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1. 

Perturbation methods are often applied in the analysis of weakly non-linear dynamic
systems. The method of multiple scales, for instance, is a common choice. In reference [1],
Rahman and Burton proposed a version of the method of multiple scales which can be
used to determine the periodic, steady-state primary response of a single-degree-of-
freedom, lightly damped, weakly non-linear, forced oscillator. This letter presents some
extensions to their method which allows the derivation of modulation equations from
which steady state, periodic response solutions and their stability can be determined and
allows application to multi-degree-of-freedom systems. Finally, some observations are
made which lead to substantial algebraic simplification.

2.  

The details of the extended method are illustrated using a Duffing-type equation similar
to the example presented in reference [1]:

ü+ d
 u̇+ u+ b
 u3 = p̂ cos Vt, (1)

where d
 , b
 , and p̂ are of order e which is a small parameter. The perturbation analysis
is detailed here so that the extensions can be clearly pointed out. As in reference [1], steady
state periodic solutions are determined for equation (1) to second non-linear order. To
begin, new time scales are defined as Tn = enVt, (n=0, 1, 2, . . .). for a second non-linear
order analysis, n=0,1,2. Consequently, equation (1) is recast on the T0 (=Vt) time scale
as

V2ü+ e dVu̇+ u+ ebu3 = ep cos T0, (2)

where the damping, forcing, and cubic non-linear term coefficients have been expanded
as d
 = e d, p̂= ep (=ep1 + e2p2), and b
 = eb, respectively.

To second non-linear order, the displacement, u, is expanded as

u= u0 + eu1 + e2u2 (3)

and detuning of the excitation frequency is introduced by

V2 =1+ es1 =1+ es11 + e2s12 and V=1+ es21. (4)

Note that V2 and V are expanded independently. In this case, V is expanded to e order
only since it appears in equation (2) as the product eV. The expansion terms sij are only
mathematical terms used in ordering the expansion and have no physical value. As it will
be shown, the solution will always be presented in terms of the original system parameters,
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not the expansion coefficients. This is expected since the final solution should depend only
upon the original system parameters.

Substituting the displacement and frequency expansions into equation (2) and collecting
like terms of e leads to zeroth, first, and second non-linear order equations:

D2
0u0 + u0 =0, (5)

D2
0u1 + u1 =−2D0D1u0 − s11D2

0u0 − dD0u0 − bu3
0

zcv
+ p1 cos T0, (6)

D2
0u2 + u2 =−2D0D1u1 −D2

1u0 −2D0D2u0 − s11(D2
0u1 +2D0D1u0)

− s12D2
0u0 − d(D0u1 +D1u0)− ds21D0u0 − 3bu2

0u1
zxcxv

+ p2 cos T0. (7)

The solution to (5) is u0(T1, T2)=A(T1, T2) eiT0 +A�(T1, T2) e−iT0 where the overbar
stands for the complex conjugate. The slowly varying (complex) amplitude,
A(T1, T2)= 1

2a eiu, is determined from the higher order expansions.
Removal of secular terms at the first non-linear order and then at the second non-linear

order yields the following equations, respectively:

−2iD1A+ s11A−idA−3bA2A
zxcxv

�+ 1
2p1 =0, (8)

−D2
1A−2iD2A−2is11D1A+ s12A− dD1A−i ds21A− 3

8b
2A3A�2

zxcxvzxcxv
+ 1

2p2 =0. (9)

These equations can be combined to describe the modulation of the complex amplitude
to second non-linear order with respect to the original time scale, t, using

dA/dt= eD1A+ e2D2A. (10)

In equation (9), the D1 terms vanish under the assumption that they are independent of
the T2 time scale. Combining equations (8) and (9) in equation (10) yields

2i
dA
dt

=(es11 + e2s12)A−i(e d)(1+ es21)A+ 1
2(ep1 + e2p2)−3(eb)A2A�−(e2b2)3

8A
3A�2

= (V2 −1)A−i d
 VA+ 1
2p̂−3b
 A2A�− 3

8b

2A3A�2, (11)

where all the expansion terms recombine into the original expressions. Note that the only
difference between a first non-linear order and a second non-linear order expansion of
equation (1) is the term 3

8b

2A3A�2. The second order expansion has added an O(e2) correction

arising from the cubic non-linear term. There are no second order correction from the
other terms.

Separating the complex amplitude, A, into real and imaginary parts yields the state
equations (in polar form):

ȧ= − 1
2(V d
 )a− 1

2p̂ sin u, (12)

au� =−1
2(V

2 −1)a− 1
2p̂ cos u+ 3

8b
 a
3

zcv
+ 3

256b

2a5

zxcxv
. (13)

Steady-state response can be determined by setting the time derivatives to zero.
Combining the above equations leads to

(V d
 )2a2 + [−(V2 −1)a+ 3
4b
 a

3 + 3
128b


2a5]2 = p̂2. (14)

This is similar to the equation governing the steady-state response derived in reference [1].
The difference arises from the b
 coefficient (which was given as e in reference [1]). The
solutions of equation (14) match the numerical integration of the original equation of
motion very closely. Note that equation (14) is a fifth order polynomial in a2 which can
only have five, three, or one real root(s). Application of the Routh test shows that equation
(14) can only have one or three roots with positive real parts that correspond to a2;
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therefore, for this system, the perturbation analysis does not lead to any spurious responses
(more than three roots). Furthermore, higher-order expansions can never introduce
spurious responses, since the coefficients of higher-order expansions of the cubic non-linear
term will always have the same sign. Thus, there can never be more than three roots with
positive real parts. This is in distinct contrast to the spurious responses generated by the
multiple scales versions presented in references [2] and [3]. The stability of the solutions
can be determined by linearizing equation (11) about each solution and examining the
corresponding eigenvalue problem.

3. 

Three key points regarding this procedure are emphasized here: (1) the time scale and
all expanded variables are returned to their original form, i.e., the solution is independent
of e; (2) time derivative terms are non-zero only on their corresponding time scale e.g.,
D1 terms are non-zero on the T1 scale but vanish on the T2 scale; and (3) the expansions
for V2 and V are independent.

It is straightforward to extend this method to multi-degree-of-freedom systems by
forming the expression dA/dt of equation (10) for each degree of freedom; see references
[4, 5] for examples. In both of those cases, the perturbation results closely match the
numerical simulations.

Some algebraic simplifications can be employed which greatly reduce the computational
effort. At the beginning, all terms including V2, V, and p̂, are expanded as a power series
using ordering terms such as sij . However, those terms all recombine into their original
form when the expression for dA/dt is formulated; see equation (11). They do not have
independent contributions on the non-linear time scales. Only the terms related to the cubic
non-linearity (identified in equations (6)–(9) and (13) by the underbrace) have distinct
non-linear time scale dependent contributions. Therefore, terms involving V2, V, and p̂
only have to be expanded to first non-linear order. The higher order expansion terms
(double underline in equations (7) and (9)) can be neglected since they have no effect on
the final recombined equation (11). Furthermore, some derivative terms can also be
eliminated. Consider equation (9), the three D1 terms (underlined) are removed when
forming equation (10). Therefore, they can be removed from equation (7) with the a priori
knowledge that they do not contribute to the steady-state response or to the determination
of response stability.

To summarize, the multiple scales method presented in reference [1] can be extended in
three ways to (1) develop modulation equations on the original time scale using equation
(10) (these equations can be used to determine the stability of the steady-state responses);
(2) apply to multi-degree-of-freedom systems; and (3) identify system parameter and
derivative terms which do not need to be expanded (to higher non-linear orders) thus
saving calculation effort.

It is anticipated that this procedure can be applied successfully to a wide range of
multi-degree-of-freedom systems including parametrically excited systems.
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