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In this paper, the free and forced vibration of a fixed-free Euler–Bernoulli beam in
contact with a rigid cylindrical foundation is studied. One end of the beam is clamped at
the top of the rigid cylindrical foundation and the other end is free. The vibrations are
separated into upward and downward configurations, since a unilateral constraint is added
by the cylindrical foundation. The partial differential equation, describing the transverse
vibration of the cantilever beam, and the transversality condition, describing the contact
position between the beam and the cylindrical foundation, are derived by calculus of
variation and Hamilton’s principle. This is a moving boundary problem since the unknown
contact position has to be determined as part of the solutions. A Galerkin approximation
is used to reduce the partial differential equation to a set of non-linear ordinary differential
equations. The transient amplitudes and the phase planes of the vibration and the contact
length are simulated by a Runge–Kutta algorithm. The effects of initial condition, radius
parameter of the cylindrical foundation, externally static and harmonic excitations are
investigated and discussed.
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1. INTRODUCTION

The contact problems of an elastic layer (a thick plate or a beam) lying on an elastic or
rigid subspace foundation have received a good deal of attention for a long time. Civelik
and Erdogan [1, 2] solved the problem of an infinite strip resting on a rigid foundation
and subjected to upward and downward directed loads. In their work, vertical load was
used for solving a simple problem of lifting an elastic layer lying on a horizontal, rigid,
frictionless subspace. Oden and Kikuchi [3] developed a finite element formulation, which
is based on variational inequalities, for several classes of free boundary–value problems
in mechanics. In particular, they considered contact problems in elasticity involving
contact of one elastic body on the other. The criterion was derived for the selection of
shape functions and the a priori error bounds were also established.

The problem involving beams of infinite length moving over supports, or acted upon
by moving loads was presented in a series of papers by Adams [4–6], Adams and Bodgy
[7] and Adams and Manor [8]. Adams [4, 5] studied an infinite elastic strip which rested
on a flat rigid foundation and was loaded by upward and downward concentrated forces.
Adams and Manor [8] investigated an infinite elastic beam which moved at a constant
speed across a frictionless rigid step. Steady state solutions were obtained in closed
form using both Euler–Bernoulli and Timoshenko beam models. The contact of an
elastic cantilever beam over a flat rigid foundation was considered by Kikuchi and
Oden [9]. The computed shape of deflection was compared with those furnished by the
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Figure 1. Physical model of the cantilever beam in the upward configuration with the rigid cylindrical
foundation.

elementary beam theory. However, these studies were concerned with flat rigid foundation
only.

Adams [10] studied an infinite elastic strip which moved at a constant speed across a
frictionless rigid foundation possessing a step discontinuity. Adams and Manor [11]
investigated an infinite beam which moved at a constant speed across a frictionless rigid
base containing a cut-out. In these studies, they focused on the steady state solution of
foundation discontinuity related to parameters of a beam system. Buffinton and Kane [12]
studied the behavior of a uniform beam moving longitudinally at a prescribed rate over
two bilateral supports. Equations of motions were formulated by regarding the supports
as kinematical constraints. Recently, Tan et al. [13, 14] analyzed the vibration of a
translating string, controlled through hydrodynamic bearing forces, by using the transfer
function method. Interactions between the string response and the bearing film were
described by the bearing impedance function. Wang and Kim [15] developed a new analysis
method to solve the contact problem of a thin beam impacting against a stop. The method
includes the full dynamics of all the elements of the system in the formulation.

In this paper, the results of the static equilibrium of a cantilever beam under a
concentrated load of Fung and Fann [16] are extended to study the free and forced
vibration of a cantilever beam in contact with a rigid cylindrical foundation. The physical
model is shown in Figures 1 and 2 for the beam vibrating upward and downward
respectively. When the beam vibrates upward, it involves the usual vibration problem of
a cantilever beam. When the beam vibrates downward, a moving boundary exists due to
the beam coming into contact with the cylindrical foundation. The geometric constraint
of the cylindrical foundation, perpendicular and continuous conditions are introduced into

Figure 2. Physical model of the cantilever beam in the downward configuration with the rigid cylindrical
foundation.
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Hamilton’s principle and calculus of variation to derive the governing equation and the
moving boundary condition. The procedure for solving such equations involves a Galerkin
approximation which reduces the partial differential equations to a set of non-linear
ordinary differential equations.

2. FORMULATIONS OF PHYSICAL MODEL

In this paper the vibration of a cantilever beam clamped at the top of a rigid cylindrical
foundation is studied. The beam is subjected to a general distributed load q(s, t) and
modeled by the Euler–Bernoulli theory. This problem is different from that of a simple
cantilever beam. Since the vibrations of the beam in the upward and downward directions
are quite different, they have to be analyzed separately. Primarily, configurations of this
beam are divided into two parts: upward and downward vibration configurations. In the
upward vibration configuration, as shown in Figure 1, the beam vibrates without the
geometric constraint of the rigid cylindrical foundation. In the downward configuration,
as shown in Figure 2, a part of the beam is constrained by its contact with the rigid
cylindrical foundation, and the range of contact is time-dependent.

In the following sections, the governing equations and boundary conditions of the
upward and downward configurations are formulated separately by using Hamilton’s
principle and calculus of variation. The notation appears in Appendix B.

2.1.   

The upward vibration configuration is shown in Figure 1. The Osy is the fixed
co-ordinate with i and j unit vectors. When the beam vibrates upward, it involves the usual
vibration problem of a cantilever beam and the formulation is easy. Assume the beam has
length l and is made of homogeneous and uniform material. Vertical displacement v(s, t)
of the beam at location s is positive in the positive j direction.

Hamilton’s principle is

0=g
t2

t1
0g

l

0

dL(s, t; v,t , v,ss ) ds+g
l

0

dW ds1 dt, (1)

where the Lagrangian density is

L(s, t; v,t , v,ss )= 1
2rAv2

,t (s, t)− 1
2EIv2

,ss (s, t),

and r is the mass density per unit length, A is the cross-sectional area of the beam, E is
Young’s modulus of the beam, I is the moment of inertia. dW=−qdv is the virtual work
done by the external force q(s, t).

Since dv(s, t) is arbitrary in the internal 0Q sQ l, and the boundary conditions are
clamped at s=0 and free at s= l, one obtains the governing equation

rAv,tt (s, t)+EIv,ssss (s, t)=−q, 0Q sQ l, (2)

with boundary conditions

v(0, t)=0, v,s (0, t)=0, v,ss (l, t)=0, v,sss (l, t)=0. (3a–d)

For convenience in studying the effects of system parameters, the following
non-dimensional variables and parameters are defined:

V1 = v/l, j= s/l, t=vTt, v2
T = p4EI/rAl4, VR =vf /vT

Q0 = q0l 3/EI, Q1 = q1l 3/EI, Q= ql 3/EI=Q0 +Q1 cos VRt, (4)
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where V1 is used to describe the amplitude of the upward vibration and the external
excitation q(s, t)= q0(s)+ q1 cos vft is assumed. Then equation (2) becomes

V1,tt (j, t)+ (1/p4)V1,jjjj (j, t)=−Q, 0Q jQ 1 (5)

V1(0, t)=0, V1,j (0, t)=0, V1,jj (1, t)=0, V1,jjj (1, t)=0. (6a–d)

By Galerkin’s method, a suitable set of orthogonal basis functions fn (j), which satisfies
geometric boundary conditions, is chosen to express the unknown displacement V1(j, t).
Thus, one seeks a solution V1(j, t) of equation (5) in the form

V1(j, t)= s
a

n=1

fn (t)fn (j), (7)

where fn (t) are the transient amplitudes. A typical choice for fn (j, t) in vibration problems
are the normal modes of the associated linear problem. Thus one has

fn (j)=zln /Vn{[cosh lnj−cos lnj]+Ln [sinh lnj−sin lnj]}, (8)

in which ln is the natural frequency of the nth mode, and

Ln =(sin ln −sinh ln)/(cos ln +cosh ln ),

Vn = ln + 1
4(cosh 2ln +cos 2ln −2)−cos ln sinh ln −sin ln cosh ln

+Ln{1
2(cosh 2ln −cos 2ln )−2 sin ln sinh ln}

+L2
n {1

4(sinh 2ln −sin 2ln )+ cos ln sinh ln −sin ln cosh ln}.

It can be verified that {fn (j), n=1, 2, . . . } forms an orthonormal basis. Substituting
expression (7) into the equation of motion (5), taking the inner product with fm (j),
m=1, 2, 3, . . . , and making use of boundary conditions (6) and the orthogonality
properties of {fn}, one obtains a system of a countable infinite number of linear ordinary
differential equations for fm (t), m=1, 2, . . . :

f� m (t)+ (l4
m /p4)fm (t)=−QK4m , (9)

where

K4m =g
1

0

fm (j) dj=
1
lm

{sinh lm −sin lm +Lm (cosh ln +cos ln −2)}.

2.2.   

The downward vibration configuration is shown in Figure 2. When the beam vibrates
downward, it will come into contact with the cylindrical foundation. At any time t, it is
assumed the contact length is g(t) which is measured from s=0. For small vibrations, it
is reasonable to assume that the contact length is continuous, i.e., a multiple contact point
problem is excluded. This is valid for lower modes of vibration.

For the convenience of analysis, one calls s= g(t) the separation point, g− and g+ are
the positions just before and just after the separation point respectively. In the downward
vibration configuration, the length region, 0E sE g−, comes into contact with the
cylindrical foundation, and the length region, g+ E sQ l is free to vibrate without
constraint. Before formulating the governing equation, the following characteristics of the
geometric constraint, perpendicular and continuous conditions, and relationship of virtual
variable must be determined first.
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2.2.1. Geometric constraint of displacement

The geometric constraint will be investigated in the length region 0E sE g−. In Figure
2, Osy is the fixed frame which has origin O at the top of the cylindrical foundation. The
position vector of any beam point s before deformation is

Ri(s)= s i (10)

and the displacement field is

U(s, y, t)=−yv,s (s, t) i+ v(s, t) j, (11)

where i, j are unit vectors of the fixed co-ordinate, and v(s, t) has a positive value in the
positive j direction. This displacement in the i direction comes from the foreshortening
effect. Therefore, the position vector after deformation is

Rf(s, y, t)=Ri(s)+U(s, y, t)= (s− yv,s (s, t)) i+ v(s, t) j. (12)

The geometric constraint condition is defined by the fact that the radius length a is
constant from the center of the cylindrical foundation to the neutral axis of the beam which
is in contact with the cylindrical foundation in the length region 0 E sE g−. Thus, the
geometric constraint condition can be written as

C(v(s, t), s)= s2 + v2(s, t)+2av(s, t)=0, 0E sE g−. (13)

At point s of the neutral axis of the beam which is in contact with the foundation, the
displacement v(s, t) can be found from equation (13) as

v(s, t)=−a+za2 − s2, 0E sE g−. (14)

2.2.2. Perpendicular condition
The radial vector from the center of the cylindrical foundation, (0, −a), to the point

s of the neutral axis of beam after deformation, (s, v(s, t)), is

Rr = si+(a+ v(s, t)) j, 0E sE g−. (15)

From the geometric relationship that the radial vector Rr is perpendicular to the
tangential vector 1Rr/1s, one obtains

Rr · 1Rr/1s=0, 0E sE g−. (16)

From the above equation, one has

v,s (s, t)=−s/(a+ v(s, t)), 0E sE g−. (17)

which may be called the perpendicular condition. It is seen that the position s, the
displacement v and the slope v,s are related in (17). It should be noted that s= g− is the
left-side point of the separation point and satisfies the relationship of (17).

2.2.3. Continuous condition

In the downward vibration, the beam touches the cylindrical foundation, and there exists
a contact force in the interval 0Q sQ g−(t). The beam in the other interval g+(t)Q sQ l
is free to vibrate. Thus the force exerted on the beam at s= g(t) is not continuous. It can
be observed that the displacement v(s, t) and slope v,s (s, t) of a beam under piecewisely
distributed load or concentrated load are continuous everywhere (Gere and Timoshenko
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[17]). This means that, the left- and right-hand of separation point s= g will have the same
displacement and slope, i.e.,

v(g−, t)= v(g+, t)=−a+za2 − g2, v,s (g−, t)= v,s (g+, t)=−g/(a+ v(g, t)).

(18a, b)

However, the term v,ss (s, t) may not be continuous at the point s= g(t) where the load
is not continuous. Equations (18a, b) are the continuous conditions of displacement and
slope respectively.

2.2.4. Relationship of virtual variables
In the following section, Hamilton’s principle will be used to derive the dynamic

equilibrium equation. Since both g and v(g) are unspecified, the relationship of dv(g) and
dv,s (g) with respect to dg will be determined first. Although the separation point s= g and
the displacement of the separation point v(g, t) are unspecified, they are related by the
geometric constraint of (13). Since the position s= g, the displacement v(g, t) and slope
v,s (g, t) are continuous, one has the relationship of virtual variables as

dg− = dg+, dv(g−, t)= dv(g+, t), dv,s (g−, t)= dv,s (g+, t). (19)

Figure 3 shows the external and comparison curves in the v versus s plane. An extremal
curve v(s, t), terminating at point s= g, and a neighboring comparison curve v*(s, t),
terminating at the point s= g+ dg, are shown. It is apparent that
dv(s, t)= v*(s, t)− v(s, t) has meaning only in the interval [g+ dg, l], since v*(s, t) is not
defined for s$(g, g+ dg). By inspection of Figure 3 one has

dv̄= v*(g+ dg, t)− v(g, t)cv,s (g, t)dg+ dv(g, t), (20)

where the relation is equal to first order, i.e., the terms of the higher order than first order
in dv and dg are neglected.

The point s= g+ dg of the comparison curve is also constrained to the geometric
constrain condition (13), that is,

0=C(v*(g+ dg, t), g+ dg)=C(v(g, t)+ dv̄, g+ dg)

=C(v(g, t), g)+ (1C/1v(g, t))dv̄+(1C/1g)dg

=2[a+ v(g, t)]dv̄+2gdg. (21)

Figure 3. The extremal and comparison curves at the separation point.
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Eliminating dv̄ from (20) and (21), one gets

dv(g, t)=−{v,s (g, t)+ g/(a+ v(g, t))}dg, (22)

which gives the relationship between dv(g, t) and dg.
From the slope relationship (17), the slope constraint condition of the neutral axis of

the beam which is in contact with the cylindrical foundation can be written as

0=C'[s, v(s, t), v,s (s, t)]= v,s + s/(a+ v(s, t)) 0E sE g−. (23)

The above equation could also be obtained directly by taking the derivative of (13) with
respect to s.

dv̄,s is defined as the slope difference between comparison and extremal curves, and
written as

dv̄,s (g, t)= v*,s (g+ dg, t)− v,s (g, t)cdv,s (g, t)+ v,ss (g, t)dg. (24)

The slope at point s= g+ dg of the comparison curve is also constrained to the slope
constraint (23), that is,

0=C'[g+ dg, v*(g+ dg, t), v*,s (g+ dg, t)]=C'[g+ dg, v(g, t)+ dv̄, v,s (g, t)+ dv̄,s ]

=C'[g, v(g, t), v,s (g, t)]+
1C'
1g

dg+
1C'
1v

dv̄+
1C'
dv,s

dv̄,s =
1

(a+ v)
dg−

g

(a+ v)2 dv̄+ dv̄,s .

(25)

It is seen that dg, dv̄ and dv̄,s are related in (25). Using (20), (21) and (24), and eliminating
dv̄,s in (25), one obtains

dv,s (g2, t)=−61+ v2
,s (g2, t)

a+ v(g2, t)
+ v,ss (g2, t)7dg2, (26)

which states the relationship between dv,s (g2, t) and dg2.
The velocity at the point s= g(t) can be obtained by taking the total derivative of v(s, t)

with respect to t as

Dv(g, t)/Dt= v,t (g(t), t)+ v,s(g(t), t)ġ=D/Dt{−a+za2 − g2(t)}. (27)

Equation (27) can be rearranged as

v,t (g(t), t)=−ġ(t)$v,s (g(t), t)+
g(t)

za2 − g2(t)%=0, (28)

which means physically that the velocity of displacement in the y direction is zero at the
separation point s= g(t).

2.2.5. Hamiliton’s Principle with moving boundary

The formulation in the downward configuration is different from that in the upward
configuration. The geometric constraint, the perpendicular and continuous conditions and
the relationship of both dv(g) and dv,s (g) with respect to dg will be used in the formulation.
First, the total integral is divided into two domains including 0E sE g− and g+ E sE l.
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If one considers the geometric constraint (13) in the length 0E sE g−, Hamilton’s
principle becomes

0= d g
t2

t1
$g

g−(t)

0

(L+ lC) ds+g
l

g+(t)

L ds% dt

+g
t2

t1
$g

g−(t)

0

+g
l

g+(t)%dW ds dt, (29)

where

L= 1
2rAv2

,t (s, t)− 1
2EIv2

,ss (s, t). (30)

t1 and t2 are two arbitrary end times, and l is the unknown function, which is referred to
as Lagrangian multiplier in the length 0E sE g−(t). The others are the same as those in
the upward configuration.

Using the Lagrangian density (30) and the relationship of dv(g, t) and dv,s (g, t) with
respect to dg, shown in equations (22) and (26), respectively, one obtains the governing
equation

rAv,tt (s, t)+EIv,ssss (s, t)−2l[a+ v(s, t)]=−q 0Q sQ g− (31a)

rAv,tt (s, t)+EIv,ssss (s, t)=−q g+ Q sQ l (31b)

and the boundary conditions

v(0, t)=0, v,s (0, t)=0, v(g2(t), t)=−a+za2 − [g2(t)]2, (32a–c)

v,s (g2(t), t)=−g2(t)/(a+ v(g2, t)), v,ss (l, t)=0, v,sss (l, t)=0. (32d–f)

Since dg= dg− = dg+, the corresponding transversality equation is also obtained as
1
2v

2
,ss (g−, t)− 1

2v
2
,ss (g+, t)+ {(1+ v2

,s (g−(t), t))/(a+ v(g−(t), t))}v,ss (g−(t), t)

− {(1+ v2
,s (g+(t), t))/(a+ v(g+(t), t))}v,ss (g+(t), t)=0 (33)

From equations (31–33), the following observations are made: (1) Equation (31a)
describes the behavior of the beam in the contact domain 0Q sQ g− with the boundary
conditions (32a–d). The displacements of all points in this domain can be obtained from
the geometric constraint (14). (2) Equation (31b) describes the beam vibration in the
domain g+ Q sQ l with the boundary conditions (32c–f). Equation (31b) is linear,
boundary conditions (32c, d) are non-homogeneous while the transversality condition (33)
is non-linear. (3) Equation (33) is called the transversality condition [18] which describes
the condition that the separation point satisfies. Substituting v(g2, t) and v,s (g2 , t), shown
in (32c, d), into (33), one will obtain v,ss (g2, t) which are functions of a and g(t) only.

The same non-dimensional variables and parameters as (4) of the upward vibration are
used, except that V2 = v/l is used to describe the amplitude in the downward configuration.
Non-dimensionalizing (31b), (32c–f) and (33), one obtains the following moving boundary
problem:

V2,tt (j, t)+ (1/p4)V2,jjjj (j, t)=−Q, G+ Q jQ 1, (34)

V2
2,jj (G+, t)+

2a2

(a2 −G2)3/2 V2,jj (G+, t)+
a4

(a2 −G2)3 =0, (35)

V2(G+(t), t)=D1(G+(t)), V2,j (G+(t), t)=D2(G+(t)),

V2,jj (1, t)=0, V2,jjj (1, t)=0, (36a–d)
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where (35) is obtained from (33) and

a= a/l, G= g/l, D1(G+(t))=−a+za2 − [G+(t)]2,

D2(G+(t))=−G+(t)/(a+V2(G+(t), t)).

3. APPROXIMATE SOLUTION OF THE DOWNWARD CONFIGURATION

3.1.  

Since the boundary conditions (36a) and (36b) are not homogeneous, it is difficult to
apply directly Galerkin’s method. Therefore, it is necessary to use variable transformation
to eliminate the non-trivial boundary conditions.

Let the displacement function V2(j, t) be of the form

V2(j, t)=V3(j, t)+W(j, t), (37)

where

W(j, t)=D2(G+(t))(j−G+)+D1(G+(t)). (38)

Substituting equations (37) and (38) into (34–36) and rearranging them, one obtains

V3,tt (j, t)+ (1/p4)V3,jjjj (j, t)=−W,tt (j, t)−Q, G+ Q jQ 1 (39)

V2
3,jj (G+, t)+

2a2

(a2 −G2)3/2 V3,jj (G+, t)+
a4

(a2 −G2)3 =0, (40)

V3(G+, t)=0, V3,j (G+, t)=0, V3,jj (1, t)=0, V3,jjj (1, t)=0. (41a–d)

After variable transformation (37), the non-homogeneous boundary conditions (36a, b) at
j=G+ become the clamped condition (41a, b). Equation (40) is the transversality
condition and has two repeated solutions as:

V3,jj (G+, t)=−a2/(a2 −G2)3/2 (42)

It is seen from (42) that the transversality condition is dependent on the parameters a and
G. The curvature in equation (42) is just equal to the curvature of the cylindrical
foundation at j=G+. In considering the special case, G+ =0, the curvature is equal to
−1/a.

3.2.  

The approximation solution derived in this section is based on a Galerkin approximation
with time-dependent basis function, which was used by Wang and Wei [19] to analyze
vibration in a moving flexible robot arm, used by Yuh and Young [20] to study the
dynamic modelling of an axial moving beam in rotation, and used by Fung and Cheng
[21] to study the free vibration of a string/slider non-linear coupling system. To derive the
approximate solution for the lateral vibration of a cantilever beam with the moving
boundary at j=G(t), first one considers the boundary-value problem

cn,jjjj (j, t)− b4
n (t)cn (j, t)=0, G+ E jE 1 (43)

cn (G+)=0, cn,j (G+)=0, cn,jj (1)=0, cn,jjj (1)=0. (44a–d)
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Since the spatial domain is time-dependent, both eigenfunction cn (j, t) and its
corresponding eigenvalue bn (t) are time-dependent. An explicit expression cn (j, t)
satisfying (43) is given by

cn (j, t)=An [cosh bn (j−G)+ cos bn (j−G)]+Bn [cosh bn (j−G)− cos bn (j−G)]

+Cn [sinh bn (j−G)+ sin bn (j−G)]+Dn [sinh bn (j−G)− sin bn (j−G)].

(45)

where the constants An , Bn , Cn and Dn can be found from the four boundary conditions
(44a–d). For a non-trivial solution of cn (j, t), one obtains the frequency equation

cos bn (1−G+) cosh bn (1−G+)=−1. (46)

The first four roots of the above equation are

(1−G+)b1 = l1 =1·875104, (1−G+)b2 = l2 =4·694091,

(1−G+)b3 = l3 =7·854757, (1−G+)b4 = l4 =10·995541.

which can be written as the general form

bn = ln /(1−G+), n=1, 2, 3, 4, . . . . (47)

Note that ln is independent of t.
Using boundary conditions (44) and the resulting shape functions are obtained

cn (j, t)=X ln

[1−G+(t)]Vn6$cosh
ln

(1−G+)
(j−G+)−cos

ln

(1−G+)
(j−G+)%

+Ln$sinh
ln

(1−G+)
( j−G+)− sin

ln

(1−G+)
(j−G+)%7 (48)

where Vn is the same as in the upward vibration. Substituting G+ =0 into (48), the shape
function is the same as fn (j) in equation (8) of the upward vibration. Thus, it is believed
that the derivative is correct.

For applying Galerkin’s method, the set of orthogonal basis function (48) is chosen to
expand the unknown displacement V3(j, t). It can be verified that {cn (j, t), n=1, 2, . . . }
forms a set of orthonormal basis functions. Thus, one seeks the solution V3(j, t) of
equation (39) in the form

V3(j, t)= s
a

n=1

gn(t)cn (j, t) (49)

Since cn (j, t) in (48) includes the moving boundary position s= g(t), it is the function
of position j and time t. On substituting (49) into the equation of motion (39) and taking
the inner product from G+ to 1 with cm (j, t), and using the boundary conditions (41) and
the orthogonality properties of {cn}, one obtains a system of linear time-varying ordinary
differential equations for gm (t):

g̈m (t)+ s
a

n=1

2Anm (G, G� )ġm (t)+6 s
a

n=1

Bnm (G, G� , G� )+
l4

m

p4(1−G+)47gm (t)

=−Im (G, G� , G� )−Q(1−G)K4m , m=1, 2, . . . , (50)
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where the time-dependent coefficients are

Anm (G, G� )=g
1

G+

c� n (j, t)cm (j, t) dj= J1nm (G)G� , (51a)

Bnm (G, G� , G� )=g
1

G+

c� n (j, t)cm (j, t) dj= J1nm (G)G� + J2nm (G)G� 2, (51b)

Im (G, G� , G� )=g
1

G+

W,tt (j, t)cm (j, t) dj= J3m (G)G� 2 + J4m (G)G� , (51c)

in which J1nm (G), J2nm (G), J3m (G) and J4m (G) are functions of G only and the detailed
expressions are shown in Appendix A.

Substituting (49) into (42), one obtains the transversality condition:

s
a

m=1

gm (t)cm,jj (G, t)=−
a2

(a2 −G2)3/2 . (52)

The transient amplitudes of the upward and downward configurations will be obtained
by the Runge–Kutta numerical integration method. It is easy to obtain the transient
amplitude fm (t) of the upward vibration by integrating equation (9). However, the
transient amplitude gm (t) of the downward vibration couples with G(t), G� (t) and G� (t) in
(50). Also, the transversality condition (52) shows the coupling between gm (t) and G(t).

4. NUMERICAL TECHNIQUE

It is obvious that gm (t) and G(t) describe the vibration behavior of the downward
configuration. The results could be solved from (50) and (52). Equation (50) is an ordinary
differential equation for g̈m (t) and is coupled with G(t), G� (t) and G� (t). In order to solve
equation (50), the equation for G� (t) should be obtained from (52) by differentiating twice
with respect to t first. Subsequently, the equations for g̈m (t) and G� (t) are combined to be
solved simultaneously.

4.1.       

Taking first and second time derivatives of the transversality condition (52), one obtains
the following equations

s
a

m=1

hmgm (t)=H0(G), s
a

m=1

hmġm (t)=H1(G)G� ,

s
a

m=1

hmg̈m (t)=H1(G)G+H2(G)G� 2, (53a–c)

where

hm =−
2l5/2

m

V1/2
m a2 , H0(G)=

(1−G)5/2

(a2 −G2)3/2 , H1(G)=
(1−G)3/2(6G−G2 −5a2)

2(a2 −G2)5/2 ,

H2(G)=
(1−G)3/2(3−G)

(a2 −G2)5/2 +
(1−G)1/2(6G−G2 −5a2)

(a2 −G2)5/2 $−3
4

+
5G(1−G)
2(a2 −G2)%.

In equation (53a), multiplying both sides by (a2 −G2)3/2 and squaring, a six-degree
polynomial of G(t) will be obtained. From physical examination, the value of G(t) must
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be a positive real root. Equation (53a) shows the relationship between gm (t) and G(t). Once
gm (t) is known, G(t) can be determined numerically. Substituting G(t) and ġ(t) into
equation (53b) will solve for the velocity G� (t) of the separation point. From equation (53c),
one obtains the acceleration relationship of the transversality condition as

s
a

m=1

hmg̈m −H1(G)G� =H2(G)G� 2. (54)

Substituting (51a, c) into (50), one obtains the acceleration relationship of the governing
equation as

g̈m +6J4m (G)+ s
a

n=1

J1nm (G)gm7G�
=6− s

a

n=1

2J1nm (G)ġm −$ s
a

n=1

J2nm (G)+ J3m (G)%G� 7G�
−(l4

m /p4(1−G)4)gm −Q(1−G)K4m . (55)

It is seen from (54) and (55) that g̈m (t) and G� (t) are functions of ġm (t), gm (t), G� (t) and
G(t). Thus, the solutions gm (t) and G(t) could be obtained by integrating (54) and (55)
simultaneously.

Combining equation (54) with (55) and writing in matrix form, one obtains

K L K L−H1(G) h1 h2 · · · · hm G�
H H H H
H H H H

J41(G)+ s
n

j=1

J1j1(G)g1 1 0 · · · · 0 g̈1H H H H
H H H H
H H H H

J42(G)+ s
n

j=1

J1j2(G)g2 0 · · · · · ·H H H H
H H H H

···
···

··· · · · ···
···

···H H H H
· · · · · · 0 ·H H H H

H H H H
H H H HJ4m (G)+ s

n

j=1

J1jm (G)gm 0 · · · · 0 1 g̈m

k l k l

K L K L
H2(G)G� 0 · · · 0 G�H H H H

H H H H
− s

n

j=1

2J1j1ġ1 −0s
n

j=1

J2j1(G)+ J31(G)1G� 0 · · · 0 ġ1H H H H
H H H H
H H H H

= − s
n

j=1

2J1j2ġ2 −0s
n

j=1

J2j2(G)+ J32(G)1G · ··· · ·H H H H
H H H H
H H H H···

···
· · ·

···
···H H H H

H H H H
− s

n

j=1

2J1jmġm−0s
n

j=1

J2jm (G)+ J3m (G)1G� 0 · · · 0 ġmH H H H
k l k l
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K L0 · · · · · · 0
H H· −l4

1 /p4(1−G)4 0 · · · · 0H H
· 0 −l4

2 /p4(1−G)4 · · ·H H
H H

+

···
···

···
···

···
···H H

· · · 0 · ·H H
0 0 · · 0 −l4

m /p4(1−G)4k l

G 0

g1 K41

· K42G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

··· −Q(1−G) ··· (56)

·

gm K4m

With the suitable initial conditions gm (0) and G(0), gm (t) and G(t) in (56) could be solved
simultaneously. This procedure, combining the accelerations of both the governing
equation and the transversality condition is similar to that used by Haug [23] in the matrix
formulation of the constrained equations of motion.

4.2.      

In this paper, the upward and downward configurations are separately analyzed in the
vibration analysis. The transversality condition (52) is used to judge whether the vibrating
beam is in the upward or downward configuration. It is convenient to call it the
transferring time; the time for transferring between upward and downward configurations.
At the transferring time, the following conditions should be satisfied: (1) transferring from
the upward configuration to the downward one, the contact length begins with s=G=0
and increases with time when the beam vibrates downward continuously. Thus, the velocity
G� (tt ) of the contact position, where tt is the transferring time, should not be zero and could
be determined from the transferring condition (3). (2) At the instant of transferring
between upward and downward configurations, the displacements are equal, i.e.,
V1(j, tt )=V2(j, tt ). It can be written in the explicit form as

s
a

m=1

fm (tt )fm (j)= s
a

m=1

gm (tt )cm (j, tt )+W(j, tt ). (57)

Substituting G=0 into (57) and using fm (j)=cm (j, tt )=G=0 and W(j, tt )=G=0 =0, one
obtains

fm (tt )= gm (tt ). (58)

Equation (58) states that the amplitudes of the upward and downward configurations are
equal at the transferring time tt . (3) The velocity of the vibrating beam in the upward
configuration must transfer to that in the downward configuration. Thus, at the
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transferring time, it is necessary that V1,t (j, tt )=V2,t (j, tt ). Expanding in terms of
eigenfunctions, we obtain

s
a

m=1

f� m (tt )fm (j)= s
a

m=1

{ġm (tt )cm (j, tt )+ gm (tt )c� m (j, t )}+D� 2(tt )(j−G). (59)

At the transferring time, G must be equal to zero. Thus, one has fm (j)=cm (j, tt ). Taking
the inner product of equation (59) with cn (j) from G to 1 and using the orthogonal
properties of {cn}, one obtains a system of linear time-varying ordinary differential
equations:

f� n (tt )= ġn (tt )+6 s
a

m=1

Vn

ln
J1nm (0)gm (tt )−

K5n

a XVn

ln7G� (tt ), (60)

which relates f� n (tt ), ġn (tt ), and G� (tt ). It is seen that from condition (2) the amplitude fm (tt )
transfers to gm (tt ) with condition (1) G(tt )=0. From (60), the velocity f� m (tt ) transfers to
ġm (tt ) and G� (tt ). Because G� (tt )$ 0, an extra condition is needed to satisfy such a
transformation in (60). It is clear that the time derivative of the transversality condition
(53b) also holds. Combining equation (60) with (53b), one obtains the following matrix
form:

−H1(G) h1 h2 · · · · hn G�K L K L
H H H H
H H H HV1

l1
s
m

j=1

J11j (G)gj (tt )−
K51

a XV1

l1
1 0 · · · · 0 ġ1H H H H

H H H H
H H H H

V2

l2
s
m

j=1

J12j (G)gj (tt )−
K52

a XV2

l2
0 1 · · · · · ġ2H H H H

H H H H
H H H H· · · · · · · · ·
H H H H* * · · · · · · *H H H H

· · · · · · · 0 ·H H H H
H H H H
H H H HVn

ln
s
m

j=1

J1nj (G)gj (tt )−
K5n

a XVn

ln
0 · · · · 0 1 ġn

k l k l

K L K L0 · · · · · · 0 1
H H H H

· 1 0 · · · · 0 f� 1H H H H
· 0 1 · · · · · f� 2H H H H

= · · · · · · · · · . (61)H H H H
H H H H···

···
··· · · · · · ·

···
···H H H H

· · · · · · · 0 ·H H H H
0 0 · · · · 0 1 f� nk l k l

Equation (61) is used to calculate the values of G� , ġ1, ġ2, . . . , ġn for the given values
f� 1, f� 2, . . . , f� n . Details of J1nm and K5n are shown in the Appendix. It is worth noting that
the n values of f� 1, f� 2, . . . , f� n in equation (61) are used to determine the n+1 values
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G� , ġ1, ġ2, . . . , ġn at the transferring time. (4) When the beam begins to come into contact
with the cylindrical foundation, one has V1,jj (0, tt )=V2,jj (0, tt )=−1/a, i.e., the curvature
at the point j=G=0 is equal to −1/a. Taking twice the derivative of both V1(j, t) and
V2(j, t) with respect to j and setting j=G=0, one obtains

s
a

m=1

fm (tt )
2l5/2

m

V1/2
m

= s
a

m=1

gm (tt )
2l5/2

m

V1/2
m

=−
1
a

. (62)

Equation (62) could be used to determine the transferring time tt in the numerical
algorithm.

4.3.  

If the initial conditions fm (0) and f� m (0) are given in the upward vibration configuration
the motion is obtained completely by integrating equation (9) by the Runge–Kutta
method. When vibration is in the upward configuration, the conditions
V1(0, t)=V1,j (0, t)=0 always hold at the clamped end j=0.

If the initial conditions fm (0) and f� m (0) are so small that the beam does not come into
contact with the cylindrical foundation, the vibration is the same as that of a cantilever
beam without geometric constraint.

When the beam begins to touch the cylindrical foundation, from condition (4), the
criterion V3,jj (0+, tt ) is equal to −1/a. For simplicity, taking m=1 in (62), the criterion
of contact condition (4) becomes

g1(tt )=−V1/2
1 /2l5/2

1 a (63)

The relationship between g1(tt ) and a is plotted in Figure 4. If the initial conditions
ġ1(0)=0 and g1(0)q g1(tt ) are applied in the downward vibration, the beam will not come
into contact with the cylindrical foundation. The contact and no contact regions are shown
in Figure 4.

Figure 4. The contact and no contact regions shown in the plane of the transient amplitude g1 versus the
dimensionless cylindrical radius parameter a.
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Figure 5. Relationship between the transient amplitude g1 and the contact length G of the transversality
condition with a=0·2, 0·4, 0·6, 0·8, 1 and 2.

When the beam vibrates in the downward configuration, the transversality condition
always holds at j=G(t). Taking m=1, one writes (52) in the form

g1l
5/2
1 /V1/2

1 =−a2(1−G)5/2/2(a2 −G2)3/2, (64)
which describes the relationship of g1, a and G. Figure 5 is plotted from (64) with various
values of the radius parameter a of the cylindrical foundation.

In Figure 5, considering the case of free vibration with a=0·6 and the initial
conditions f1(0)q 0·2 and f� 1(0)=0 given in the upward configuration, the beam
vibrates downward and f1(t) decreases and assumes a negative value. When f1(t)
reaches the value −V1/2

1 /2l5/2
1 a1 0·2, i.e., the curvature V1,jj (0+, t)=−1/a, point A is

the transferring point and the time t= tt . It is time for the downward configuration
to begin; G� (tt ) and ġ1(tt ) could be obtained from (61). With these initial
conditions g1(tt )= f1(tt ), ġ1(tt ), G(tt )=0 and G� (tt ) and integrating (56), g1(t) and
G(t) can be obtained. The solution is along the path from A to B as shown in
Figure 5, where point B is the assumed point with maximum contact length. Now, the
kinetic energy of the beam in the upward configuration is transferred to an increase in
the contact length and the vibration of the beam in the downward configuration. Thus,
after the contact occurs, the G(t) increases and g1(t) decreases along the path from
A to B.

From point B, the beam vibrates along the path to point A, g1(t) increases to
−V1/2

1 /2l5/2
1 a and G(t) decreases to zero. Then, the beam returns to the upward vibration

and completes one cycle motion. Based on the energy conservation of a free vibration
beam, the results shown in Figure 5 are correct.

5. NUMERICAL RESULTS AND DISCUSSION

The external excitation Q=Q0 +Q1 cos VRt may be divided into several kinds of
conditions: (a) Q=0; free vibration: (b) Q1 =0, Q=Q0; static forced vibration: (c)
Q0 =0, Q=Q1 cos VRt; harmonic forced vibration: (d) Without kinetic energy 1

2rAv2
,t , i.e.,
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neglecting rAvtt in (31a, b), the static equilibrium equations, boundary conditions and
transversality condition are, respectively.

EIv,ssss (s)−2l[a+ v(s)]=−q, 0Q sQ g−, EIv,ssss (s)=−q, g+ Q sQ l,

(65a, b)

v(0)=0, v,s (0)=0, v,ss (l)=0, v,sss (l)=0, (66a–d)

v2
,ss (g+)(v,ss (g+)+ a2/(a2 − g2)3/2)=0 (67)

The static equilibrium of a cantilever beam on a rigid cylindrical foundation was studied
by Chen [22]. It is seen from (42) that the transversality condition is dependent on the
parameters a and G, but not on the external excitation. Thus, free and forced vibration
and static equilibrium will have the same transversality condition (42).

5.1.  

For free vibration, the external excitation is absent, Q=0. In Figure 6, the effect of the
rigid cylindrical foundation on the transient amplitude of free vibration is investigated.
Figure 6(a) shows the transient amplitude at the free end j=1. Solid lines represent the
transient amplitude with the cylindrical foundation, while dash-dot lines are used for those
without the cylindrical foundation. It is seen that the transient amplitudes in the upward
configuration are the same, but in the downward configuration the transverse displacement
with the cylindrical foundation is larger than that without the cylindrical foundation. Also,
the period with a cylindrical foundation is shorter than that without a cylindrical
foundation. Since the damping effect is neglected in the formulation, the energy is
conservative for the free vibration beam. The phase plane of amplitude at the free end,
as shown in Figure 6(b), forms a closed cycle for the free vibration beam. The solid line
represents the closed cycle with the cylindrical foundation while the dash-dot line is used
for that without the cylindrical foundation. The transient transverse amplitude and its
phase plane are shown in Figures 6(e) and 6(f) respectively, where f1 and g1 represent the
transverse amplitudes in the upward and downward configurations. Since the kinetic
energy of the beam in the upward configuration is transferred to an increase in the contact
length and the vibration of the beam in the downward configuration, it follows that, after
contact occurs, G(t) increases (Figure 6(c)) and g1(t) decreases (Figure 6(e), solid line).

In Figures 7(a)–(f), one compares the transient amplitudes and the phase planes for
various initial conditions, which are given at the free end as V1(1, 0)=0·6, 0·3 and 0·15.
From these figures, one finds that as the initial condition increases, the contact length
increases and the period of transient amplitude decreases. There is no contact length for
the initial condition V1(1, 0)=0·15. It is seen from Figure 7(c) that the contact time will
decrease as the initial condition decreases.

In Figures 8(a)–(f), the effect of the non-dimensionless radius parameter a of a
cylindrical foundtion on the vibration amplitudes and phase planes is shown. It is found
in Figures 8(a) and 8(b) that as the radius parameter of a cylindrical foundation decreases,
the period of the beam vibration increases. With the same initial conditions, as the radius
parameter of the cylindrical foundation increases, the contact length G increases, as shown
in Figure 8(c) and 8(d). Figures 8(e) and 8(f) show the transient transverse amplitude and
its phase plane, respectively.

5.2.  

In Figures 9(a)–(f), is shown the transient amplitudes and phase planes with various
static loads Q0 =0·01, 0·02 and 0·03. From Figures 9(a)–(f), one finds that the increase
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in static load is related to an increase in period, transient amplitude (Figures 9(a), (b)) and
contact length (Figures 9(c), (d)). Figures 9(e) and 9(f) show the transient amplitude and
its phase plane respectively.

If the system is subjected to harmonic excitation and its excitation frequency is equal
to its natural frequency, resonance will happen and the transient amplitude increases

Figure 6. Free vibration of the cantilever beam with a=1, V1(1, 0)=0·6, V1,t(1, 0)=0, Q0 =0, Q1 =0. (a)
Transient amplitude at j=1; (b) phase plane of the amplitude at j=1; (c) transient contact length; (d) phase
plane of the contact length; (e) transient amplitude; (f) phase plane of the amplitude. —, with the cylindrical
foundation; – · –, without the cylindrical foundation.
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Figure 7. Transient amplitudes and phase planes for various initial conditions. (a) Transient amplitude at
j=1; (b) phase plane of the amplitude at j=1; (c) transient contact length; (d) phase plane of the contact length;
(e) transient amplitude; (f) phase plane of the amplitude. —, V1(1, 0)=0·6; – –, V1(1, 0)=0·3; – · –, V1(1, 0)=0·15;
the other parameters are as Figure 6a.

infinitely (not shown here). However, Figures 10(a)–(f) show the beating phenomenon of
the transient amplitude and the contact length of the vibrating beam. In considering the
cylindrical foundation the results for various excitation frequencies are shown. The
transient amplitude and contact length are largest in Figures 10(a) and 10(b) for the
resonant vibration. It is worth noting that the natural frequency changes when the beam
comes into contact with the cylindrical foundation.
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If the forcing frequency is close to, but not exactly equal to, the natural frequency of
the system, a phenomenon known as beating may occur. In this kind of vibration, the
amplitude builds up and then diminishes in a regular pattern. If all of the initial conditions
are taken as zero, the transient amplitude of a vibrating beam is reduced to

f(t)=−(Q1K41/(V2
N −V2

R )) sin ot sin VRt (68)

Figure 8. Transient amplitudes and phase planes for various radius parameters of the cylindrical foundation.
(a) Transient amplitude at j=1; (b) phase plane of the amplitude at j=1; (c) transient contact length; (d) phase
plane of the contact length; (e) transient amplitude; (f) phase plane of the amplitude. —, a: 1, – –, 0·8; – · –, 0·6;
the other parameters are as Figure 6a.
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Figure 9. Transient amplitudes and phase planes for various uniform loads. (a) Transient amplitude at j=1;
(b) phase plane of the amplitude at j=1; (c) transient contact length; (d) phase plane of the contact length;
(e) transient amplitude; (f) phase plane of the amplitude. —, Q0 values: 0·01; – –, 0·02; – · –, 0·03; the other
parameters are as Figure 6a.

where o= 1
2(VN −VR ) is a small positive quantity. The function sin ot varies slowly with

a large period 2p/o. Thus, equation (68) may be regarded as the beating vibration with
period 2p/o and variable amplitude −Q1K41/V2

N −V2
R sin ot. The beating phenomena are

shown in Figures 10(a), (c) and (e).
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Figure 10. Transient amplitude and transient contact length for various harmonic excitation frequencies.
Values of Q1: (10a, b), 0·005 cos l2

1/p2; (10c, d), 0·005 cos 0·9l2
1/p2; (10e, f), 0·005 cos 0·8l2

1/p2; the other parameters
are the same as Figure 6a.

6. CONCLUSIONS

Calculus of variation and Hamilton’s principle are used to formulate governing
equations, transversality equation and boundary conditions of a beam in contact with a
cylindrical foundation. A special numerical technique is developed to solve such a moving
boundary problem. The results are simulated by the Runge–Kutta algorithm.
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From the numerical results of free vibration, the following conclusions are drawn:

(1) The period of a vibrating beam with constraint is shorter than that without
constraint.

(2) Increasing the initial condition will cause an increase in the contact length. As the
initial condition decreases, the contact time will decrease.

(3) As the radius parameter of the cylindrical foundation increases, the contact length
increases and the period of the vibrating beam decreases.

From numerical results of forced vibration, the following conclusions are drawn:
(1) The period of a vibrating beam increases as the static load increases.
(2) The maximum value of transient amplitude increases when the distributed load

increases.
(3) As the static load increases, the contact length increases but the relationship is not

linear.
(4) The vibrating beam which is in contact with the cylindrical foundation exhibits

beating under resonant excitation.
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APPENDIX A

The details of J1nm (G), J2nm (G), J3m (G) and J4m (G) are shown in the following

J1nm (G)=zlmln /VmVn{[0·5K1nm + ln (K2nm −K6nm )]/[(1−G)], (A1)

J2nm (G)=zlmln /VmVn60·75K1nm +3ln (K2nm −K6nm )+ l2
n (K3nm +K7nm −2K8nm )

(1−G)2 7 (A2)

J3m (G)=zlm /Vm{a2z1−GK4m/[(a2 −G2)3/2]−3a2G(1−G)3/2K5m /(a2 −G2)5/2} (A3)

J4m (G)=−zlm /Vm{a2(1−G)3/2K5m/(a2 −G2)3/2} (A4)

In the above equations, the G value is a function of the non-dimensional time t. The
detailed functions J1nm (G), J2nm (G), J3m (G), and J4m (G), and the detailed constants K1nm ,
K2nm , K3nm , K4m , K5m , K6nm , K7nm , and K8nm are described in Chen [22].

APPENDIX B: NOMENCLATURE

a radius of the rigid circular foundation.
A cross-sectional area of the cantilever beam.
E Young’s modulus.
fn nth transient amplitude in the upward configuration.
gn nth transient amplitude in the downward configuration.
i, j unit vectors in the s and y directions, respectively.
I moment of inertia of cross-section.
l length.
q, q0, q1 external excitations.
Q, Q0, Q1 non-dimensional external excitations.
Ri position vector before deformation.
Rf position vector after deformation.
Rr radial vector.
t time.
U displacement field.
v transverse displacement.
V1, V2 non-dimensional transverse deflection in the upward and downward configurations,

respectively.
a non-dimensional radius parameter of the rigid circular foundation.
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bn nth natural frequency in downward configuration.
b'n nth natural frequency in downward configuration.
g contact length.
G non-dimensional contact length.
r mass per unit length.
oij strains.
k curvature.
l Langrangian multiplier.
ln nth mode natural frequency.
Ln constant related to frequency ln .
j non-dimensional location in s direction.
sin stresses.
t non-dimensional time.
tt transferring time.
fn , cn nth mode shape in the upward and downward configurations, respectively.
vf , vT non-dimensional frequencies.
VN non-dimensional natural frequency.
VR non-dimensional frequency ratio.
Vn contact related to frequency ln .


