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Theoretical models for surface mobility are derived using two alternative approaches:
time averaged input power and effective mobility. The surface mobility of a circular contact
area of an infinite plate is investigated for both uniform conphase contact force and
uniform conphase contact velocity. In the latter case the mixed boundary value problem
is circumvented by using a discretized model to find the force distribution. The theoretical
values of surface mobility for a circular area with uniform conphase contact velocity are
compared to experimental measurements made on a simulated infinite plate.
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1. INTRODUCTION

Vibration isolators are used to attenuate the transmission of structural acoustic power
from machinery sources and supporting structures. The simplest approach to the design
and selection of isolators is based on ensuring that the lowest natural frequency of the
system is well below the forcing frequencies from machinery sources. In this simple
approach, the mobilities above and below the isolator, that is, the mobilities of the
foundation and the machine, are rarely taken into account.

More sophisticated analysis methods take into account the behaviour of the isolator
element over a range of frequencies. Examples of this are the blocked transfer function
[1] and the four-pole parameter description of isolators [2]. Expressions for the efficiency
of isolation involve the isolator properties and the mobilities of the structure above and
below the isolator. The structural connections are generally assumed to be point-like, and
theoretical or measured values of point mobility are used in an attempt to optimize
isolation. For flexural waves in a plate, the use of point mobility assumes that the
dimensions of the excitation area are less than approximately one-tenth of a wavelength
[3].

The interest associated with high frequency vibration transmission has increased due to
increased machine operating speeds and more flexible supporting structures.
Consequently, the assumed point-like connection between machine and its support
becomes invalid, since the dimensions of the contact area can be comparable to the
governing wavelength. Thus, excitations may have complicated spatial distributions and
the power transmitted will differ significantly from that occurring when the connection is
via a point.
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Hammer and Petersson [4, 5] developed the concept of strip mobility based upon
complex power and effective mobility approaches. Strip mobility was derived for infinite,
homogeneous thin plates excited by either a uniform, conphase force distribution or a
uniform, conphase velocity distribution along a finite strip. It was shown that for the two
cases investigated, a reduction in power transmission can be gained by using a strip
coupling for a given net force.

In this paper the results are presented of a study to determine the surface mobility of
large circular contact areas, following on the concepts of Hammer and Petersson [5].
Theoretical results are presented for the two idealized excitation conditions of uniform
conphase force and uniform conphase velocity, while experimental results are given for the
uniform conphase velocity case. Although a circular contact shape is used in these studies,
the general formulations and experimental techniques are applicable to any arbitrary
shape.

2. SURFACE MOBILITY

The mobility of a mechanical system, in complex form, is normally defined as

M� = v� /F� , (1)

where F� is the excitation force, and v� is the resulting velocity. (An underscore is used here
to denote the complex representation of quantities such as force, velocity and mobility.
In the context of machinery isolation, F� and v� act in the same direction and nominally
at the same point on the foundation or machine; hence the mobility is referred to as a point
mobility or driving point mobility.)

By using the driving point mobility the power supplied to the mechanical system may
be readily evaluated. Instantaneously, the power supplied is the product of the force and
the velocity. Using complex notation, the instantaneous power Pinst , can be expressed as

Pinst =[Re {F� e jvt}] · [Re {v� e jvt}]. (2)

If the complex quantities F and v are replaced by

F� =Fre + jFim and v� = vre + jvim

then

Pinst =(Fre cos vt−Fim sin vt)(vre cos vt− vim sin vt). (3)

The time averaged power, P, gives the net power flow into the structure over time. Taking
a time integral of equation (3) one obtains the expression [3]

P=0·5 Re {Fv*}. (4)

Substituting for the input mobility into equation (4), one obtains

P=0·5=F=2 Re {M� }, (5)

where =F� =2 =F� *F� . Note in the above that the phase of the mobility represents the phase
difference between the force and the velocity at the point of contact, whereas the time
averaged power is purely real.

It has been shown by Cremer et al. [3] for flexural waves in plates, that when the force
acts on an area with characteristic dimension less than one-tenth of the governing
wavelength in the plate, then the mobility is adequately determined from the total force
and velocity at that location. This result was obtained by Cremer et al. [3] by considering
an asymptotic solution to the case of a circular excitation region acted upon by a uniform
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conphase force distribution. In effect, they have used the complex power method, described
below, but restricted their results to asymptotic solutions for either very small or very large
excitation areas. They note that one may reduce the power input provided by a given net
force by distributing this force over as large an area as possible.

When the exciting force is distributed over an area which is large relative to a
wavelength, it is useful to define the concept of surface mobility, Ms, in order to relate
the exciting force distribution to the time averaged power input to the structure. Note that
in this case the phase difference between the local force and velocity will vary from point
to point over the contact surface, and hence only the real part of the surface mobility has
physical meaning in that it can be used in expressions for the time averaged power, such
as

P=0·5=F=2 Re {Ms}. (6)

In equation (6), the power into the structure is related to the net magnitude of the force,
=F=, where force is interpreted as the net force over the contact area. For this reason, only
the real part of the surface mobility needs to be considered, since the imaginary part has
no physical meaning.

Two definitions of surface mobility can be formulated, one based on time averaged input
and the other based on effective mobilities. These are used in this paper to determine the
mobility of circular contact regions of arbitrary size. For convenience, the two surface
mobilities are designated as Msp and Mse respectively.

2.1.    

Consider the stress, s(x, y, t), and velocity, v(x, y, t), distributions over the contact area,
S, shown schematically in Figure 1. These stress and velocity distributions can be
represented as spatially varying complex phasors, s� (x, y) and v� (x, y), where

s(x, y, t)=Re {s� (x, y) e jvt} and v(x, y, t)=Re {v� (x, y) e jvt}. (7)

The time averaged power transferred through the contact area is given by the integral

Q= 1
2 Re 6gS

s� *(x, y)v� (x, y) ds7 (8)

and the total contact force over the area is given in complex form by

F� =gS

s� (x, y) ds. (9)

Figure 1. A schematic of a large contact area.
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Using the definition for the time averaged power in equation (5), the real part of the
area mobility, Re {M� sp}, defined on the basis of the power transmitted, can be obtained
as

Re {M� sp}=
2Q
=F=2 =

1
=F=2 Re 6gS

s� *(x, y)v� (x, y) ds7. (10)

2.2.   

For power transmission in multi-point coupled systems, the concept of effective point
mobility may be used [4]. The contact surface can be considered to consist of N contact
points. The response at the ith contact point, due to the forces at all points, is called the
effective point mobility, and is given by

M� e
i =

v� i
F� i

=

s
N

j=1

M� ij · F� j

F� i
, (11)

where M� ij is the transfer mobility between points i and j.
If the contact points are continuously distributed over an area S, the effective point

mobility, M� e, at the point (xi , yi ) is

M� e(xi , yi )=
fS M� (xi , yi = xj , yj )s� (xj , yj ) dxj dyj

s� (xi , yi )
. (12)

The total time averaged power transferred through the contact area is

Q= 1
2 gS

=s� (xi , yi )=2 · Re (M� e(xi , yi )) ds, (13)

and so the real part of the surface mobility based upon the effective point mobility is given
by

Re {M� se}=
fS =s� (xi , yi )=2 · Re (M� e(xi , yi )) ds

=fS s� (xi , yi ) ds=2 . (14)

Implementation of the above development requires the specification of the force
distribution at the interface. This task is complicated by the fact that the dimensions of
the contact area are comparable to the governing wavelength of the support and by the
contact conditions between the machine and the support.

3. ASSUMPTIONS AND GOVERNING EQUATIONS

Valuable insight into the behaviour of practical plate-like supporting structures, which
have finite dimensions, may be gained by considering the plate as infinite and
homogeneous [6]. In the following analyses, losses are neglected, the plate vibrations are
assumed to be pure bending and the plate thickness is assumed to be small compared to
the governing wavelength.

The equation for the forced bending of the plate is

DDv� − k4v� =jvs� (x, y)
B

. (15)
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The solution of this is a zero-order Hankel function of the second kind.

v� (x, y)=gg s� (x, y) · M0 · P(kr) dx dy, (16)

where M0 is the ordinary point mobility of an infinite plate and

P(kr)=H(2)
0 (kr)−H(2)

0 (−jkr). (17)

Using the asymptotic expansion for H(2)
0 (kr), kr�1, the far field velocity distribution is

v� (x, y)=
M0z2

zpkr
ejp/4 gg

S

s� (x, y) e−jkr dx dy. (18)

4. UNIFORM, CONPHASE FORCE DISTRIBUTION

The surface mobility of the infinite plate excited by a uniform conphase force distributed
over the circular contact area will be derived using the time averaged power and effective
mobility approaches.

4.1.   

For a uniform force distribution over the contact area, of radius a, the far field velocity
at a radius X is [13]

v� (X)= s0pa2
z2

zpkX
M0

2J1(ka)
ka

e−jkX+jp/4. (19)

The power flow through the circumference in the far field is [3]

Re [Q]= cb2pRrh=v=2 = 1
2M0=s0pa2=2$2J1(ka)

ka %
2

(20)

and is equal to the real part of the power transfer through the contact area, S= pa2.
Thus the real part of the surface mobility is

Re (M� s)=M0$2J1(ka)
ka %

2

, (21)

which shows that the surface mobility depends on the Helmholtz number, ka.
In Figure 2 is shown the variation of the real surface mobility, normalized with respect

to M0, as a function of Helmholtz number. It can be seen that the real part of the surface
mobility decreases rapidly as the Helmholtz number increases above 1. For ka=1 the
surface mobility is approximately 70% of the ordinary point mobility, while for ka=2
the surface mobility is only 5% of the point mobility. The real part of the surface mobility
also exhibits oscillatory behaviour, with minima occurring at ka=3·8317, 7·0156,
10·1735 . . . . As ka increases, the difference between consecutive minima tends to p. These
minima occur when the diameter of the contact region is close to a multiple of the
wavelength of the plate vibration.
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Figure 2. Normalized surface mobility versus Helmholtz number for uniform, conphase force over a circular
area.

4.2.  

For a circular contact area the effective mobility at (R, 8), for a uniform conphase force
is

M� e(R, 8)= a2 g
1

0 g
2p

0

M� (R, 8/r, u)r dr du, (22)

where R and r are the radial distances of the response point and the force,
non-dimensionalized by the contact radius a.

For an infinite, homogeneous plate the transfer mobility can be written as [3]

M� (R, 8/r, u)=M0P(kr)=M0(H(2)
0 (kr)−H(2)

0 (−jkr)), (23)

where r= azr2 +R2 −2rR cos (8− u).
The real part of this transfer mobility can be approximated as

M(R, 8/r, u)=M0J0(kr), (24)

which gives the real part of the effective point mobility as

Re {M� e(R, 8)}= a2 g
1

0 g
2p

0

M0J0(kr)r dr du. (25)

The effective point mobility is independent of the angular location, 8. The variation of
the normalized effective point mobility for different values of R is plotted in Figure 3. The
mobility curves coincide at ka=3·8317, which is the first minimum for the first order
Bessel function of the first kind. For kaQ 3·8317, the effective point mobility is greatest
at the centre. For 3·8Q kaQ 6·8, the effective point mobility at the centre point is negative,
implying that power is transmitted back into the contact patch from the plate.

In Figure 4 is shown the variation of the real part of the effective point mobility with
R, for different values of ka. For ka=5 the effective mobility is negative for 0 QRQ 4,
implying a large area in which power is circulating within the contact area and not
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Figure 3. Effective point mobility (constant force) versus Helmholtz number for different values of R. Q,
R=0·0; w, R=0·5; W, R=0·9.

transmitted into the far field. In Figures 3 and 4 it is indicated that for values of kaq 3·8
there will be areas in which power circulates within the plate and the contact area. For
ka=8 the region of negative power flow occurs for 0·32QRQ 0·65.

The time averaged input power is

Q=
a2

2
=s=2 g

1

0 g
2p

0

Re (M� e(R, 8))R dR d8. (26)

Thus the real part of the surface mobility, normalized by the ordinary point mobility, is

Re (M� s)=
M0

p2 g
1

0 g
2p

0 $g
1

0 g
2p

0

J0(kr)r dr du%R dR d8. (27)

Figure 4. Effective mobility versus R at different Helmholtz numbers. Q, ka=2; w, ka=5; W, ka=8.
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Figure 5. A schematic of the discretized model of a circular area.

Numerical integration of equation (27) produced results to within a few percent of those
obtained using the complex power approach shown in Figure 2.

5. UNIFORM CONPHASE VELOCITY

For a prescribed velocity field over the contact area it is necessary to determine the force
distribution in order to derive the surface mobility. In this section a discretized model is
used to determine the force distribution, the effective point mobility and hence the surface
mobility.

The velocity distribution over the plate is given by equation (16). The boundary
conditions for a uniform conphase velocity over the contact area are

s� (x, y)=0, for zx2 + y2 q a and v� (x, y)= v� (0, 0), for zx2 + y2 E a. (28)

In this paper a discretized model, shown in Figure 5, is used to find an approximation
to the stress distribution.

The circular contact region is subdivided into L×N sub-regions, with constant intervals
Dr= a/L and D8=2p/N, in the radial and tangential directions, respectively. If the
sub-regions are small enough, then the forces in each sub-region can be approximated by
the effect of a point force

P� kl =g
r2

r1
g

82

81

s� (r, 8) dr d8. (29)

This net force is assumed to act at the centre of the sub-region.
The velocity at the centre of sub-region (k, l) due to the force acting at the centre of

sub-region (i, j) is

v� (k, l) = (i, j)=M0PijP(kr),

r=(a/L)z(k−0·5)2 + (i−0·5)2 −2(k−0·5)(i−0·5) cos ( j− l)D8 . (30)
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The velocity at the centre of sub-region (k, l) due to the forces at the centres of all the
sub-regions is found by superposition:

v� (k, l)=M0 s
L

i=1

s
N

j=1

P� ijP(kr), (31)

which can also be expressed in matrix form

{v� }=[T� ]{P� } (32)

where {v� } and {P� } are column vectors of length equal to the number of sub-regions and
[T� ] is a square matrix. Due to symmetry conditions the force and velocity distributions
will be functions only of the radial co-ordinate only. Thus equation (32) can be reduced
to

{v� }=[U� ]{P� '}, (33)

where {v� } and {P� '} are now vectors of length L, and [U� ] is a square matrix of order
L×L.

After this reduction only L linear equations need to be solved for L unknowns. Once
the force vector {P� '} is determined, one has the force distribution over the whole contact
region, since P� (i+ j×L)=P� '(i) for i=1 to L, and j=1 to N−1.

The total force is written as

F� = s
L×N

i=1

P� (i)=N s
L

i=1

P� '(i). (34)

The total time averaged power input over the excitation region is, retaining the matrix

Figure 6. Normalized surface mobility versus Helmholtz number for a uniform conphase velocity over a
circular contact area.
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Figure 7. The spatial variation of the force distribution for ka=1, 3 and 5.

notation,

Q� = 1
2 Re({P� }T([T� ]{P� })*) or Q� = 1

2 Re 6 s
L×N

i=1

s
L×N

j=1

P� ( j)(P� (i)T� (i, j))*7 (35)

Hence the real part of the surface mobility on the time averaged power basis for the circular
contact area is

Re {M� se}=

s
L×N

i=1

s
L×N

j=1

P� ( j)(P� (i)T� (i, j))*

b sL×N

i=1

P� (i)b
2

. (36)

An iterative procedure was used to calculate the surface mobility. Starting with L1 ×N1

discrete elements the force distribution and hence the surface mobility was calculated. The
procedure was then repeated for (L1 +1)× (N1 +1), (L1 +2)× (N1 +2) etc., elements,
until the difference between successive determinations was less than 0·1%. The real part
of the normalized surface mobility is shown in Figure 6. The real part of the surface
mobility and hence the active power transmitted decreases as ka increases. However, unlike
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the uniform, conphase force distribution, there is no oscillatory behaviour at high
Helmholtz numbers.

The effective point mobility for the centre point of a sub-region, i, is

M� se(ri )= s
L×N

j=1

T� (i, j)P� ( j)
P� (i) , (37)

which is independent of the angular co-ordinate. The spatial variation of the force for
different Helmholtz numbers is shown in Figure 7, while the spatial variation of the
effective mobility for different Helmholtz numbers is shown in Figure 8. The maximum
effective mobility occurs at the centre, and there is a rapid decrease in the effective
mobility occurs at the centre, and there is a rapid decrease in the effective mobility as
ka increases. For rQ 0·7a the phase of the effective mobility is constant and
independent of ka. However, towards the edge of the contact area, there are significant
phase variations.

Figure 8. The spatial variation of the normalized effective mobility for ka=1, 3 and 5.
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Figure 9. A schematic of the measurement set-up for uniform contact velocity.

Figure 10. The point impedance of the test plate.

6. EXPERIMENTAL DETERMINATION OF SURFACE MOBILITY FOR UNIFORM
VELOCITY DISTRIBUTION

Driving point mobility is normally determined by measuring the input force and the
response velocity, using either an impedance head or a force transducer and an
accelerometer, and correcting for any transducer mass loading effects. The measurement
of surface mobility is, however, much more difficult, as in the general case the exact force
and velocity distribution over the contact area is not known.

For the particular case of a uniform, conphase velocity distribution over the contact
area, the response velocity may be measured directly, and the surface mobility determined
from equation (1), after correcting the force measurement for any mass loading. A close
approximation to a uniform velocity distribution over the contact area will occur when
an isolator with a stiff base is mounted on a relatively flexible plate. In this series of
experiments this condition was achieved by gluing an aluminium cone to a 1 mm thick
plate measuring 2·4 m×1·2 m. The edges of the plate were embedded in sand to
approximate anechoic boundary conditions and hence simulate an infinite plate; see Figure
9. The cone was glued to the plate centre and driven by a Brüel and Kjaer type 4810 shaker
attached through a type 8200 force transducer, with the response measured by a Brüel and
Kjaer 4374 accelerometer. Brüel and Kjaer type 2635 charge amplifiers were used for all
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Figure 11. A comparison of experimental (q) and theoretical (——) results for constant velocity contact.

signal conditioning and spectral analysis was performed using a Hewlett Packard 35665A
analyzer. Broadband random excitation was used during the experiments.

The input mobility was determined by dividing the response velocity at the centre of
contact area by the input force, with the force corrected for the mass loading of the cone,
accelerometer and attachment hardware. The distribution of the velocity over the contact
area was measured to ensure that it was uniform. Measurements of the plate driving point
impedance via a point connection were made to assess the quality of the anechoic
terminations; see Figure 10. Measurements of the surface mobility were made for four
different contact patch sizes, of 25 mm, 50 mm, 100 mm and 150 mm diameter. The surface
mobility measurements are compared to the theoretical curve for uniform velocity
distribution in Figure 11.

The theoretical value of the point impedance of a 1 mm thick infinite plate, calculated
using z=8z(Brh), is 32·968 Ns/m. The measured point, as shown in Figure 10, is in good
agreement with the theoretical figure, indicating that the plate models an infinite plate well.

The surface mobility data for the cones shows excellent agreement with the theoretical
curves. It clearly demonstrates the decrease in mobility as the Helmholtz number increases.
In Figure 11 it is shown that the results for surface mobility between cones are consistent,
and that the quality of the agreement between the theoretical and experimental data is not
dependent upon the cone size.

7. CONCLUDING REMARKS

Using both the complex power approach and the effective mobility approach, the surface
mobility for a circular contact area on an infinite plate has been developed. Two cases,
of uniform conphase force and of uniform conphase velocity at the interface, have been
considered. For the latter case a discretized model was used to derive the force distribution
over the contact region. It is shown for both conditions that the surface mobility decreases
rapidly as the Helmholtz number increases. This implies that there is a reduction in the
power transmitted through the large contact area compared to a point contact, for the
same net force. The magnitude of the effective point mobility for both uniform force and
uniform velocity cases varies greatly over the contact region and is largest at the centre.
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Experimental measurements of the surface mobility for a uniform velocity distribution
are presented and show excellent agreement with the theoretical results.
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