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In this paper, the non-linear vibration and dynamic instability of thin shallow spherical
and conical shells subjected to periodic transverse and in-plane loads are investigated. The
Marguerre type dynamic equations used for the analysis of shallow shells, when treated
by the Galerkin method, will result in a system of total differential equations in the time
functions, known as Duffing and Mathieu equations, from which the various kinds of
non-linear vibration and dynamic instability are determined by using numerical methods.
Numerical results are presented for axisymmetric vibrations and dynamic instabilities of
shallow spherical and conical shells with (a) clamped and (b) supported edge conditions.
As numerical examples, non-linear vibration frequencies and instability regions for shells
are determined. The effects of static load as well as static snap-through buckling on the
instability are also investigated.
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1. INTRODUCTION

To clarify the non-linear vibration and dynamic instability of shallow shells is of great
importance for the design of aerospace structures, as shown in references [1–19]. However,
only a few studies have been made in this subject, of pulsating external pressure, external
excitation or parametric excitation, e.g., Chia and Chia [7], Tsai and Palazotto [5],
Goncalves and Batista [7], Denisov and Zhinzher [14], Evansen [16], Leissa [17], Nath et
al. [9], Jain and Nath [6], Mahrenholtz et al. [4], Yasuda and Kushida [10], Ye [19, 21].
They solved various kinds of non-linear problem, such as the problem of conical shells
by applying Galerkin’s method to the Donnell-type basic equations with one term
approximate solutions for only the principal instability regions, the dynamic instability
solutions of spherical shells under periodic load, and the solution of the non-linear
dynamic response of doubly curved shallow shell on an elastic media. Some numerical
results for non-linear vibrations of imperfect shells have been obtained by using finite
element or collocation methods, etc. Recently, the author [19–21] analyzed the non-linear
problems of circular plates and shallow shells with variable thickness by using a combined
method involving an iterative method, Galerkin’s method, and a numerical method. The
results were satisfactory for some special cases.

In this paper, the non-linear vibration and dynamic instability of thin shallow spherical
and conical shells subjected to periodic transverse and in-plane loads have been
investigated. The Marguerre type dynamic equations used for the analysis of shallow shells
when treated by Galerkin’s method will result in a system of total differential equations
in the time domain called Duffing and Mathieu equations, from which the various kinds
of non-linear vibration and dynamic instability are determined by using numerical
methods. Numerical results are presented for axisymmetric vibrations and dynamic
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instabilities of shallow spherical and conical shells with (a) clamped and (b) supported edge
conditions. As numerical examples, non-linear vibration frequencies and instability regions
for shells are determined. The effects of static load as well as static snap-through buckling
on the instability are also investigated.

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS

A thin shallow shell with thickness h, base circle radius a and height of arch f, subjected
to the uniformly distributed edge forces N and normal pressure q as shown in Fig. 1 will
be considered. The Marguerre-type dynamic equations which can be found in references
[4, 6, 8, 9], may be given by the following equation form:
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The relation between the incremental strain and deflection is given by

1(rou )/1r− or + 1
2(1w/1r)2 =0 (2)

while the relations between the incremental displacements and bending moments are given
by

Mr =−D(r)(12w/1r2 + (n/r)(1w/1r)), Mu =−D(r)((1/r)1w/1r+ n 12w/1r2). (3a, b)

The non-linear strains in the radial and tangential directions are

or = 1u/1r+ 1
2(1w/1r)2 + (1w/1r)(1z0/1r), ou = u/r (4)

In the following equations, the non-dimensional notations are related to the physical
variables as

x= r/a, W=z12(1− n2)w/h, p=[12(1− n2)]3/2qa4/Eh4,

S=12(1− n2)(Nra2/Eh3)x, t=
h

a2z12(1− n2)XE
r

t, K=z12(1− n2)
f
h

. (5)

Figure 1. Geometric relations of thin shallow shell.
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In these expressions, D=Eh3/12(1− n2) is the flexural rigidity of the shell, E, n and r are
Young’s modulus, Poisson ratio and mass density, respectively.

Concerning the boundary conditions for the problems, the following two cases will be
considered at x=0 and 1,

SS: W=x=1 =012W
1x2 +

n

x
1W
1x 1bx=1

=0, S=x=1 =Ss , S=x=0 − finite, (6)

C: W=x=1 =
1W
1x bx=1

=0, S=x=1 =Ss , S=x=0 − finite. (7)

In these expressions, SS and C correspond to the simply supported and clamped cases,
respectively. The governing equations in non-dimensional notations are

for the spherical case

0 12

1x2 +
1
x

1

1x1012W
1x2 +

1
x

1W
1x 1+

12W
1t2 =p(t)+

1
x 6S012W

1x2 +2K1+
1S
1x 01W

1x
+2Kx17, (8a)

12S
1x2 +

1
x

1S
1x

−
S
x2 =−

1
2x 012W

1x2 +4
1W
1x

Kx1, (8b)

for the conical case
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Here, z0 =−f(1− xn), in which n=1, represents a conical case and n=2 a spherical case.
The problem consists of finding the limiting values of non-linear natural frequencies,

forced vibration responses and dynamic instability behavior for which the basic equations
have some solutions under the given loading and boundary conditions.

3. SOLUTIONS

An approximate solution is obtained by assuming the non-linear vibrations to have the
same spatial shape, i.e.,

W(x, t)=T(t)Y(x), (9)

or

W(x, t)=T(t)(1− a1x2 + a2x4). (10)

equations (6, 7) then yield

C: a1 =2, a2 =1; (11)

SS: a1 = (6+2n)/(5+ n), a2 = (1+ n)/(5+ n). (12)
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T 1

Value of functions A1–A8 (n=0·3)

A1 A2 A3 A4 A5 A6 A7 A8

Spherical C 0·1000 10·667 −3·333 0·1778 −0·3333 0·1429 0·1667 0·6667
SS 0·1472 3·6037 −3·144 0·1673 −0·2550 0·0867 0·2296 0·9182

Conical C 0·1000 10·667 −3·333 0·1689 −0·3278 0·1429 0·1667 0·5333
SS 0·1472 3·6037 −3·144 0·1228 −0·2162 0·0867 0·2296 0·6340

Substituting equation (9) or (10) into equations (8b), (8d), integrating the resulting
equations and making use of boundary conditions (6) or (7) yields S(x) for the spherical
or conical case, respectively. Substituting W(x, t) and S(x) from equations (10) and (13)
into the equations of motion (8a), (8c) and applying the Galerkin’s procedure (multiplying
both sides by xW(x, t) and integrating from x=0 to x=1), one obtains the following
equation

A1 d2T/dt2 + {A2 +A3Ss (t)+A4K2}T+A5KT2 +A6T3 =A7p(t)+A8Ss (t)K, (13)

in which, A1, A2, A3, A4, A5, A6, A7 and A8 are the functions of a1 and a2. Some numerical
results of these are listed in Table 1.

4. NUMERICAL RESULTS

The responses for different static and dynamic cases are obtained as follows.

4.1.  - 

When Ss =0, the snap-through buckling response is obtained from equation (13) by
setting T� =Ss =0, to yield

p=(1/A7){(A2 +A4K2)T+A5KT2 +A6T3}. (16)

The snap-through buckling load pcr is given by

Kcr =z3A2A6/(A2
5 −3A4A6), Tpcr =−A5Kcr /3A6,

pcr =(1/A7){(A2 +A4K2
cr )Tpcr +A5KcrT2

pcr
+A6T3

pcr
}, (17)

with the numerical results listed in Table 2. These results are the same as some of author’s
work in reference [19–21]. When Ss $ 0, or Ss =S0, which is a constant, we have the
snap-buckling loads Table 3.

T 2

The snap-through buckling loads

Kcr Tpcr pcr

Spherical C 11·45240346 8·903863009 605·2157232
SS 8·956470345 6·109380293 403·7400021

Conical C 11·41238498 8·728997049 570·2533343
SS 9·230984567 6·485637082 427·6700267
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T 3

The snap-through buckling loads (Ss =S0)

S0 Kcr Tpcr pcr

Spherical C: −1 9·496114551 7·382913413 307·0454035
C: 1 13·12017144 10·20049718 962·4768566

Conical C: −1 9·462931990 7·237917889 294·8202023
C: 1 13·07432523 10·00016618 899·2599879

T 4

vN/v0 (n=0·3, Ss =0) for spherical shells

T0

ZXXXXXXXXXXXXCXXXXXXXXXXXV
K 0·5 1·0 2·0 3·0

C 0 1·00253 1·00788 1·02190 1·04577
5 1·16783 1·14793 1·09849 1·05843

10 1·59909 1·56701 1·48441 1·40696
SS 0 1·00630 1·01811 1·04192 1·08320

5 1·42531 1·38303 1·28528 1·19747
10 2·31285 2·27008 2·13775 2·00977

4.2.  - 

The free non-linear vibrations are governed by

T� +v2
0{(1+ (A4/A2)K2)T+(A5/A2)KT2 + (A6/A2)T3}=0, (18)

where v0 is the non-dimensional linear frequency, which is v0 =zA2/A1. The ratio of
non-linear frequency vN to linear v0 is given by

vN

v0
= lim

T1:T0

2p

4g
T1

0

dT

X01+
A4

A2
K21(T2

0 −T2)+
2A5

3A2
K(T3

0 −T3)+
A6

4A2
(T 4

0 −T 4 )

. (19)

The numerical results of non-linear frequencies and periods are listed in Tables 4 and 5.

T 5

vN/v0 (n=0·3, SS =0) for conical shells

T0

ZXXXXXXXXXXXCXXXXXXXXXXXV
K 0·5 1·0 2·0 3·0

C 0 1·00253 1·00788 1·02190 1·04577
5 1·16954 1·16265 1·10642 1·06384

10 1·58724 1·54114 1·45873 1·38150
SS 0 1·00630 1·01811 1·04192 1·08320

5 1·32030 1·28252 1·19672 1·12318
10 2·04734 1·99708 1·87193 1·75179
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T 6

Bifurcation points for spherical case

S*=1 S*=2
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

Stable Unstable Stable Unstable

(a) K=0
C 0·8438 1·1562 0·6876 1·3124
S 0·5638 1·4362 0·1276 1·8724

(b) K=5
C 1·4167 1·7291 1·2605 1·8853
S 0·7243 1·5967 0·2881 2·3210

From (18), one has the following statement of conservation of energy:

H= 1
2T�

2 +v2
0601+

A4

A2
K21 T2

2
+

A5

3A2
KT3 +

A6

4A2
T47, (20)

where H is the constant determined from the initial conditions and is the energy level.
When KEK0 (C: K0 =25·24, SS: K0 =13·42 for the spherical case and C: K0 =22·52, SS:
K0 =18·58 for the conical case), the cases of H have the stable equilibrium state as
indicated in Figs. 2 and 3.

4.3.  - 

The case in which the shallow shells are continuously excited will now be considered.
In this paper, two types of excitations are investigated: (a) p(t)$ 0, Ss =0 and (b)
p(t)$ 0, Ss =Ss (t).

(a) The excitation appears as an inhomogeneous term in the equation governing the
motion of the shell. The basic equation reduces to a kind of Duffing equation:

T� +v2
0{1+ (A4/A2)K2)T+(A5/A2)KT2 + (A6/A2)T3}= p0 cos Vt (21)

Equation (21) could be rewritten as

T� 1 =v0T2, T� 2 =−v0601+
A4

A2
K21T1 +

A5

A2
KT2

1 +
A6

A2
T37+

p0

v0
cos Vt, (22)

T 7

Bifurcation points for conical shape

S*=1 S*=2
ZXXXXXCXXXXXV ZXXXXXCXXXXXV
Stable Unstable Stable Unstable

(a) K=0
C 0·8438 1·1562 0·6876 1·3124
S 0·5638 1·4362 0·1276 1·8724

(b) K=5
C 1·2396 1·5520 1·0834 1·7082
S 1·4157 2·2881 0·9795 2·7243
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Figure 2. The energy level H of stable equilibrium state (K0 =25·24 or 22·52).

where the initial conditions are

T=t=0 =T0, T� =t=0 =0, or T1=t=0 =T0, T2=t=0 =0. (23, 24)

A variation of the Runge-Kutta method is used to solve the above Duffing equation.
Taking K=5 the forced vibration response is shown in Fig. 4, for superharmonic
resonances, i.e., V=v0/3. In studying the forced responses, large values were also found
when V/v0 =1, 1/2, 1/3, 1/4, 2, 3, 2/3, 3/2, . . . . In this paper, only those results for which
V=v0/3 are presented.

(b) The excitations appear as coefficients in the governing differential equation.
Mettlet’s result is used to analyze the problem. When v0 = v̄ (main resonance), there is
a kinetic snap-through. Otherwise, v0 =mv̄ (m is integer), are parametrically excited
vibrations and there are some instability regions.

T� +v2
0601+

A4

A2
K2 +

A3

A2
S* cos v̄t1T+

A5

A2
KT2 +

A6

A2
T37=0 (25)

Figure 3. The energy level H of stable equilibrium state (K0 =25·24 or 22·52).
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Figure 4. Forced vibration of shallow spherical shell (K=5, V= v̄/3).

Equation (25) can be rewritten as

T� +v2
0$01+

A4

A2
K21T+

A5

A2
T2%+

A6

A1
T3 +

A3

A1
TS* cos v̄t=0. (26)

Since the resonance coefficient A3/A1 is non-zero, the general theory predicts that a main
resonance must occur if v̄ =v0 and a subharmonic resonance of order 2 with v̄ =2v0,
and these conditions yield the following relation

v̄/v0 =1+(A4/A2)K2 + (3A6/8A1)(1/v2
0 )Q2 3A3S*/2A1(1/v2

0) (27)

Eq. (27) indicates that an increasing load S* causes an increment of the amplitude Q, until
a point with a horizontal tangent line is reached. Then with further increment of S* the
Q jumps to a higher value. This is an analogy to the static snap-through and therefore
one calls it kinetic snap-through. By analogy with the theory of static stability, the two
points where the solution Q$ 0 branches off from the solution Q=0 are called bifurcation
points and kinetic bifurcations. The bifurcation points are listed in Tables 6a, b and 7a, b.
But as has been shown, the forced vibrations and parametrically excited vibrations show
no clear distinction if one excludes main resonances.

CONCLUSION

This paper presents a brief look at the non-linear vibration and dynamic stability
problems of shallow spherical shells. The results are also given for the static snap-through
buckling, free non-linear vibration and forced non-linear vibration which includes two
types of excitations.
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: 

h shell thickness
a base circle radius
f height of arch
Nr radial membrance force
w radial deflection of shell
z0 initial deflected shape of spherical and

conical shells

r mass density
q(t) transverse distributed loading
D =Eh3/12(1− n2), flexural rigidity of

the shell
E Young’s modulus
n Poisson’s ratio
Mr , Mu radial and circumferential moments


