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A direct boundary element method (DBEM) is developed for thin bodies whose surfaces
are rigid or compliant. The Helmholtz integral equation and its normal derivative integral
equation are adopted simultaneously to calculate the pressure or the velocity potential on
both sides of thin body, instead of the jump values across it, to account for the different
surface conditions of each side. Unlike the usual assumption, the normal velocity is
assumed to be discontinuous across the thin body. In this approach, only the neutral surface
of the thin body has to be discretized. The method is validated by comparison with
analytical and/or numerical results for acoustic scattering and radiation from the surface
of a thin body under several conditions: when the surfaces are rigid while stationary or
vibrating, and when part of the interior is lined with a sound absorbing material.
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1. INTRODUCTION

Studies show that the conventional boundary element method (BEM) using the Helmholtz
integral equation fails to yield reliable results for thin bodies. The major reason for this
failure is that the integral is nearly singular, owing to the mesh on one side of the thin
body being too close to the mesh on the opposite side.

Seybert et al. [1] adopted a multi-domain BEM formulation for the thin-body acoustic
problem in which a fictitious interface surface is constructed to divide the acoustic field
into several subdomains. By this means, the Helmholtz integral equation for a fictitious
thick body enclosed by the thin-body surface and the fictitious surface can be solved in
a straightforward manner. While the concept of the multi-domain BEM is simple,
construction of the mesh in preprocessing is laborious, and it also results in a very large
system of equations if the fictitious surface is relatively large.

Martinez [2] defined the failure as a thin-shape breakdown (TSB) and showed by a
systematic analysis that an approach based on a normal derivative of the Helmholtz
integral equation provides a robust formulation for a thin body. Applied to a rigid wall
or a state of continuous oscillation, it leads to neither TSB nor non-unique solutions.
However, the normal derivative integral equation has a hypersingular integral of the order
of O(1/r3) the regularization of which requires a special technique.

In a direct boundary element method (DBEM) approach, Wu and Wan [3] proved that
the same failure problem cannot be solved by DBEM because the Helmholtz integral
equation becomes degenerate. They solved the normal derivative integral equation
formulation for the thin body with a less singular normal derivative integral equation,
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derived by Maue [4] and later by Mitzner [5]. Detailed discussion of the regularization of
the hypersingular integral is summarized in [6]. Wu and Wan used regular C0 isoparametric
elements with collocation points inside each element. In the derivation they initially
constructed an imaginary interface surface to divide the acoustic domain into an interior
and an exterior subdomain, as in the multi-domain BEM. Adding the Helmholtz integral
equations and the normal derivative integral equations for each subdomain respectively,
they obtained a combined Helmholtz integral equation and a combined normal derivative
integral equation, which require discretization of the real surface only. A condition of
continuity of normal velocity across the thin body is generally assumed a priori, due to
the material homogeneity across the thickness of the thin body.

Recently, the method was applied to a regular body with thin fins and a vibrating surface
by solving a mixed thin-body and regular-body integral formulation [7], which showed
good agreement with the multi-domain BEM solution. The assumption of continuous
normal velocity across the thin body is not often compatible when (1) either side of the
thin body is mounted with different materials, or (2) either side of the thin body vibrates
in a different manner. Because of the primary assumption of normal velocity continuity,
the methods in [3, 7] cannot be applied to a thin body having different materials and/or
different velocity conditions on each side.

In addition to the above mentioned works, different approaches have been carried out
for the thin-body problem. Hamdi and Ville [8] and Wu et al. [9] used a variational
formulation to avoid the evaluation of the hypersingular integral, but at the cost of
evaluating a double surface integral. Malbéqui et al. [10] used an indirect boundary
element method (IDBEM) for a duct, which was assumed to be hard-walled both inside
and outside. Martinez, using a modal boundary integral technique, analyzed the acoustic
diffraction due to a sound source by an open-ended cylindrical duct, where the interior
surface of the duct was rigid [11] and/or with a compliant lining [12]. For a compliant
boundary, Seybert et al. [1] calculated the acoustic radiation from a source within a partial
enclosure. The calculation was carried out using the multi-domain BEM for the cases when
both the inside and outside of the enclosure was rigid, and when the interior surfaces were
lined with a sound-absorbing material. However, treatment of the thin-body problem with
a compliant lining by using DBEM for the normal derivative integral equation formulation
was not reported.

In this paper, a new DBEM is formulated to extend to thin bodies with rigid and
compliant surfaces using the combined Helmholtz integral equation and the combined
normal derivative integral equation. This can be done by removing the normal velocity
continuity assumption across the thin body. In the formulation, the primary variables in
the integral equation are the velocity potential (or pressure) jump for the rigid surface, and
the normal velocity jump across the thin-body surface of different materials (or normal
vibrating velocities). The normal velocity on each surface can be transformed into the
velocity potential on each side by the prescribed acoustic admittance and the prescribed
vibrating velocity, that is, by the general boundary conditions. Thus, the velocity potential
values on each surface become unknowns, and the combined Helmholtz integral equation
and combined normal derivative integral equation are solved simultaneously.

The hypersingular integral is regularized by using Maue’s less singular normal derivative
integral equation. It is reported that Maue’s equation converges in the Cauchy principal
value sense, rather than only in the finite part sense [3, 13]. Hence, the numerical
integration can be carried out using a standard Gaussian quadrature. The collocation
points are at the nodal points for the combined Helmholtz integral equation and inside
each element for the combined normal derivative integral equation to confirm the
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condition at the corner and the vertex. The knife-edge effect is treated by adopting
quarter-point elements [14–16].

The selected benchmark problems are plane-wave scattering by a circular disk and the
acoustic radiation from a vibrating circular disk. The present results for thin bodies are
compared with the analytical solutions. Scattering from a cylindrical shell open at one side
is calculated and compared with the result obtained by Wu and Wan [3] to check the solid
angle effect at the corners and vertexes. Finally, we calculate the plane wave scattering by
a cylindrical shell with one side open and a partly compliant lining at the bottom, and
compare this with the result obtained using the multi-domain BEM.

2. INTEGRAL FORMULATION FOR THE THIN BODY COATED IN DIFFERENT
MATERIALS

Figure 1 depicts the mathematical notations for a thin body coated in different materials
on each side in a homogeneous acoustic medium. The acoustic field is temporarily divided
into two parts (the exterior subdomain V+ and the interior subdomain V− by an imaginary
surface, s, to formulate a new integral equation for the thin body [1, 3]. The thin body
is mathematically described by a neutral surface, S, because the surface exposed to each
subdomain is assumed to be coated in a different material. The velocity potential in the
subdomain V− is denoted by f−, the velocity potential in V+ is f+ and the acoustic source
is fSc . The velocity potential is defined as n� =−9f and the e+ivt convention for time
harmonic analysis is used. Then, the acoustic pressure can be calculated by p=ikr0a0f,
where i=z−1, k=v/a0 is the wave number, r0 is the density of acoustic medium and
a0 is the speed of sound. The surface normal unit vector, n̂, is taken toward the exterior
subdomain V+.

By applying Green’s theorem to the Helmholtz equation, the Helmholtz integral
equation for each subdomain is obtained as shown below:

C+(P)f+(P)=−gS+ s

G(P, Q)
1f+(Q)

1n
−

1G(P, Q)
1n

f+(Q) dS(Q) (1)

and

C−(P)f−(P)=+gS+ s

G(P, Q)
1f−(Q)

1n
−

1G(P, Q)
1n

f−(Q) dS(Q)+4pfSc (P, XSc ) (2)

Figure 1. Mathematical model for a thin-body coated in different materials.
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where P is the collocation point, Q is the secondary source point on the surface and XSc

is the acoustic source point. The surface integral is applied to S+ s. The symbols C−, C+

represent the solid angles at P in the exterior and interior subdomains respectively. The
kernel function G(P, Q) is the free-space Green’s function, G(P, Q)= e−ikr/r, in which
r= =Q−P=.

Adding equation (1) and equation (2) results in a single equation (the combined
Helmholtz integral equation):

C+(P)f+(P)+C−(P)f−(P)=−gS

G(P, Q)01f+(Q)
1n

−
1f−(Q)

1n 1 dS(Q)

+gS

1G(P, Q)
1n

(f+(Q)−f−(Q)) dS(Q)

+4pfSc (P, XSc ). (3)

The first part of the right side, usually deleted for the rigid surface because of the
continuous normal velocity, is included in the above equation. The integrations on the
fictitious surface are canceled because of the continuity of pressure (or velocity potential)
and particle velocity on that surface.

By taking the normal derivative to equation (3), another combined normal derivative
integral equation is obtained:

C+(P)
1f+(P)

1np
+C−(P)

1f−(P)
1np

=−gS

1G(P, Q)
1np 01f+(Q)

1n
−

1f−(Q)
1n 1 dS(Q)

+gS

12G(P, Q)
1np 1n

(f+(Q)−f−(Q)) dS(Q)

+4p
1fSc (P, XSc )

1np
. (4)

In a typical thin-body radiation or scattering problem, the normal velocity, 1f/1n, is
generally assumed to be continuous across the thin body, as mentioned before. However,
in the case of the thin body having different impedance (or admittance) on each side, the
normal velocity on each side is different. So, in addition to the pressure jump between both
surfaces of the thin body, a jump in normal velocity also exists.

From equations (3) and (4), four unknowns, 1f2/1n, f2, are to be determined. Thus,
to solve the acoustic field, two additional equations or conditions are necessary. Two
conditions can be obtained from the boundary conditions. The general boundary
conditions on both sides are given by:

1f+/1n=−a+f+ − b+ and 1f−/1n= a−f− + b−, (5a, 5b)

where a2 =ir0a0kY2 are coefficients related to the acoustic admittance (Y2) and b2 are
normal vibration velocities on each side of the thin-body surface. Sound-absorbing
materials may be divided into two groups based on their characteristics [17], that is,
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locally-reacting and bulk-reacting materials. In this paper, the former is assumed and is
characterized by a normal acoustic impedance valid at the material surface.

Special conditions to treat the diffraction effect at the knife-edge are:

f+ =f−. (5c)

Physically, this condition illustrates that the pressure is continuous along the edge.
After applying the boundary conditions, equation (5a) and (5b), to equations (3) and

(4), two integral equations with two unknowns f+ and f− on the surface can be deduced
as:

C+f+(P)+C−f−(P)=gS 0a+G(P, Q)+
1G(P, Q)

1n 1f+(Q) dS(Q)

+gS 0a−G(P, Q)−
1G(P, Q)

1n 1f−(Q) dS(Q)

+gS

(b+ + b−)G(P, Q) dS(Q)+4pfSc (P, XSc ) (6)

and

2pa+f+(P)−2pa−f−(P)=gS 0a+ 1G(P, Q)
1np

+
12G(P, Q)

1np1n 1f+(Q) dS(Q)

+gS 0a− 1G(P, Q)
1np

−
12G(P, Q)

1np1n 1f−(Q) dS(Q)

+gS

(b+ + b−)
1G(P, Q)

1np
dS(Q)

+4p
1fSc (P, XSc )

1np
+2p(b+ − b−). (7)

The collocation point in equation (7) is selected to sustain the C1 continuity of
pressure [3, 13]. The solid angles on both sides (C+, C−) are 2p. Hence, one can obtain
velocity potentials on both sides of the thin body by solving equations (6) and (7)
simultaneously.

After finding out the values on the thin-body surface, the acoustic field at any point can
be obtained by integrating equation (3) with the boundary conditions, equations (5a) and
(5b). The values on the thin-body surface can be obtained by solving equations (6) and
(7). Then, the acoustic field at any point can be obtained by integrating equation (3). Note
that in this method, unlike that of Wu and Wan [3], it is not necessary to divide the jump
value of velocity potential into the values inside and outside relative to each side of the
thin body.
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Figure 2. Configuration of the master elements. (a) master elements for equation (6); (b) master elements for
equation (7). (hollow circle: nodal points; flooded circle: collocation points).

3. TREATMENT OF PROBLEMS IN THE INTEGRAL EQUATION

It is well known that the integration has the following problems: the integration of the
singular kernel, the treatment of singularity near the knife edge, the non-uniqueness of the
solution, and the treatment of the corner and the vertex. The following approaches were
adopted to solve these integration problems.

First, the kernel 12G/1np1n is hypersingular in the order of O(1/r3), so that an acceptable
result cannot be obtained in this case. Thus, it is essential to reduce the order of singularity.
Putting collocation points inside each element satisfies the C1 continuity condition and
makes it possible to use the following important relation derived by Maue [4] and later
by Mitzner [5]:

gS

12G
1np1n

f dS=gS

[n̂p ×9pG) · (n̂×9f)+ k2(n̂p · n̂)Gf] dS. (8)

The order of singularity then becomes O(1/r2), and adopting local polar co-ordinates
further reduces the order of singularity to O(1/r). Now, the standard Gaussian quadrature
can be applied to the reduced integration. In this paper, the singular integration is carried
out using the method in [13], based on Cauchy principal integration.

Second, the acoustic velocity potential has a singularity at the knife edge in the order
of O(1/zr). Even using a fine mesh of higher-order elements will not produce sufficient
accuracy, but by using node-shift elements or quarter-point elements, the knife edge
singularity can be overcome easily [3, 15, 16].

Third, the non-uniqueness problem (occurring at some frequencies related to the
eigenvalues of the corresponding interior region of the body) is not severe in the thin body
case. The number of eigenvalues for a particular geometry is given approximately as:

neigen =Vk3/6p2, (9)

where V is the volume of the body. For a thin body, V is zero, so it is not necessary to
consider the non-uniqueness problem in this case [7].

The final problem is how to treat the solid-angle effect at the corner or the vertex.
Collocation points that are placed inside the elements cannot represent the solid angles
at the corners or vertices, and since the solid angle is defined at a point, such
approximations as interpolation and extrapolation are not good treatments. Therefore,
two kinds of collocation points on each element are used: for equation (6), collocation
points are placed on the boundary of the element to calculate the correct solid angle, while
for equation (7), as mentioned before, collocation points are placed inside the elements
to use equation (8). The configurations of the master elements for equations (6) and (7)
are shown in Figure 2.
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4. NUMERICAL IMPLEMENTATION

An isoparametric eight-node quadrilateral and a six-node triangular element is used in
this paper. The co-ordinate and the physical quantities on the surface are approximated
by those at nodal points; that is:

xi (j� )= s
a

Na (j� )Xia (i=1, 2, 3); f(j� )= s
a

Na (j� )Fa (a=1, 2, . . . , 6 or 8), (10)

where Na (j� ) is the quadratic shape function and Xia , Fa are nodal quantities. Thus, a system
equation can be deduced from equations (6) and (7):

$A++

A−+

A+−

A−−%6F+

F−7=6F+

F−7. (11)

Components in the matrix are defined as follows:

A++ =−gSm
$a+(Q(j� ))G(P, Q(j� ))+ 1G(P, Q(j� ))

1n %N(j� ) dSm, (12a)

A+− =−gSm
$a−(Q(j� ))G(P, Q(j� ))− 1G(P, Q(j� ))

1n %N(j� ) dSm, (12b)

A−+ =−gSm

[a+(Q(j� ))1G(P, Q(j� ))
1np

+
12G(P, Q(j� ))

1n 1np
N(j� ) dSm, (12c)

A−− =−gSm
$a−(Q(j� )) 1G(P, Q(j� ))

1np
−

12G(P, Q(j� ))
1n 1np %N(j� ) dSm, (12d)

F+ =gS

(b+ + b−)G(P, Q(j� )) dS+4pfSc (P, XSc ), (12e)

F− =gS

(b+ + b−)
1G(P, Q(j� ))

1np
dS+4p

1fSc (P, XSc )
1np

+2p{b+ − b−}, (12f)

where N(j� )= {N1, N2, . . . , N6 or N8} and F2 are the column vectors of the velocity
potential.

Since the number of collocation points is always greater than the number of nodal
points, an overdetermined full matrix is constructed. By using the least-squares procedure,
all the unknowns on the surface can be solved.

The implementation of the knife-edge constraint is known to be simple [14]. Consider
a thin body discretized into NNODE nodal points. NEDGE points among them are along
the edge, and the number of collocation points is JMAX. Then a JMAX×2 NNODE
matrix can be constructed by assembling the numerical integration of equations (12a) to
(12f). Let F+

k , F−
k be the velocity potentials at the kth nodal point at the knife edge and

{A+
k }, {A−

k } be the corresponding column matrix. One of F+
k and F−

k can be replaced by
the edge condition of equation 5(c). However, this can be embodied easily by replacing
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Figure 3. Mesh for a disk problem. (145 nodes and 48 elements)

{A+
k } with {A+

k +A−
k } and omitting {A−

k } or vice versa. The final size of the matrix to be
calculated is JMAX×(2NNODE−NEDGE).

5. RESULTS AND DISCUSSION

To verify our present method, firstly, the scattering problem of a plane wave from a rigid
circular disk of radius a is tested. The incident velocity potential is given as fSc =e−ikx;
that is, the normal incident plane wave. For the comparison of the present results with
[3], the same mesh with 16 eight-node quadrilateral elements and 32 six-node triangular
elements is used, as shown in Figure 3. The calculated non-dimensional wave numbers,
ka, are 1, 2, 3, 4 and 5. For the rigid body, the admittances on both surfaces, a+, a−, are
zero and b+, b− are also set to zero. Figure 4 shows the real and imaginary parts of the
relative scattered velocity potential on the source side. By comparison with the analytical
solution, both results in [3] and the present calculations show excellent agreement. The
discrepancies of the two numerical results with the analytical solution near the center of
the disk at high frequency, ka=5, are due to the coarseness of the given mesh.

The second case tests the radiation by a vibrating circular disk. The radiation problem
has exactly the same solution as for the scattered field. However, the boundary conditions

Figure 4. Normalized scattered velocity potential on the illuminated surface. (a) Real term; (b) Imaginary term.
——, analytical solution; –+–, Wu and Wan; –w–, present.



1.0

2.5

r/a

R
e 

(φ
)

0.2

1.0

2.0

1.5

0.5

0.4 0.6 0.80.0

(a)

1.0

2.0

Im
 (

φ)

0.2

–1.0

1.0

0.0

–2.0
0.4 0.6 0.80.0

(b)ka = 3

ka = 4

ka = 5

ka = 2

ka = 1 ka = 5

ka = 4

ka = 3

ka = 1

ka = 2

2a

a

z = 0

    369

Figure 5. Normalized velocity potential of the vibration circular disk. (a) Real term; (b) imaginary term. ——,
analytical solution; www, present.

of the calculation are different for each case. For the scattering problem, a+, a−, b+, b−

are zero; and for the radiation case, a+, a− are also zero but b+, b− are set equal to the
surface-vibrating velocity. The test results are depicted in Figure 5. Good agreement with
the analytical solution is again observed. This test partly verifies that the present method
can be applied to a thin body with a vibrating surface.

The next problem is the scattering of an incident plane wave from a rigid thin-walled
cylinder open at one end. The radius of the open cylinder is a and the length is 2a. The
mesh used to model this open cylindrical shell consists of 40 eight-node quadrilateral
elements and eight six-node triangular elements, as shown in Figure 6. Quarter points
(filled circles), rather than middle points (open circles), are used for the elements adjacent
to the knife edge, which is at the open end of the cylinder. The incident plane wave has
a velocity potential of unit amplitude and is assumed to impinge on the cylinder from the
open end. The effect of locations of collocation points is shown in Figure 7. Only mesh
(b) in Figure 2 is used for the present calculation, and the result is compared with that
of Wu and Wan [3]. The difference in the solution is due to the mesh system, as discussed
in Figure 2. This result indicates that mesh (a) in Figure 2 should be used for the combined
Helmholtz integral equation and mesh (b) for the combined normal derivative integral
equation. Figure 8 gives the comparison between the present DBEM, using meshes (a) and
(b) in Figure 2 for Equations (6) and (7) respectively, and Wu and Wan’s solution for the
scattered potentials on both sides (exterior and interior) of the cylindrical surface. The real
and imaginary parts of the scattered velocity potentials on the side wall as a function of

Figure 6. Duct geometry and the used mesh. 40 eight-node quadrilateral and 8 six-node triangular elements
are used. (Flooded circle: element for the knife edge, hollow circle: regular element).
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Figure 7. Solid-angle effect at corners and vertexes. Solid and dotted lines represent the results of Wu and
Wan’s calculation in [3]. Hollow circle is the result by using C1 element for both equations (6) and (7). Plotted
quantity is the scattered velocity potential on the surface of the wall. (a) Real part on the side wall; (b) Imaginary
part on the side wall. w, only using mesh (b) in Figure 2; ——, ····, Wu and Wan [3].

Figure 8. Scattered velocity potential on the wall surface. (a) Real parts on the side wall; (b) Imaginary parts
on the side wall; (c) Real parts on the bottom wall; (d) Imaginary parts on the bottom wall. w, present results;
——, ···· Wu and Wan [3]..
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Figure 9. Circular cylindrical shell in which a sound absorbing material is partly mounted inside bottom wall
(a= k23−1(1+ i0·3)−1).

z are shown in Figures 8(a) and (b) respectively. Figure 8(c) shows the real parts of the
scattered velocity potentials on the bottom wall as a function of r, and Figure 8(d) shows
the corresponding imaginary parts. Again, good agreement is observed. These results
indicate that the treatment of the solid angle by the present method is reasonable at the
corner or vertex.

Figure 10. Scattered velocity potential on the wall surface when ka=1·0 and the absorbing material with
a= k23−1(1+ i0·3)−1 is partly covered on the inner side of bottom surface (r=zx2 + y2): (a) Real parts on the
side wall; (b) Imaginary parts on the side wall; (c) Real parts on the bottom wall; (d) Imaginary parts on the
bottom wall. w, present results; ——, ····, multi-domain method.
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Figure 11. Scattered velocity potential directivity at a distance for kr=10·0 from the open end of the duct
with absorbing material at ka=1·0: solid line, multi-domain method; open circle, present DBEM. w, present
results; —, multi-domain BEM.

Finally, the present DBEM is applied to a thin body having general boundary
conditions. The scattering of an incident plane wave from a cylindrical shell open at one
end is shown in Figure 9. The inside bottom surface is assumed to be partly coated with
an absorbing material. The radius of the coated area is a/2 and the coefficient is taken as
a− = k23−1(1+ i0·3)−1. The results from the present method are compared with those
obtained by the multi-domain method [1]. The scattered velocity potentials on the surface
are depicted in Figure 10. Figure 11 is the directivity of the scattered field at r=10a from
the open end of the duct for ka=1·0 as in [3]. From the data in Figures 10 and 11, it
is seen that the results obtained by the present DBEM and the multi-domain BEM agree
well for the cases that have different boundary conditions across the thin body.

6. CONCLUSION

A direct boundary element method (DBEM) is reformulated to extend to thin bodies
with rigid and compliant surfaces by removing the normal velocity continuity assumption.
The combined Helmholtz integral equation and the combined normal derivative integral
equation are solved simultaneously to account for the different boundary conditions on
the surfaces across the thin body. The different locations of the collocation points in the
two integral equations is critical to cater for the solid angle effect. The knife-edge effect
is considered to confirm the knife-edge condition by using quarter-point elements. No
fictitious surfaces are required in this formulation. Therefore, the discretization is restricted
to the neutral surface of the thin body. The present method can be applied easily to the
problem of scattering and radiation from thin bodies of arbitrary shape having either rigid
or compliant surfaces.
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