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1. 

Consider the structural system shown in Figure 1. The plate is characterized by the
properties: r1 (material density), h1 (thickness), E1 (Young’s modulus) and m1 (Poisson
ratio) while the corresponding properties of the insert are: r2, h2, E2 and m2. The above
characterization generates several types of situations, e.g., if E1 =E2, r1 = r2 and m1 = m2

but h2 q h1 one has the case of an overstepped plate [1–4]; if all the properties are different
one has the case of a non-homogeneity which may be caused by a manufacturing process
and if r2 = h2 =E2 = m2 =0 a hole with free edges results [5–7]. The situations previously
described are of interest in practically all fields of engineering: from naval and ocean
engineering systems to structural elements used in aeronautical, civil and mechanical
engineering.

Obtaining an exact solution is probably out of the question in view of the difficulty of
satisfying the interface conditions in an exact fashion, as it has been pointed out by
Warburton in an excellent discussion [2]. Hence, an approximate solution is proposed in
the present paper whereby the displacement amplitude is expressed in terms of a double
Fourier series which satisfies identically the boundary conditions at x=0, a and y=0,
b and which constitutes the exact solution in the case of a solid, rectangular plate of
uniform thickness. The Rayleigh-Ritz method is then applied to determine the
fundamental frequency coefficient. This approach is, obviously, an extension of the
methodology presented by the senior author and coworkers in reference [6]. Numerical
results are presented only for the case of rectangular plates with holes but the methodology
is proposed for the general structural case previously described and depicted in Figure 1.
On the other hand, in several instances, frequency coefficients have been determined using
a very accurate finite element code which utilizes the algorithm developed by Bogner
et al. [8].

2.   

The Rayleigh-Ritz method requires minimization of the functional

J[W]=Umax −Tmax , (1)

where (see Figure 1)

Umax =maximum strain energy, (2a)

Tmax =maximum kinetic energy, (2b)
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and

Di =Eih3
i /12(1− m2

i ), where i=1, 2.

Expressing the displacement amplitude W(x, y) in terms of a double Fourier series

W2Wa = s
N

n=1

s
M

m=1

bnm sin (npx/a) sin (mpy/b) (3)

and substituting in equation (2a) one obtains

Umax =(D1/2)[I1 + I2 +2m1I3 +2(1− m1)I4]− [(D1 −D2)/2][I'1 + I'2 ]

−[D1m1 −D2m2]I'3 − [D1(1− m1)−D2(1− m2)]I'4 , (4a)
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Figure 1. Vibrating system under consideration: (a) General case: plate characterized by (h1, r1, E1, m1) with
an insert (h2, r2, E2, m2). Particular situations are (b) overstepped plate and (c) plate with a rectangular hole of
free edges.
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T 1

Values of V1 in the case of square plates with concentric square cutouts (Figure 2)

Number of non-zero terms used Finite References
ZXXXXXXXXCXXXXXXXXV Element ZXXCXXV

m a1/a 1 4 9 16 Solution [5] [7]

0·0 0 19·739 19·739 19·739 19·739 19·739 19·63 –
0·1 19·940 19·935 19·922 19·902 – – –
1/6 20·316 20·282 20·201 20·113 19·929 19·48 –
0·2 20·589 20·525 20·390 20·271 – – –
0·3 21·840 21·628 21·360 21·247 – – –
1/3 22·438 22·170 21·890 21·790 21·657 21·45 –
0·4 24·001 23·640 23·367 23·283 – – –
0·5 27·660 27·197 26·950 26·869 – 26·05 –

0·30 0 19·739 19·739 19·739 19·739 19·739 19·63 –
0·1 19·880 19·870 19·844 19·806 19·463 – –
1/6 20·145 20·070 19·905 19·712 19·205 – –
0·2 20·338 20·193 19·904 19·634 19·147 – 20·3
0·3 21·232 20·700 20·096 19·853 19·722 – 20·8
1/3 21·663 20·972 20·349 20·156 19·772 – –
0·4 22·806 21·824 21·279 21·152 20·773 – 22·1
0·5 25·543 24·326 23·965 23·841 23·473 24·75 –

Similarly, substituting equation (3) in equation (2b) results in

Tmax =(v2/2)[r1h1Z−(r1h1 − r2h2)Z'], (4b)

where

Z=g
b

0 g
a

0
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Figure 2. Vibrating simply supported plate of square shape with free, concentric; square cutout.
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T 2

Values of V1 in the case of rectangular plates with concentric rectangular cutouts
(b/a= b1/a1); see Figure 3

b/a
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

a1/a 1 0·9 0·8 0·7 0·6 0·5

0·00 19·739 22·054 25·291 30·012 37·285 49·348
0·05 19·76 22·08 25·32 30·05 37·32 49·38
0·10 19·80 22·12 25·36 30·07 37·32 49·32
0·15 19·75 22·06 25·26 29·91 37·03 48·76
0·20 19·63 21·92 25·07 29·61 36·50 47·76
0·25 19·62 21·90 25·01 29·45 36·13 46·95
0·30 19·85 22·14 25·25 29·65 36·22 46·95
0·35 20·35 22·69 25·84 30·27 36·81 47·23
0·40 21·15 23·57 26·81 31·31 37·93 48·36
0·45 22·28 24·83 28·20 32·84 39·60 50·16
0·50 23·84 26·55 30·11 34·97 41·98 52·80

The Rayleigh-Ritz method requires minimization of the governing functional with respect
to the bnm’s:

1J[W]
1bnm

=
1Umax

1bnm
−

1Tmax

1bnm
=0, (5)

which, taking into account equation (4a) and (4b) yields
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m=1, 2, . . . , M1. (6)

Figure 3. Vibrating rectangular plate with free, concentric rectangular cutout of the same aspect ratio
(b/a= b1/a1).
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T 3

Values of V1 in the case of rectangular plates with rectangular cutouts when the center of
the hole displaces along the x-axis (Figure 4)

b/a a1/a (a) (b) (c) (d)

1 0·1 19·87 19·86 19·80 19·74 (19·72)
1 0·2 20·19 20·09 19·04 19·75 (19·52)
1 0·3 20·70 20·33 20·10 19·70 (19·13)
1 0·4 21·82 20·61 20·28 19·81
1 0·5 24·32 20·48 20·48 20·48
2/3 0·1 32·25 32·24 32·16 32·08 (32·05)
2/3 0·2 32·62 32·50 32·33 32·10 (31·80)
2/3 0·3 33·11 32·71 32·49 32·07 (31·40)
2/3 0·4 34·41 33·10 32·75 32·27
2/3 0·5 37·81 33·25 32·25 32·25
1/2 0·1 49·53 49·52 49·44 49·35
1/2 0·2 49·77 49·63 49·54 49·36
1/2 0·3 49·72 49·37 49·47 49·20
1/2 0·4 50·46 49·68 49·52 49·18
1/2 0·5 54·09 50·11 50·11 50·11

Note: values in parenthesis have been determined by means of the finite element method.

Expression (6) yields an N×M homogeneous, linear system of equations in the bnm’s.
A secular determinant in the natural frequency coefficients Vi =zrh1/D1via2 of the
system results from the non-triviality condition.

The present study is concerned with the determination of the fundamental frequency
coefficient, V1, in the case of plates with rectangular holes.

3.   

The plate domain was subdivided into 144 rectangular elements, each element possessing
16 degrees of freedom [8]. It is important to point out that the element developed by Bogner
et al. [8] has been proved to be extremely accurate when dealing with thin plates.

Figure 4. Mechanical system under analysis when the cutout is displaced along the x-axis. Positions of the
cutout center: (a) x0 =0; (b) x0 = a1/2; (c) x0 = a/4 and (d) x0 = (a− a1)/2.
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T 4

Values of V1 in the case of rectangular plates with rectangular cutouts when the center of
the hole is displaced along the y-axis (Figure 5)

b/a a1/a (a) (b) (c) (d)

1 0·1 19·87 19·86 19·80 19·74
1 0·2 20·19 20·09 19·04 19·75
1 0·3 20·70 20·33 20·10 19·70
1 0·4 21·82 20·61 20·28 19·81
1 0·5 24·32 20·48 20·48 20·48

2/3 0·1 32·25 32·24 32·16 32·08
2/3 0·2 32·62 32·42 32·31 32·06
2/3 0·3 33·11 32·47 32·30 31·64
2/3 0·4 34·41 32·54 32·05 31·13
2/3 0·5 37·81 31·48 31·48 31·48

1/2 0·1 49·53 49·52 49·43 49·35 (49·21)
1/2 0·2 49·77 49·43 49·47 49·27 (47·70)
1/2 0·3 49·72 48·78 48·91 48·04 (44·26)
1/2 0·4 50·46 48·06 47·43 45·88 (41·13)
1/2 0·5 54·09 44·94 44·94 44·94 (40·25)

Note: values in paranthesis have been determine by means of the finite element method.

4.  

All calculations have been performed for a simply supported rectangular plate of
uniform thickness taking m1 = m=0·30; exception is made of a set of results presented in
Table 1 where m=0.

Using the Fourier series approach a 16×16 secular determinant was posed for all the
situations. Obviously this means that when the mechanical configuration possesses 2 axes
of symmetry, 49 terms of the series were employed but only those terms with odd subscripts
contributed. Table 1 illustrates the convergence of the approach as the number of terms
in the Fourier approximation is increased in the case of a square plate with a concentric

Figure 5. Mechanical system under analysis when the cutout is displaced along the y-axis. Positions of the
cutout center: (a) y0 =0; (b) y0 = b1/2; (c) y0 = b/4 and (d) y0 = (b− b1)/2.
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T 5

Values of V1 in the case of rectangular plates with rectangular cutouts when the center of
the hole is displaced along a diagonal of the rectangle (Figure 6)

b/a a1/a (a) (b) (c) (d)

1 0·1 19·87 19·85 19·73 19·59
1 0·2 20·19 19·99 19·69 19·22
1 0·3 20·70 19·99 19·57 18·71
1 0·4 21·82 19·79 19·28 18·21
1 0·5 24·32 18·25 18·25 18·25

2/3 0·1 32·25 32·23 32·07 31·87
2/3 0·2 32·62 32·29 31·99 31·35
2/3 0·3 33·11 32·13 31·73 30·53
2/3 0·4 34·41 31·78 31·14 29·49
2/3 0·5 37·81 29·20 29·20 29·20

1/2 0·1 49·53 49·51 49·33 49·12
1/2 0·2 49·77 49·27 49·18 48·50
1/2 0·3 49·72 48·56 48·63 47·22
1/2 0·4 50·46 49·90 47·37 44·80
1/2 0·5 54·09 43·49 43·41 43·41

square cutout. The results are compared with the finite element determinations performed
in the present study and values available in the open literature for m=0 and m=0·30.

The agreement between the analytical approach and the finite element results is excellent
for all the situations considered (the maximum differences are of the order of 2%). The
values obtained by Paramasivam [5] are considerably lower; exception is made for the case
a1/a=0·5 for m=0·30 where the eigenvalue determined in references [5] is considerably
higher than the values determined in this study. The values determined in reference [7] are

Figure 6. Mechanical system under analysis when the cutout is displaced along the diagonal. Positions of the
cutout center: (a) x0 = y0 =0; (b) x0 = a1/2, y0 = b1/2; (c) x0 = a/4, y0 = b/4 and (d) x0 = (a− a1)/2,
y0 = (b− b1)/2.
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always upper bounds (in general they are rather high upper bounds† but a single term
polynomial approximation was used in that study).

Table 2 depicts fundamental frequency coefficients in the case of rectangular plates
aspect ratio‡ as the center of the cutout displaces along the x-axis and for four locations:
x=0; x= a1/2, x= a/4 and x=(a− a1)/2. Some values have also been obtained by
means of the finite element method (the maximum differences are of the order of 2%).

Table 4 depicts values of V1 in the case of rectangular plates as the center of the cutout
is displaced along the y-axis and again for four locations (y=0, y= b1/2, y= b/4 and
y=(b− b1)/2). As expected, the differences between the analytical results and the finite
element determinations are now considerably higher: a maximum difference of the order
of 10% is observed.

Table 5 presents results of V1 when the hole center is displaced along a diagonal of the
plate (see Figure 6) for the following positions: x= y=0, x= a1/2 and y= b1/2, x= a/4
and y= b/4 and, finally, x=(a− a1)/2 and y=(b− b1)/2.

It is interesting to point out that in the case of a square plate with a square cutout
(Table 1) the dynamic stiffening effect is quite apparent for a1/aq 0·3 for m=0·30. In other
words, the fundamental frequency coefficient increases with respect to the value
corresponding to a solid plate.

In the case of rectangular plates with concentric cutouts of the same aspect ratio
(Table 2), the dynamic stiffening effect can also be observed. If one considers that they
are upper bounds with respect to the exact eigenvalues, it seems reasonable to assume that
the dynamic stiffening effect becomes noticeable for a1/aq 0·45 for the configurations
under study.

Apparently no dynamic stiffening phenomenon takes place in the cases reported in
Tables 3–5. On the other hand, for these configurations, the fundamental frequency
coefficient attains a maximum value when the cutout is concentric with the plate outer
boundary. It is interesting to notice the fact that for a1/a=0·5 the parameter V1 remains
practically constant for each value of b/a, for the positions (b), (c) and (d), when using
the double Fourier series approach. As expected, the analytical approximation yields
extremely high values of frequency parameters when the cutout is very large and ‘‘acts’’
in a highly antisymmetric fashion, e.g., a1/a=0·50 for position (d) in the case of Figure 5.
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