (RVp,x −Up,u ) · (RVq,x −Uq,u )+
1

2R2 (Wp,u −Vp ) · (Wq,u −Vq ), (21)

Cpq =
1

4R
(Wp,xWq,u −Wq,xWp,u )−

1
4R

(VpWq,x +VqWp,x ), (22)

where U, V and W are spatial functions determined by equation (5):

In equations (18)–(22), the subscripts ‘‘p, q’’, ‘‘p, r, s’’ and ‘‘p, r, s, q’’ represent the
coupling between two, three and four modes, respectively.

Introducing equation (5) into equation (19), we obtain

ap =Cpa'p ehpu, a'p = a(1)
p sin m̄x, a(1)

p =−m̄ap , (23)

bp =Cpb'p ehpu, b'p = b(1)
p sin m̄x, b(1)

p =(hpbp +1)/R, (24)

cp =Cpc'p ehpu, c'p = c(1)
p cos m̄x, c(1)

p = hpap /2R+ m̄bp /2. (25)

Furthermore, introducing equation (5) into equations (20)–(22), we obtain

Apq =Cpa'pq e(hp + hq)uCq , a'pq = a(1)
pq cos2 m̄x,

a(1)
pq =

1
8R2 [Rm̄bp − aphp ][Rm̄bq − aqhq ]+ 1

2m̄
2, (26)

Bpq =Cpb'pq e(hp + hq)uCq , b'pq = b(1)
pq cos2 m̄x + b(2)

pq sin2 m̄x,

b(1)
pq =

1
8R2 [Rm̄bp − aphp ][Rm̄bq − aqhq ], b(2)

pq =
1

2R2 [hp − bp ][hq − bq ], (27)

Cpq =Cpc'pq e(hp + hq)uCq , c'pq = c(1)
pq cos m̄x sin m̄x,

c(1)
pq =

m̄
4R

[hp + hq − bp − bq ]; (28)

hp ( p=1, . . . , 8 ) are the roots of characteristic equation (3); ap and bq are given by relation
(4); R is the mean radius of the shell; m̄ =mp/L, where m is the axial wavenumber and
L is the length of the shell.

The constants Cp ( p=1, . . . , 8) and Cq (q=1, . . . , 8) may be obtained from equation
(6) as

{C}=[A−1]6di

dj7. (29)

The matrix [A−1] is the inverse of [A], where [A] is given by equation (6) and listed in
Appendix C.

The present theory, expressed by equation (15), constitutes a general approach to the
dynamic study of non-linear cylindrical shells. These equations of motion will be solved
numerically only in the cases in which the coupling between different
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modes is ignored. Future numerical development will tackle the cases of coupling
modes.

Assuming r= s in equation (16), replacing the terms of Aprs , Bprs , Cprs , Dprs

and Eprs by their expressions (equation (18)), using relations (23)–(28) and then integrating
over x and u, we obtain for the second order non-linear matrix for
an empty element

[k(NL2)
s ]= [A−1]T[J(NL2)][A−1], (30)

where the (p, q) term in matrix [J(NL2)] is written as

J(NL2)( p, q)=g
G

G

F

f

s
8

k=1

RGG( p, q)
(hp + hq + hk)

[e(hp + hq + hk)f −1] if hp + hq + hk $ 0,

s
8

k=1

RGG( p, q)f, if hp + hq + hk =0.

(31)

GG( p, q) is a coefficient in conjunction with a, b, h and element pij in matrix [P]. The
general expression of GG( p, q) is

GG( p, q)= p11I1[a(1)
p A−1

pq a(1)
qk + a(1)

q A−1
qk a(1)

kp + a(1)
k A−1

kp a(1)
pq ]

+ p22I1[b(1)
p A−1

pq b(1)
qk + b(1)

q A−1
qk b(1)

kp + b(1)
k A−1

kp b(1)
pq ]

+ p22I2[b(1)
p A−1

pq b(2)
qk + b(1)

q A−1
qk b(2)

kp + b(1)
k A−1

kp b(2)
pq ]

+ p33I1[c(1)
p A−1

pq c(1)
qk + c(1)

q A−1
qk c(1)

kq + c(1)
k A−1

kp c(1)
pq ]

+ p12I1[a(1)
q A−1

qk b(1)
kp + a(1)

k A−1
kp b(1)

pq + b(1)
p A−1

pq a(1)
qk

+ b(1)
q A−1

qk a(1)
kp + b(1)

k A−1
kp a(1)

pq + a(1)
p A−1

pq b(1)
qk ]

+ p12I2[a(1)
q A−1

qk b(2)
kp + a(1)

k A−1
kp b(2)

pq + a(1)
p A−1

pq b(2)
qk ], (32)

where

I1 =
1

3m̄
[1− (−1)m], I2 =2I1, m̄=mp/L, (33)

The terms a(1)
p , b(1)

p , c(1)
p , a(1)

pq , b(1)
pq , c(1)

pq and b(2)
pq are terms appearing in expressions of coefficients

ap , bp , cp , Apq , Bpq and Cpq (relations (23)–(28)) and A−1
pq is the term ( p, q) of matrix [A−1],

where [A] is the matrix defined by relation (6).
Assuming r= s= q in equation (17), replacing the terms of Aprsq , Bprsq , Cprsq , Dprsq and

Eprsq by their expressions (equation 18), using relations (26)–(28) and then integrating over
x and u, we obtain for the third order non-linear matrix for an empty element

[k(NL3)
s ]= [A−1]T[J(NL3)][A−1], (34)

where the ( p, q) term in matrix J(NL3) is written as

J(NL3)( p, q)=g
G

G

F

f

s
8

k=1

s
8

l=1

RLE(l, k)SS( p, q)
8(hp + hq + hk + hl )

[e(hp + hq + hk + hl)f −1],

s
8

k=1

s
8

l=1

1
8RLE(l, k)SS( p, q)f,

if hp + hq + hk + hl $ 0,

if hp + hq + hk + hl =0.

(35)
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E(l, k) is the term (l, k) of matrix [E], where [E] represents a matrix of constants defined
by [E]= [A−1]T[A−1], SS( p, q) is a coefficient in conjunction with a, b, h and element pij

in matrix [P]. The general expression of SS( p, q) is

SS( p, q)=3p11a(1)
pl a(1)

kq + p22(3b(1)
pl b(1)

kq +3b(2)
pl b(2)

kq + b(1)
pl b(2)

kq + b(2)
pl b(1)

kq )

+p33c(1)
pl c(1)

kq + p12(3a(1)
pl b(1)

kq + a(1)
pl b(2)

kq +3b(1)
pl a(1)

kq + b(2)
pl a(1)

kq ), (36)

where the terms a(1)
pq , b(1)

pq , c(1)
pq and b(2)

pq are coefficients given in relations (26)–(28).

5. DYNAMIC BEHAVIOUR OF THE FLUID–SHELL INTERACTION

The pressure exerted by the fluid is given by using a non-linear development of the
Bernoulli equation. From the solution of the potential equation we derive an expression
of non-linear pressure as a function of (1) the nodal displacements of the fluid element,
(2) the inertial, centrifugal and Coriolis forces and (3) a combination of non-linear effects.
Through the usual finite element procedure, we obtain the linear mass, damping and
stiffness matrices for the fluid as well as the non-linear matrices for damping and stiffness
and a combination of the two.

The mathematical model which is developed is based on the following hypothesis: (1)
the fluid flow is potential; (2) vibration is non-linear; (3) pressure on the wall is purely
lateral; (4) the fluid mean velocity distribution is assumed to be constant across a shell
section; and (5) the fluid is incompressible and non-viscous.

5.1.  

With the previous hypothesis, the potential function must satisfy the Laplace equation.
This relation is expressed in the cylindrical co-ordinate system as

928=
1
r

(r8,r ),r +
8,uu

r2 +8,xx =0, (37)

where 8 is the potential function that represents the velocity potential.
Therefore,

Vx =Uxu +8,x, Vu =8,u /R, Vr =8,r , (38)

where Vx , Vu and Vr are, respectively, the axial, tangential and radial components of the
fluid velocity; Uxu is the velocity of the liquid through the shell section.

The Bernoulli equation is given by

8,t + 1
2V

2 +
Pu

rfu br= j

=0. (39)

Introducting equation (38) into equation (39) and taking into account the linear and
non-linear terms, we find the dynamic pressure Pu :

Pu =−rfu{8,t +Uxu8,x + 1
2[(8,x )2 + (8,u)2/r2 + (8,r )2]}=r= j , (40)

where the subscript u represents ‘‘i, internal’’ or ‘‘e, external’’ fluid as the case may be:

if u= i, then j=Ri =R− t/2, (41)

if u= e, then j=Re =R+ t/2. (42)
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A full definition of the flow requires that a condition be applied to the structure–fluid
interface. The impermeability condition ensures contact between the shell and the fluid.
This should be

Vr =r=R =8,r =r=R =W,t +UxuW,x +
U2

xu

2
W,xx =r=R . (43)

From the theory of shells (equation (5)), we have

W(x, u, t)= s
8

j=1

Cj ehju sin (mpx/L) eivt. (44)

Assuming then

8(x, u, r, t)= s
8

j=1

Rj (r)Sj (x, u, t) (45)

and applying the impermeability condition (equation (43)) with the radial displacement
given by relation (44), we determine the function Sj (x, u, t) explicitly. Using equation (37),
we find the following differential Bessel equation:

r2 d2Rj (r)
dr2 + r

dRj (r)
dr

+Rj (r)$0imp

L 1
2

r2 − (ihj )2%=0, (46)

where i is the complex number, i2 =−1, and hj is the complex solution of the characteristic
equation for the empty shell (relation (5)).

The general solution of equation (46) is given by

Rj (r)=AJihj0imp

L
r1+BYihj0imp

L
r1, (47)

where Jihj and Yihj are, respectively, the Bessel functions of the first and second kind of
complex order ‘‘ihj’’.

For inside flow, the solution (47) must be finite on the axis of the shell (r=0); this means
we have to set the constant B equal to zero. For outside flow (r:a), this means that the
constant A is equal to zero. When the shell is simultaneously subjected to internal and
external flow, we have to take the complete solution (47).

We carry the Bessel equation solution back into equation (45) to obtain the final
expression of velocity potential evaluated at the shell wall:

8u (r, u, x, t)j =Zuj(impRu /L)$Wj,t +UxuWj,x +
U2

xu

2
Wj,xx%, (48)

where

Zuj(impRu /L)=Ru>$ihj −
impRu

L
Jihj +1(impRu /L)
Jihj (impRu /L) %, if u= i, (49)

Zuj(impRu /L)=Ru>$ihj −
impRu

L
Yihj +1(impRu /L)
Yihj (impRu /L) %, if u= e, (50)
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where hj ( j=1, . . . , 8) are the roots of the characteristic equation of the empty shell; Jihj

and Yihj are, respectively, the Bessel functions of the first and second kind of order ‘‘ihj’’;
m is the axial mode number; R is the mean radius of the shell; L is its length; the subscript
‘‘u’’ is equal to ‘‘i’’ for internal flow and is equal to ‘‘e’’ for external flow.

Substituting relation (48) into the non-linear condition (40), we obtain the equation for
the pressure on the shell wall. It is useful to separate the total pressure into its linear and
non-linear terms:

Pu =PuL +PuNL , (51)

where

PuL =−rfu s
8

j=1

Zuj$Wj,tt +2UxuWj,tx +
U2

xu

2
Wj,txx +U2

xuWj,xx +
U3

xu

2
Wj,xxx% (52)

and

PuNL =−
rfu

2
s
8

j=1

s
8

k=1

ZujZuk$Wj,txWk,tx +U2
xuWj,xxWk,xx +

U4
xu

4
Wj,xxxWk,xxx

+2UxuWj,txWk,xx +U3
xuWj,xxWk,xxx +U2

xuWj,txWk,xxx%
+0hjhk

R2 ZujZuk +11$Wj,tWk,t +U2
xuWj,xWk,x +

U4
xu

4
Wj,xxWk,xx

+2UxuWj,tWk,x +U3
xuWj,xWk,xx +U2

xuWj,tWk,xx%. (53)

5.2.      

By introducing the displacement function (44) into the dynamic pressure expression (52)
and performing the matrix operation required by the finite element method, the mass,
damping and stiffness matrices for fluid are obtained by evaluating the integral

g [N]T{PuL} dA. (54)

We obtain

[m(L)
f ]= [A−1]T[S(L)

f ][A−1], [c(L)
f ]= [A−1]T[D(L)

f ][A−1], [k(L)
f ]= [A−1]T[G(L)

f ][A−1]. (55)

The matrix [A] is given by equation (6) and the elements of [S(L)
f ], [D(L)

f ] and [G(L)
f ] are

given as

S(L)
f (r, s)=−

RL
2

IrsrfuZus , D(L)
f (r, s)=

Rm2p2

4L
IrsrfuU2

xuZus ,

G(L)
f (r, s)=

Rm2p2

2L
IrsrfuU2

xuZus , (56–58)
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where r, s=1, . . . , 8; rfu is the density of the fluid; Uxu is the velocity of the fluid; Zus is
defined by relations (49) and (50); the subscript ‘‘u’’ is equal to ‘‘i’’ for internal flow and
is equal to ‘‘e’’ for external flow, and Irs is defined by

8Irs =
1

(hr + hs )
[e(hr + hs)f −1],

Irs =f,

for hr + hs $ 0,

for hr + hs =0,
(59)

where r, s=1, . . . , 8; hr are the roots of the characteristic equation of the empty shell and
f is the angle for one finite element.

Finally, the global matrices [M(L)
f ], [C(L)

f ] and [K(L)
f ] may be obtained, respectively, by

superimposing the mass [m(L)
f ], damping [c(L)

f ] and stiffness [k(L)
f ] matrices for each individual

fluid finite element.

5.3. -     

We use the procedure outlined in the previous section, ignoring the cross products in
the non-linear dynamic procedure expression (53). We obtain the following matrices for
the non-linear effects:

[c(NL)
f ]= [A−1]T[D(NL)

f ][A−1], [kc(NL)
f ]= [A−1]T[GD(NL)

f ][A−1],

[k(NL)
f ]= [A−1]T[G(NL)

f ][A−1]. (60)

The matrix [A] is given by equation (6) and the elements of [D(NL)
f ], [GD(NL)

f ] and [G(NL)
f ] are

given as

D(NL)
f (r, s)=−

rfu

2
Prs$0mp

L 1
2

Z2
usISC2 +

h2
s

R2 Z2
usIS3 + IS3%, (61)

G(NL)
f (r, s)=−

rfu

2
Prs6U2

xu$0mp

L 1
4

Z2
usIS3 +

h2
s

R2 0mp

L 1
2

Z2
usISC2 +0mp

L 1
2

ISC2%
+

U4
xu

4 $0mp

L 1
6

Z2
usISC2 +

h2
s

R2 0mp

L 1
4

Z2
usIS3 +0mp

L 1
4

IS3%7, (62)

GD(NL)
f (r, s)=−

rfu

2
PrsU2

xu$−0mp

L 1
4

Z2
usISC2 −

h2
s

R2 0mp

L 1
2

Z2
usIS3 −0mp

L 1
2

IS3%, (63)

where r, s=1, . . . , 8; r is the density of the fluid; Ux is the velocity of the fluid; Zus is
defined by relations (49) and (50); the subscript ‘‘u’’ is equal to ‘‘i’’ for inside flow and
is equal to ‘‘o’’ for outside flow; Prs is defined by

8Prs =
1

(hr +2hs )
[e(hr +2hs)f −1],

Prs =f,

for hr +2hs $ 0,

for hr +2hs =0,

(64)
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where r, s=1, . . . , 8; hr are the roots of the characteristic equation of the empty shell and
f is the angle for one finite element; ISC2 and IS3 are defined by

ISC2 =
L

3mp
[1− (−1)3m], IS3 =

L
3mp

[(−1)3m −3(−1)m], (65)

where m is the axial mode number and L is the length of the shell.
Finally, the global matrices [C(NL)

f ], [KC(NL)
f ] and [K(NL)

f ] may be obtained, respectively, by
superimposing the non-linear damping [c(NL)

f ], non-linear combination of damping and
stiffness [kc(NL)

f ] and non-linear stiffness [k(NL)
f ] matrices for each individual fluid finite

element.

6. INFLUENCE OF THE NON-LINEARITIES ON THE NATURAL FREQUENCIES

Taking into account the linear and non-linear matrices of the shell and of the fluid in
the case in which the coupling between different modes is ignored, the dynamic behaviour
of the open or closed cylindrical shell containing flowing fluid can be represented by the
following system of equations

[M(L)
t ]{d� }−[C(L)

t ]{d� }+[K(L)
t ]{d}+[K(NL2)

s ]{d2}+[K(NL3)
s ]{d3}

−[C(NL)
f ]{d� 2}−[KC(NL)

f ]{dd� }−[K(NL)
f ]{d2}= {0}, (66)

where [M(L)
t ]= [Ms ]− [M(L)

f ]; [K(L)
t ]= [K(L)

s ]− [K(L)
f ]; {d} is the displacement vector; [Ms ]

and [K(L)
s ] are the global mass and linear stiffness matrices for the shell in vacuo; [K(NL2)

s ]
and [K(NL3)

s ] are the global second and the third order non-linear stiffness matrices of the
shell in vacuo; [M(L)

f ], [C(L)
f ] and [K(L)

f ] are the global linear mass, damping and stiffness
matrices for the fluid; [C(NL)

f ], [KC(NL)
f ] and [K(NL)

f ] are the global non-linear matrices for the
fluid.

These matrices are square matrices of order 4(N+1), where N represents the number
of finite elements. In practice, very specific conditions are applied to the shell boundaries.
Thus, matrices are reduced to square matrices of order NREDUC=4(N+1)− J, where
J represents the number of constraints applied.

Setting

{d}=[F]{q}, (67)

where [F] represents the square matrix for the eigenvectors of the linear system and {q}
is a time-related vector; and substituting equation (67) into system (66) and multiplying
by [F]T, we obtain

[M(L)
t ]D{q̈}−[C(L)

t ]D{q̇}+[K(L)
t ]D{q}

+[FT][K(NL2)
s ]([F]{q})2 + [FT][K(NL3)

s ]([F]{q})3

−[FT][C(NL)
f ]([F]{q̇})2 − [FT][KC(NL)

f ][F]{q}[F]{q̇}

−[FT][K(NL)
f ]([F]{q})2 = {0}, (68)

where

[M(L)
t ]D = [FT][M(L)

t ][F], [C(L)
t ]D = [FT][C(L)

t ][F], [K(L)
t ]D = [FT][K(L)

t ][F], (69)

and where D denotes diagonal, the matrices quantifying the fluid contribution to the
matrix equations of motions are non-symmetric. To facilitate the analysis, therefore,
we consider only the symmetric portion of the matrices. This simplifying hypothesis is
valid, since the original and simplified systems have comparable dynamic behaviour.
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Tables 1–4 of Lakis and Laveau [27] show the variance between the eigenvalues in the
original and simplified systems, corresponding to cases of damped and undamped free
vibration. A trend was observed toward minimum variance of 1% at the extreme modes
(m=1, . . . , 6 and mq 11) and maximum variances of 20% at the median modes
(m=6, . . . , 10).

We saw how matrices contained in the linear part of system (66) could be reduced to
diagonal matrices. On the other hand, by neglecting the cross-product in ([F]{q}2, . . . of
equation (68) we obtain

miiq̈i − c(L)
ii q̇i + k(L)

ii qi + s
NREDUC

j=1

(k(NL2)
ij q2

j + k(NL3)
ij q3

j

−c(NL)
ij q̇2

j −KC(NL)
ij qjq̇j −K(NL)

ij q2
j )=0, (70)

where coefficients mii , c(L)
ii and k(L)

ii represent the ith diagonal terms of linear matrices [M(L)
t ]D,

[C(L)
t ]D and [K(L)

t ]D, respectively; k(NL2)
ij and k(NL3)

ij are the (i, j) terms of the products
([F]T[KNL2

s ][F]2) and ([F]T[KNL3
s ][F]3 ; C(NL)

ij , KC(NL)
ij and K(NL)

ij are the (i, j) terms of the
products ([F]T[CNL

f ][F]2), ([F]T[KCNL
f ][F]2) and ([F]T[KNL

f ][F]2), respectively.
Here we have ‘‘NREDUC’’ simultaneous equations of the form of equation (70).

Numerical solution of such a system is difficult and costly. At first, we limit ourselves to
solving equation (70) by taking into account only the diagonal terms of the products
([F]T[KNL2][F]2, . . . and therefore equation (70) is written

miiq̈i − c(L)
ii q̇i + k(L)

ii qi + k(NL2)
ii q2

i + k(NL3)
ii q3

i −C(NL)
ii q̇2

i −KC(NL)
ii qiq̇i −K(NL)

ii q2
i =0. (71)

Setting

qi (t)=Aifi (t), with fi (0)=1 and f� i (0)=0, (72)

equation (71) becomes, after the Ap simplification and dividing by mii,

f� i − kif� i +v2
i fi + li (Ai /t)f 2

i + si (Ai /t)2f 3
i

−(Ai /t)[zif� 2
i + jifif� i + gif 2

i ]=0, (73)

where

v2
i = k(L)

ii /mii , ki = c(L)
ii /mii , li =(k(NL2)

ii /mii )t, si =(k(NL3)
ii /mii )t2, (74, 75)

zi =(c(NL)
ii /mii )t, ji =(KC(NL)

ii /mii )t, gi =(K(NL)
ii /mii )t, (76)

and where t represents shell thickness; the coefficient [k(L)
ii /mii ] represents the ith linear

vibration frequency of the system.
The solution fi (t) of the non-linear differential equation (73) which satisfies the

conditions of equation (72) is calculated by a fourth order Runge–Kutta numerical
method. The linear and non-linear natural frequencies are evaluated by a systematic search
for the fi (t) roots as a function of time. The vNL /vL ratio of linear and non-linear frequency
is expressed as a function of non-dimensional ratio (Ai /t), where Ai is the vibration
amplitude.

7. CALCULATIONS AND DISCUSSION

The influence of non-linearities associated with the wall of the shell and with the fluid
on the open or closed cylindrical shell’s free vibrations is expressed by equation (73). For
a shell of given physical characteristics, we first present the results for the convergence of
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the model and, second, those obtained by the present method in the case of linear
vibration. Then the ratio vNL /vL of linear and non-linear frequency is graphically
represented in Figures 5–10 with respect to the non-dimensional ratio, Ap /t. The straight
horizontal line represents the linear vibration cases, where the frequency is independent
of the motion’s amplitude.

7.1.    

A first set of calculations was undertaken to determine the required number of finite
elements for a precise determination of natural frequencies. Calculations were made for
the same closed cylindrical shell completely filled with fluid for a number of finite elements,
N=2, 4, 6, 8, 10, 15 and 20. This steel shell is simply supported at both ends and has
the following data: R=37·7 mm, t=0·229 mm, L=234 mm, n=0·3, rfi /rs =0·128.

The results for m=1 and for n=2, 3, 4, 5 and 6 are shown in Figure 3. We conclude
that the convergence of the shell–fluid system demands ten elements for both the low and
the high modes.

7.2.       

We present a calculation to test the method incorporating linear analysis, which is
developed in this paper. The closed cylindrical shell is simply supported at both ends
and has the same physical properties as those given in the previous section. This shell
was studied by Goncalves and Batista [3], who used the Rayleigh–Ritz technique to
obtain the natural frequencies of the shell–fluid system. In Figure 4 are shown the
linear natural frequencies as a function of the circumferential mode number n for the
axial mode m=1.

As may be seen, the results obtained by the present method are in good agreement with
those of Goncalves and Batista [3]. For the case of empty or liquid-filled shells, there is
the well-known dip in the frequency curve as the shell makes a transition through the lower
values of n. This phenomenon can be explained by the interchange in the relative
contributions of the bending and stretching strain energies of the shell.

Figure 3. The linear natural frequency for a simply supported closed cylindrical shell completely filled with
internal fluid as a function of the number of finite elements; n is the number of circumferential mode; the number
of axial mode is m=1; R=37·7 mm, t=0·229 mm, L=234 mm, n=0·3, rfi/rs =0·128.
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Figure 4. The linear natural frequency for an empty and liquid-filled closed simply supported cylindrical
shell as a function of the circumferential mode n (m=1); R=37·7 mm, t=0·229 mm, L=234 mm,
n=0·3, rfi/rs =0·128. ——, Empty, present method; — —, empty, ref [3]; ----, liquid-filled, present method;
····, liquid-filled, ref [3].

7.3 -      

7.3.1.  

This set of calculations is designed to determine the influence of geometric non-linearities
in strain–displacement relations on the free vibrations of an empty isotropic cylindrical
shell, simply supported at both ends. The shell has the properties: z= pRm/nL=2,
x=(n2t/R)2 =1 and n=0·3. The variations in frequency ratio as a function of Ap/t for
this shell (Figure 5) were calculated using the present method, and compared to the results
of Evensen [13] and Atluri [15]. Evensen’s analysis involved a two modes approximation
and his equation was obtained using the Galerkin procedure. The work of Atluri is based
on Donnell’s equations, a modal expansion was used for displacements and the Galerkin
technique was used to reduce the problem to a non-linear ordinary differential equation
for the modal amplitudes.

Figure 5. A comparison of the effects of amplitude upon frequency for an empty simply supported
closed cylindrical shell; z= pRm/nL=2, x=(n2t/R)2 =1, n=0·3. ——, Present method; — —, Evensen [13];
----, Atluri [15].
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As may be seen, the results obtained by the present method are in satisfactory agreement
with those of other authors.

7.3.2. Submerged shell
The second comparative example is shown in Figure 6: the closed cylindrical shell

is simply supported at both ends and completely submerged in liquid. The pertinent
data are E=21·981×1011 N/m2, n=0·3, rf /rs =0·128, R=0·235 m, t=0·00235 m,
fT =360°.

This case was previously analyzed by Ramachandran [17] who used the Rayleigh–Ritz
procedure. In his study, he took into account only the influence of non-linearities
associated with the shell and neglected the effect of non-linearities associated with the
fluid. In addition, only lateral displacements were considered for the non-linear
analysis.

In Figure 6, we present a comparison between the present work and that of
Ramachandran [17], and show results for different modes and geometry. For ratio L/R=4
and the mode (n=4, m=1), we observe that the ratio between linear and non-linear
natural frequency decreases as ratio A/t increases. The variations are small for values A/t
below 1·0. For the value of A/t=2, the variation calculated by the present method is more
pronounced than that of Ramanchadran [17]; the results obtained are in agreement within
a range of 5%. For ratio L/R=2 and the mode (n=8, m=1), we observe that the ratio
between linear and non-linear natural frequency decreases and is more pronounced than
the previous results. For the value A/t=2, the variation calculated by the present method
is less pronounced than that of Ramanchadran [17], the difference between the two results
is of the order of 25%.

7.4. -          

         

One of the great advantages of the finite element method is the ease with which it can
be applied to any geometry and any boundary condition. Thus, this step of calculation
is to study the non-linear dynamic characteristics of an open cylindrical shell totally
submerged in liquid as a function of flow velocity, circumferential and axial modes,
boundary conditions, material properties, etc.

Figure 6. A comparison of the effects of amplitude upon frequency for a submerged simply supported closed
cylindrical shell; m=1; E=21·981×1011 N/m2, n=0·3, rf/rs =0·128, R=235 mm, t=2·35 mm, fT =360°.
——, Present method, L/R=4, n=4; — —, Ramachandran [17], L/R=4, n=4; ----, present method, L/R=2,
n=8; ····, Ramachandran [17], L/R=2, n=8.
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Figure 7. The influence of non-linearities associated with the wall of the shell versus non-linearities
associated with the fluid at rest for a simply supported open cylindrical shell; m=1: R=450 mm, t=1·5 mm,
L=1350 mm, fT =100°, rf/rs =0·128. ——, NL shell, NL fluid; R, NL shell, L fluid.

7.4.1. Influence of non-linearities associated with the wall of the shell versus non-linearities
associated with the fluid

In this first calculation, we analyze the influence of non-linearities associated with the
wall of the shell versus the non-linearities associated with the fluid at rest. The study is
made on an open cylindrical shell totally submerged in fluid. Calculations have been made
by solving equation (73), both when the non-linearity associated with the fluid is taken
into account and when it is not taken into account.

The steel open shell is simply supported at the four edges and has the following data:
R=450 mm, t=1·5 mm, L=1350 mm, fT =100°, rf /rs =0·128. The results of this
analysis are presented in Figure 7. We observe that the influence of non-linearities
associated with fluid on the dynamic behaviour of the shell–fluid structure is
negligible.

7.4.2. Effects of flow velocity
In order to establish the effect of the flow velocity on the non-linear free vibration, we

turn to Figure 8. The parameters of the investigation are as follows: m=1, n=9 and 10;
Reynolds number, RN =0·0 and 1·0×106, with RN =2UxRrf /nf , where Ux is the mean

Figure 8. The influence of large amplitude on the natural frequency of a submerged clamped-clamped open
cylindrical shell with axial flow for different Reynolds numbers; m=1: R=225 mm, t=1·5 mm, L=1350 mm,
fT =120°, rf/rs =0·128. ——, RN =0·0; — —, RN =1·0×106.



2.00.0
Ap/t

ω
N

L
/

ω
L

1.75

0.5 1.0 1.5

1.25

1.50

2.00

1.00

   85

velocity of the flow, R is the average radius of the open cylindrical shell and rf and nf are,
respectively, the density and viscosity of the flowing fluid.

The other data are: R=225 mm, t=1·5 mm, L=1350 mm, fT =120°, rf /rs =0·128.
In Figure 8 it is shown that the non-linearity is of the softening type for the

circumferential mode n=9 and is of the hardening type for n=10 for both flow and
no-flow condition. We see also that the non-linear effect is more pronounced for the
shell-fluid system when the fluid is moving. The difference between the cases is of the order
of 10%.

7.4.3. Effects of material properties
With the same geometric data, in Figure 9 is shown the effect of non-linearities upon

frequency for different material properties. When the open shell is simply supported at the
four edges and is completely submerged in water, the data are as follows: R=450 mm,
t=1·5 mm, L=1350 mm, fT =180°. The materials chosen are steel, acrylic, rubber
and an orthotropic material, the physical properties of which are: Ex =1·0×1011 N/m2,
Eu =0·05×Ex , nx =0·2, nu =0·05× nx , Gxu =0·05×Ex , rs =7800 N/m3.

We observe for the mode (m=2, n=3) that the steel shell is the one on which the
effect of non-linearity is more pronounced, the orthotropic shell is the one on which
the effect of non-linearity is less pronounced.

7.4.4. Effects of the circumferential mode n
In Figure 10, we present the effect of large amplitude on the frequency ratio as a

function of A/t for the axial mode m=1 and the circumferential mode n=6, . . . , 12.
The open shell is clamped along the straight edges and simply supported along its curved
edges. The data for the steel shell are: R=225 mm, t=1·5 mm, L=1350 mm, fT =120°,
rf /rs =0·128. In Figure 10 it is shown that the non-linearity is of the hardening type
for circumferential modes n=10, 11 and 12 and is of the softening type for n between
6 and 9. We see also that the non-linear effect is more pronounced for the mode n=6
and the variation is small for the case of n=9.

8. CONCLUSIONS

The method developed in this paper demonstrates the influence of the non-linearities

Figure 9. The influence of large amplitude on the natural frequency of a submerged simply supported open
cylindrical shell with the fluid at rest for different material properties (m=2, n=3): R=450 mm, t=1·5 mm,
L=1350 mm, fT =100°, rf =1000 kg/m3. ——, steel; ----, rubber; — —, acrylic; ····, orthotropic material.
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Figure 10. The influence of large amplitude on the natural frequency of a submerged clamped–clamped open
cylindrical shell with the fluid at rest for various circumferential modes n and axial mode m=1: R=225 mm,
t=1·5 mm, L=1350 mm, fT =120°, rf/rs =0·128. ——, n=6; — — n=7; – – –, n=8; - - - -, n=9; ····,
n=10; - — -, n=11; - - — - -, n=12.

associated with the wall of the shell and with the fluid flow on the free vibrations of totally
submerged open or closed cylindrical shells, subjected simultaneously to an internal and
external flow. It is a hybrid method, based on a combination of non-linear thin shell
theory, non-linear fluid theory and the finite element method.

An open cylindrical finite element is developed, in order that the displacement
functions can be derived directly from classical thin shell theory. Mass and linear
stiffness matrices are then obtained for the empty shell by the finite element method.
With the modal coefficients derived from the Sanders–Koiter non-linear theory of thin
shells and corresponding to non-linearities in strain–displacement relations, the second
and third order non-linear stiffness matrices are then calculated using the finite element
method.

The pressure exerted by the fluid is given using a non-linear development of Bernoulli’s
equation. From the solution of the potential equation we derive an expression of linear
and non-linear pressure as a function of the nodal displacements of the fluid element, the
inertial, centrifugal, Coriolis forces and a combination of non-linear effects. Through the
finite element procedure, we obtain the linear mass, damping and stiffness matrices for the
fluid as well as the non-linear matrices for damping and stiffness, and a combination of
the two.

The non-linear equations of motion are solved by the fourth order Runge–Kutta
numerical method. Variations in the free vibration frequencies are determined in
conjunction with motion amplitude for a closed or open cylindrical shell, empty or
submerged in flowing fluid. Deviations in terms of linear vibrations are observed.

This method combines the advantages of finite element analysis which deals with
complex shells, and the precision of formulation which the use of displacement functions
derived from shell and fluid theories contributes.

This area of investigation is still wide open and there is very little on the subject in the
literature. We are unable, therefore, to confirm whether, in the context of a dynamic
analysis, we are justified in completely neglecting the influence of non-linearities associated
with fluid flow. On the other hand, the effect of geometric non-linearities associated with
the walls is not negligible and should be taken into account in calculating the dynamic
behaviour of shell–fluid interactions when the amplitude of vibration is greater than the
thickness of the shell.
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APPENDIX A: EQUATIONS OF MOTION

This appendix contains the equations of motion for a thin orthotropic cylindrical shell:

L1(U, V, W, pij )= p11
12U
1x2 +

p12

r 0 12V
1x1u

+
1W
1x 1− p14

13W
1x3

+
p15

R2 0 13W
1x1u2 +

12V
1x1u1+0p33

R
−

p63

2R210 12V
1x1u

+
1
R

12U
1u21

+0p36

R2 −
p66

2R310−213W
1x1u2 +

3
2

12V
1x1u

−
1

2R
12U
1u21, (A.1)

L2(U, V, W, pij )=0p21

R
+

p51

R210 12U
1x1u1+

1
R 0p22

R
+

p52

R21012V
1u2 +

1W
1u 1

−0p24

R
+

p54

R210 13W
1x21u1+

1
R2 0p25

R
+

p55

R210−13W
1u3 +

12V
1u21

+0p33 +
3p63

2R1012V
1x2 +

12U
R1x1u1

+
1
R 0p36 +

3p66

2R10−2
13W
1x21u

+
3
2

12V
1x2 −

12U
2R1x1u1, (A.2)

L3(U, V, W, pij )= p41
13U
1x3 +

p42

R 0 13V
1x21u

+
12W
1x2 1− p44

14W
1x4

+
p45

R2 0− 14W
1x21u2 +

13V
1x21u1+

2p63

R 0 13U
R1x1u2 +

13V
1x21u1

+02p66

R2 10−2
14W

1x21u2 +
3
2

13V
1x21u

−
13U

2R1x1u21+
p51

R2

13U
1x1u2

+
p52

R3 013V
1u3 +

12W
1u2 1+p55

R4 0−14W
1u4 +

13V
1u31−

p21

R
1U
1x

−
p54

R2

14W
1x21u2

−
p22

R2 01V
1u

+W1+
p24

R
12W
1u2 −

p25

R3 0−12W
1u2 +

1V
1u1. (A.3)
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APPENDIX B: CHARACTERISTIC EQUATION

Equation (3), the characteristic equation, is

h8h
8 + h6h

6 + h4h
4 + h2h

2 + h0 =0,

where

h8 = f1f6f10 − f1f 2
8 ,

h6 = f1f6f11 + f1f7f10 −2f1f8f9 + f2f6f10 − f2f 2
8 − f 2

3f10 + f3f8f4 + f4f3f8 − f 2
4f6,

h4 = f1f6f12 + f1f7f11 − f1f 2
9 + f2f6f11 + f2f7f10 −2f2f8f9 − f 2

3f11 + f3f9f4

+f3f8f5 + f4f3f9 − f 2
4f7 − f4f6f5 + f5f3f8 − f5f6f4,

h2 = f1f7f12 + f2f6f12 + f2f7f11 − f2f 2
9 − f 2

3f12 + f3f9f5 − f4f7f5 + f5f3f9 − f5f7f4 − f 2
5f6,

h0 = f2f7f12 − f7f 2
5 .

The coefficients fi (i=1, . . . , 12) are given by

f1 =
1
R 0P55 −

1
R

P36 +
1

4R2 P661, f2 =−P11m̄2,

f3 = m̄$1
R

(P12 +P13)+
1
R2 (P15 +P36)−

3
4R3 P66%,

f4 =−
m̄
R2 0P15 +2P36 −

1
R

P661, f5 =
P12

R
m̄+P14m̄3,

f6 =−
1
R2 0P22 +

1
R2 P55 +

2
R

P251, f7 = m̄0P33 +
3
R

P36 +
9

4R2 P661,
f8 =

1
R3 0P25 +

1
R

P551,
f9 =−

1
R2 0P22 +

1
R

P521−
m̄2

R 02P36 +P24 +
3
R

P66 +
1
R

P541, f10 =−
1
R4 P55,

f11 =
2
R3 P25 +

m̄
R2 (2P45 +4P66), f12 =−

1
R

P22 −
2
R

P24m̄2 −P44m̄,

m̄ =mp/L.

APPENDIX C: MATRICES [Tm ], [R], [A], [Q], [Ms ] AND [k(L)
s ]

Matrix [Tm ](3×3):

[Tm ]=Diag [cos m̄x, sin m̄x, sin m̄x], m̄ =mp/L.
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Matrix [R](3×8):

R(1, j)= aj ehju, R(2, j)= ehju, R(3, j)= bj ehju, j=1, . . . , 8.

Matrix [A](8×8):

A(1, j)= aj , A(5, j)= aj ehjf, A(2, j)=1, A(6, j)= ehjf, A(3, j)= hj ,

A(7, j)= hj ehjf, A(4, j)= bj , A(8, j)= bj ehjf.

Matrix [Q](6×8):

Q(1, j)=Aj ehju, Q(4, j)=Dj ehjf, Q(2, j)=Bj ehju,

Q(5, j)=Ej ehju, Q(3, j)=Cj ehju, Q(6, j)=Fj ehjf.

The terms Aj , Bj , Cj , Ej and Fj ( j=1, . . . , 8) may be expressed as follows:

Aj =−mpaj /L, Bj =−(hjbj +1)/R, Cj =−mpbj /L+ hjaj /R,

Dj =−(mp)2/L2, Ej =−(h2
j + hjbj )/R2,

Fj =−2mphj /RL+3mpbj /2RL− hjaj /2R2.
Matrices [m](8×8) and [kL](8×8):

[mS ]= rst[A−1]T[S][A−1], [k(L)
S ]= [A−1]T[G][A−1],

where [S] and [G] are defined by

S(i, j)=
RL
2

(aiaj + bibj +1)
(hi + hj )

(e(hi + hj)f −1), if hi + hj $ 0;

S(i, j)=
RLf

2
(aiaj + bibj +1), if hi + hj =0;

G(i, j)=
RL
2

(p11AiAj + p12AiBj + p14AiDj + p15AiEj

+ p21BiAj + p22BiBj + p24BiDj + p25BiEj

+ p41DiAj + p42DiBj + p44DiDj + p45DiEj

+ p51EiAj + p52EiBj + p54EiDj + p55EiEj

+ p33CiCj + p36CiFj + p63FiCj + p66FiFj );

(e(hi + hj)f −1)
(hi + hj )

, if hi + hj $ 0);

G(i, j)=
RLf

2
(p11AiAj +· · ·+ p66FiFj ), if hi + hj =0.

The terms Ai , Bi , Ci , Di , Ei and Fi (i=1, . . . , 8) are listed with matrix [Q].

APPENDIX D: DEFORMATION VECTORS

The deformation strain is defined by

{o}= {oL}+ {oNL},
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where
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APPENDIX E: NOMENCLATURE

Symbols
A, B, C constants in equation (2) defining U, V and W respectively
Ai motion amplitude
ap , bp , cp modal coefficients determined by equation (19)
a(1)

p , b(1)
p , c(1)

p coefficient determined by equations (23)–(25)
a(1)

rs , b(1)
rs , b(2)

rs , c(1)
rs coefficient determined by equations (26)–(28)

aAprs , bBprs , cCprs , aBprs , bAprs modal coefficients determined by equation (18)
Apq , Bpq , Cpq modal coefficients determined by equations (20)–(22)
Aprsq , Bprsq , Cprsq , ABprsq , BAprsq modal coefficients determined by equation (18)
E Young’s modulus
e exponential
fi function determined by equation (72)
GG(p, q) coefficient determined by equation (32)
i i2 =−1
Jihj Bessel function of the first kind and of order ihj
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L length of the shell
m axial mode number
N number of finite elements
n circumferential mode number
Pu lateral pressure exerted on the shell; u= i for internal pressure and

u= e for external pressure
Pij terms of elasticity matrix (i=1, . . . , 6; j=1, . . . , 6)
R mean radius of the shell
Rj solution of Bessel equation (47)
Sj defined by equation (45)
SS(p, q) coefficient determined by equation (36)
t thickness of the shell
U, V, W axial, tangential and radial displacements
Uxu velocity of the liquid
Vx , Vu , Vr axial, tangential and radial fluid velocity (equation (38))
x axial co-ordinate
Yihj Bessel function of the second kind and of order ihj

Zuj defined by equation (49) for u= i and equation (50) for u= o
hi complex roots of the characteristic equation (3)
ap , bp determined by equation (4)
u circumferential co-ordinate
n Poisson ratio
f opening angle for one finite element
fT opening angle for the whole open shell
F velocity potential
rs density of the shell material
rfu density of fluid, u= i for internal fluid and m= e for external fluid
vL linear frequency of free vibrations
vNL non-linear frequency of free vibrations
t time related co-ordinates
vi , ki coefficient determined by equation (74)
li , si coefficient determined by equation (75)
zi , ji , gi coefficient determined by equation (76)

Matrices

[A] defined by equation (6)
[B] defined by equation (8)
[c(L)

f ], [c(NL)
f ] linear and non-linear damping matrices for a fluid finite

element
{C} vector of arbitrary constants
[D(L)

f ] defined by equation (57)
[D(NL)

f ] defined by equation (61)
[G(L)

f ] defined by equation (58)
[G(NL)

f ] defined by equation (62)
[GD(NL)

f ] defined by equation (63)
[k(L)

f ], [k(NL)
f ] linear and non-linear stiffness matrix for a fluid finite element

[k(L)
s ], [k(NL2)

s ], [k(NL3)
s ] linear and non-linear stiffness matrix for a shell finite selement

[kc(NL)
f ] defined by equation (60)
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[m(L)
f ] mass matrix for a fluid finite element

[ms ] mass matrix for a shell finite element
[N] displacement function defined by equation (7)
[P] elasticity matrix
[Q] defined by equation (8)
{q} time-related vector co-ordinates
[R] defined by equation (5)
[S(L)

f ] defined by equation (56)
[Tm ] defined by equation (5)
{di ] vector of degrees of freedom at node i
{d} vector of degrees of freedom for total shell
{s} stress vector
{oL}, {oNL} linear and non-linear components of the deformation

vector, respectively
[F] matrix of eigenvectors, equation (67)


