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The cell-to-cell mapping technique (CCMT) is a numerical technique for the global
analysis of non-linear dynamic systems and models system evolution as a Markov chain
in discrete time. The computational feasibility of a continuous time version of CCMT is
investigated using the van der Pol oscillator. The results show that while the continuous
CCMT leads to large reduction in Markov model setup time and memory requirements
as well as saving a large amount of computational time in the validation of the results with
respect to the conventional CCMT, convergence to the asymptotic solution can be very
slow. In these respect, the continuous CCMT approach is expected to be most effective as
a scoping tool to determine the approximate location of the attractors.
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1. INTRODUCTION

The cell-to-cell mapping technique (CCMT) is a numerical technique for the global analysis
of non-linear dynamic systems [1, 2]. The CCMT models the evolution of dynamic systems
as a mapping or probability of trajectory transitions between predefined sets of disjoint
intervals (or cells) in the system state-space in discrete time. The cell-to-cell transition
probabilities are determined from the system equations and a given time interval (mapping
time step) and constitute the transition matrix of a Markov chain that yields the probability
of finding the system within a given cell at a given time. A brief overview of the theoretical
basis of CCMT is given in section 2. Some important features of CCMT are the following:

(1) The CCMT can be used to identify attractors consisting of a finite set of points, limit
cycles, piecewise smooth surfaces or a volumes bounded by piecewise smooth closed
surfaces, as well as strange attractors [1] much faster than direct integration. For example,
it has been shown that the statistical properties of the strange attractor of a
‘‘stretch-contraction-reposition’’ map [3] can be determined by the CCMT 8 times faster
than the direct integration method for the same accuracy. Similarly, it has been estimated
that [4] the CCMT can identify the attractors of a third order system describing temporal
xenon oscillations in a nuclear reactor 50–1000 times faster than direct integration.

(2) Since CCMT has no differentiability requirements on the governing equations (e.g.,
such as when using global perturbation of invariant manifolds [5]), it is perhaps the only
technique other than direct integration that can be used for the global analysis of systems
whose configuration may change as a function of system parameters (e.g., a process control
system with on/off controls) or systems whose governing equations may be buried in a
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complex, hard-wired simulator which has the system parameters as inputs (as is often
encountered in practice).

(3) While numerous fast techniques have been proposed for the global analysis of
non-linear systems (e.g., see references [6]–[13]), they are often impractical when the system
has higher than two degrees of freedom. The CCMT has been successfully implemented
to identify the attractors in the 4-dimensional state-space of a coupled two
degree-of-freedom van der Pol system [14].

(4) Its probabilistic modeling of system dynamics makes CCMT naturally suited for the
global analysis of systems with uncertainty on the system parameters and/or uncertainty
on the observed system state. For example, the cells may represent the uncertainty in the
monitored system state due to noise and/or the uncertainty in the system model parameters
due to possible experimental error in their determination. Some applications of CCMT in
probabilistic safety analysis are described in references [4, 15, 16].

The limitation of CCMT in implementation arises from computational requirements:
(5) Although the transition matrix for the Markov chain representing the system

dynamics is generally very sparse, a fine state-space discretization scheme for adequately
precise coverage of initial conditions of interest may not be computationally feasible due
to excessive memory requirements even for relatively small systems.

(6) The choice of mapping time step and the cells are not completely independent of
each other. This dependency between time and state-space discretization may require
several trials with different discretization schemes to validate the results.

(7) Generation of the transition matrix can be computationally prohibitive if a large
number of cells need to be used and several sets of calculations need to be performed to
validate the results.

These aspects of CCMT are discussed in more detail in section 2. This paper investigates
the feasibility of using a continuous time Markov model (section 3) rather than a discrete
Markov chain for the determination of the system location in the state-space at a given
time (section 2). The possibility of such an approach is originally mentioned in reference
[17] and its potential in analyzing non-linear random systems is discussed in reference [19],
however, the only application encountered in the available literature is a first order
chemical system with a random coefficient [20]. This work shows that the continuous time
approach gives very close results to the exact solution of the problem [20], but does not
explore the computational advantages and disadvantages of the continuous CCMT with
respect to the conventional or discrete CCMT. The main expected advantage of the
continuous time approach is better control over the computer memory requirements. In
addition, although a time step still needs to be chosen for the integration of the differential
equations that constitute the continuous time Markov model, the choice of this time step
is independent of the state-space discretization used and hence allows the use of an
integration algorithm with variable stepsize. The computational features of the continuous
time approach are investigated on the well-known van der Pol oscillator in sections 4 and
5. Section 6 gives the conclusions of the study.

2. AN OVERVIEW OF CCMT

Consider the system
dx/dt= f(x, t), (1)

where x0 {x1, x2, . . . , xL} is an L-vector whose components xl are the dynamic variables,
f(x, t) is an L-vector representing the system equations and t is time. Now partition the
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system-state space into sets of process variable magnitude intervals (cells) Vn such that

Vn 0 {xl : al,nl Q xl E al,nl +1; l=1, . . . , L},

n0 n(n1,n2, . . . , nL ); nl =1, . . . , Nl , l=1, . . . , L; n=1, . . . , N=N1 N2 . . . NL (2)

and

k
N

n=1

Vn =R, Vm +Vn = 9 for m$ n, (3)

where R is the state-space region of interest and VN+1 represents the complement of R (sink
cell). Figure 1 graphically illustrates such cells and the cell surfaces for a second order
system with dynamic variable x1 and x2. The transition probability gm,n (t) from cell n to
m can be found from [2]

1
vn gVn

dx' em (x̃(x', t)) if Vn $R,

gm,n (t)=g
G

G

F

f
1 if n=m=N+1,

(4)

0 if n=N+1 and m$N+1,

where vn is the volume of Vn ,

em (x)0610 if x$Vm ,
otherwise,

(5)

and

x̃(x', t)= x'+g
(k+1)t

kt

f(x, t') dt' (6)

is the system location at time (k+1)t in the state-space as obtained from the integration
of equation (1), given that the system is at x' at time kt. The probability pn (kt) that the

Figure 1. An example partitioning for a second order system with dynamic variables x1 and x2.
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system is within cell n time t= kt can be then obtained recursively from [1, 2]

p((k+1)t)=Gp(kt) (k=0, 1, 2 . . . ), (7)

where p(kt) is a N+1-vector with elements pn (kt) and G is a (N+1)× (N+1) stochastic
matrix with elements gm,n (t) (n, m=1, . . . , N+1) (called the transition matrix). The t is
the mapping time step. Equations (2)–(6) show that equation (7) defines a Markov chain
in discrete time.

In practice, the integral in equation (4) is approximated numerically to generate the
transition matrix G, which may require several trials with increasingly refined integration
schemes to validate the approximation scheme used. However, whether a quadrature or
a Monte Carlo scheme is used in the approximation of this integral, usually only a
relatively few number of points can be selected as initial conditions from each cell for
computational feasibility (see section 5) and, in this respect, it may be difficult to verify
the adequacy of the integration scheme used. Similarly, several trials may be needed with
different partitioning schemes to validate the results obtained from equation (7). For
example, if t is too small with respect to the time constants of equation (1) and the cell
sizes, then the system may not move out of the cell it is in and subsequently equation (7)
will not represent the system dynamics properly. A similar situation may also occur if t

is too large.

3. THE CONTINUOUS TIME CCMT AND ALGORITHM DEVELOPMENT FOR
IMPLEMENTATION

In the limit t:0, equation (7) becomes [17, 18]

1p(x, t)
1t

+9 · J(x, t)=0, J(x, t)= p(x, t)f(x, t), (8)

where p(x, t) is the probability per unit volume of the state-space that the system is at x
at time t and J(x, t) represents the probability flow at point x at time t. Now integrate
equation (8) over Vn . Using the definition of pn (t), i.e.,

pn (t)=gVn

dx p(x, t) (9)

and the Stokes theorem to transform the volume integral of 9 · J(x, t) to a surface integral,
one obtains

1pn (t)
1t

+gSn

dxs n̂(xs ) · J(xs , t)=0, (10)

where Sn denotes the surface of Vn , xs is a point on this surface and n̂(xs ) denotes the
outward normal to Sn at xs . The surface integral in equation (10) can be written as

gSn

dxs n̂(xs ) · J(xs , t)=gn̂(xs) · J(xs, t)q 0

xs$Sn

dxs n̂(xs ) · J(xs , t)+gn̂(xs) · J(xs, t)Q 0

xs$Sn

dxs n̂(xs ) · J(xs , t). (11)

The first and second terms on the right hand side of equation (11) represent the probability
outflow and inflow, respectively, per unit time for cell Vn . The probability inflow into Vn
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can be expressed in terms of probability flow across the surfaces of the cells interfacing
Vn , i.e.,

gn̂(xs) · J(xs, t)Q 0

xs$Sn

dxs n̂(xs ) · J(xs , t)= s
n' gn̂(xs) · J(xs, t)Q 0

xs$Sn +Sn '

dxs n̂(xs ) · J(xs , t), (12)

where n' denotes the cells surrounding Vn . Under the assumptions that p(x, t) is uniformly
distributed within each cell (also implicit in references [1] and [2]), i.e.,

p(x, t)= pn (t)/vn for x$Vn , (13)

and p(x, t) on a cell boundary is approximately equal to the pn (t) of the upstream cell (with
respect to the probability flow), equations (9)–(13) yield

dp/dt=Qp(t), (14)

where p is a N+1-vector with elements pn (t) and Q is a (N+1)× (N+1) matrix (called
the transition rate matrix) whose elements qm,n are determined from

−
1
vn gn̂(xs) · f(xs, t)q 0

xs$Sn

dxs n̂(xs ) · f(xs , t), if m= n,

qm,n =g
G

G

G

G

F

f
1
vn gn̂(xs) · f(xs, t)q 0

xs$Sn +Sm

dxs n̂(xs ) · f(xs , t), if m$ n.
(15)

Appendix A shows that SN+1
m=1 qm,n =0. Appendix A also shows that: (1) Q has only

eigenvalues with a non-positive real part, with at least one eigenvalue with zero real part
(these zero real part eigenvalues are in fact equal to zero), and, (2) all zero eigenvalues
are non-degenerated. Then for an autonomous system (f does not depend on t and Q is
a constant matrix), the probability vector p(t)= eQt p(0) tends to an asymptotic solution.

For the mechanized construction of Q, first enumerate the cells Vn using the following
‘‘lexicographic’’ scheme:

n0 n(n1, . . . , nL )=1+(n1 −1)+ (n2 −1)N1 + · · ·+ (nl −1) t
l−1

l'

Nl'

+ · · ·+ (nL −1) t
L−1

l'

Nl'. (16)

Then the surface integral Ik (n1, n2, . . . , nL ) on the face

Sk,n 0 {xl : al,nl E xl E al,nl +1; l=1, . . . , k−1, k+1, . . . , L; xk = ak,nk}

(n=(n1n2, . . . , nL )) (17)
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Figure 2. Flow chart for mechanized construction of the transition rate matrix Q (Method 1).

of the cell Vn can be written as

Ik (n1,n2, . . . , nL )=g
a1,n1+1

a1,n1

dx1 · · · g
ak−1,nk−1+1

ak−1,nk−1

dxk−1 g
ak+1,nk+1+1

ak+1,nk+1

dxk+1 · · ·

×g
aL ,nL +1

aL ,nL

dxL ûk · f(x1, x2, . . . , xk−1, ak,nk , xk+1 · · · xL ), (18)

where ûk is the unit vector in the state-space in the k direction. If Ik (n1, n2, . . . , nL ) is
positive, it represents a probability flow or transition from cell m0 (n1, . . . , nk−1 · · · nL )
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Figure 3. Flow chart for mechanized construction of the transition rate matrix Q (Method 2).
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Figure 4. Relative probability distribution P/Pmax = pn(a)/maxn pn(a) of the asymptotic behavior of the van
der Pol oscillator for m=0·1 obtained by compactification: (a) using 50×50 cells; (b) using 100×100 cells; (c)
using 200×200 cells; (d) exact solution.

to cell n0 (n1, . . . , nk , . . . , nL ) and thus

qn,m = Ik (n1,n2, . . . , nL )/vm . (19)

Conversely, if Ik (n1n2, . . . , nL ) is negative, it represents a transition from cell
n0 (n1, . . . , nk , . . . , nL ) to cell m0 (n1, . . . , nk−1, . . . , nL ) and

qm,n =−Ik (n1n2, . . . , nL )/vn . (20)

The diagonal elements of Q can be computed from the property SN+1
m=1 qm,n =0. The

number of non-zero off-diagonal elements of Q is LN which compares very favorably to
a possible maximum number of CN non-zero elements when using the approach described
in reference [2], where C=C1C2 . . . CL is the number of quadrature points used in the
numerical evaluation of the integral in equation (4) with Cl , l=1, . . . , L denoting the
number of partitions used in each l direction for the selection of the quadrature points.

At this point it should be indicated that, asVn become infinitely small, the non-zero qn,m

increase to infinite values. On the other hand, pn (t) also tend to zero with decreasing Vn ,
except for Vn that contain the attractor. These Vn will eventually become the support of
the attractor as they themselves go to zero and the probability density in a cell n, pn (t)/vn ,
will tend to a Dirac delta distribution over this support. This situation is illustrated by
using a simple example in Appendix B. Also, reference [20] shows that for the first order



--  403

system under consideration in reference [20], the solution of equation (14) exists and is
unique. However, a general proof of convergence for continuous time CCMT (i.e., finding
the general sufficient and necessary conditions to assure the convergence, the norm that
can be used as a convergence criterion, etc.), is a mathematically very difficult problem
and is beyond the scope of this paper. It should be also mentioned that while numerical
roundoff may, in principle, lead to numerical problems with decreasing Vn and thus
increasing transition rates, the Vn used in most practical problems are not expected to be
small enough for such roundoff effects to have appreciable impact on the results.

Figures 2 and 3 show the flowcharts for two possible algorithms for the mechanized
partitioning of the state-space and construction of Q. In both approaches, a cell face is
characterized by the L+1 numbers n1, n2, . . . , nL and k which indicates the axis
orthogonal to the cell surface Sk,n(n1,n2, . . . , nL) (see Figure 1). If a= Ik (n1, . . . , nL ) is q0, the
transition is from cell m0 (n1, . . . , nk−1, . . . , nL ) to the cell n0 (n1, . . . , nk , . . . , nL ). If
a is Q0, the transition is from cell n to cell m. The only difference between Method 1
(Figure 2) and Method 2 (Figure 3) is the way the border cells (see Figure 1) are handled
to prevent loss of ergodicity of equation (14), which may arise due to the well-known
problem of false diffusion. The different tests in Figures 2 and 3 examine the situation at
these border cells. In Method 2, transitions into R� from the border cells are computed and
redistributed to the cells of the domain as loss terms by a normalization operation. In
Method 1, these transitions are not taken into account and the probability of transition

Figure 5. Relative probability distribution P/Pmax = pn(a)/maxn pn(a) of the asymptotic behavior of the van
der Pol oscillator for m=0·1 obtained by Method 1 using: (a) 50×50 cells; (b) 100×100 cells; (c) 200×200
cells; (d) 400×400 cells.
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Figure 6. Relative probability distribution P/Pmax = pn(a)/maxn pn(a) of the asymptotic behavior of the van
der Pol oscillator for m=0·1 obtained by Method 2 using: (a) 50×50 cells; (b) 100×100 cells; (c) 200×200
cells; (d) 400×400 cells.

from the border cells into R are assumed to be zero. Another approach that can be used
is the ‘‘compactification’’ of the domain of the dynamical variables by the transformation
of the variables x into variables y which have a bounded domain [17]. The resulting system
dy/dt= g(y, t) is dynamically equivalent to dx/dt= f(x, t) if the transformation preserves
the number and the nature of singular points. In these situations Methods 1 and 2 become
identical. The numerical implications of these approaches are discussed in section 4.

4. APPLICATION: THE VAN DER POL OSCILLATOR

For the illustration of the continuous CCMT, we will use the classical problem of van
der Pol that has been considered earlier in the implementation of the discrete CCMT [1].
The system equations are

dx/dt= y, dy/dt= m(1− x2)y− x, mq 0. (21)

It is well known that equation (21) has a stable limit which all the trajectories approach,
except those starting at the origin which maps onto itself. For compactification, the
transformation (x, y):(r= r/(1+ r), u) has been used where r, u are the polar
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co-ordinates. The new system is

dr

dt
=

r

1− r
m sin2 u((1− r)2 − r2 cos2 u),

du

dt
= m sin u cos u

1
(1− r)2 ((1− r)2 − r2 cos2 u)−1, (22)

where the range for r is [0, 1] and the range for u is [0, 2p]. The integral in equation (4)
was evaluated by quadratures using evenly spaced subintervals in each cell. A variable
stepsize fourth order Runge–Kutta method was used for integrating equation (4) as well
as equation (14), using uniform probability distribution in R as the initial condition.
Figure 4 compares the results obtained for m=0·1 with the compactification approach
using 50×50, 100×100, 200×200 cells to the exact solution. The results have been
mapped back to the x–y plane. Convergence of the asymptotic solution of equation (7)
was determined using the criterion

=pn (k+1)− pn (k) =E epn (k)+ d, [Vn $R,

where e=10−3 and d=10−9. Convergence of the asymptotic solution of equation (14) was

Figure 7. Relative probability distribution P/Pmax = pn(a)/maxn pn(a) of the asymptotic behavior of the van
der Pol oscillator for m=1·0 obtained by Method 1 using: (a) 50×50 cells; (b) 100×100 cells; (c) 200×200
cells; (d) 400×400 cells.
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Figure 8. Relative probability distribution P/Pmax = pn(a)/maxn pn(a) of the asymptotic behavior of the van
der Pol oscillator for m=1·0 obtained by Method 2 using: (a) 50×50 cells; (b) 100×100 cells; (c) 200×200
cells; (d) 400×400 cells.

determined when for two successive times t and t', one has

=pn (t')− pn (t) =E epn (t)+ d, [Vn $R,

again for e=10−3 and d=10−9.
Figures 5 and 6 show the results for Method 1 and Method 2, respectively, using

50×50, 100×100, 200×200 and 400×400 cells. All the three methods give the periodic
orbit as an attractor but not the origin since it is an unstable stationary point. Note that
a similar problem can also appear for CCMT, depending on the choice of t and the number
of quadrature points per cell. Figures 4–6 show that the most accurate results are obtained

T 1

Computation times to obtain the asymptotic solution for van der Pol oscillator using the
continuous CCMT

CPU time (s) CPU time/Smallest CPU time
for N cells for N cells

ZXXXXXXXCXXXXXXXV ZXXXXXXCXXXXXXV
Method 502 1002 2002 4002 502 1002 2002 4002

‘‘Compactification’’ 282·69 1001·33 8047·80 — 21·38 11·04 11·83 —
1 20·99 192·46 1803·87 12 069·04 1·59 2·12 1·84 2·23
2 13·22 90·70 680·35 5412·13 1 1 1 1
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T 2

A comparison of some computational features of the CCMT and the continuous CCMT for
the asymptotic solution of the van der Pol oscillator with m=1·0

Case Method N C t Mmax Tmatrix Ttotal

1 CCCMT 202 — — 794 0·01 0·54
2 CCMT 202 4 0·1 1021 0·20 1·45
3 CCCMT 502 — — 4984 0·01 11·54
4 CCMT 502 4 0·1 7236 1·14 3·52
5 CCCMT 1002 — — 19 968 0·04 197.65
6 CCMT 1002 4 0·1 30 300 4·56 57·16
7 CCMT 1002 4 1·0 29 611 11·61 120·12
8 CCMT 1002 4 10·0 40 327 67·78 —
8b CCMT 1002 4 9·9 40 003 67·34 193·27
8c CCMT 1002 4 10·1 40 267 68·68 185·97
9 CCMT 1002 4 100·0 40 120 633·98 668·97

10 CCMT 1002 16 0·1 37 319 72·96 128·45
11 CCMT 1002 16 1·0 37 073 187·12 299·46
12 CCMT 1002 16 10·0 54 099 1097·50 1352·56
13 CCMT 1002 16 100·0 53 262 10 217·81 10 247·96

CCMT, cell to cell mapping technique; CCCMT, continuous cell to cell mapping technique; N, number of
cells used; C, number of subcells or quadrature points used in the approximation of the integral in equation (6);
t, mapping step size (see equation (6)) in seconds; Mmax , number of non-zero elements in the transition matrix
G or the transition rate matrix Q; Tmatrix , computational processing time used to generate the transition matrix
G or the transition rate matrix Q in s; Ttotal , total computational processing time used to obtain the solution in s.

by the ‘‘compactification’’ method. For a small number of cells, Figure 5 shows that
Method 1 leads to some deformation near the boundary of R, because Method 1 does not
account for transitions going out of domain R. Since the cell probabilities in Figures 4–6
are proportional to the time spent in the cells, cells with high probabilities correspond to
the low velocity regions along the system trajectory. This phenomenon is more visible for
m=1 as can be seen from Figures 7 and 8 which have been obtained using Method 1 and
Method 2, respectively.

Table 1 gives the computation times for the cases considered in this study. While Table 1
shows that Method 2 is much faster than either Method 1 or the ‘‘compactification’’
method for a given number of cells, a comparison of Figures 4–6 shows that the
‘‘compactification’’ method yields as much detail with 50×50 cells as Method 2 does with
400×400 cells. In this respect, Table 1 shows that the ‘‘compactification’’ method can be
about 20 times faster than Method 2 for a given accuracy of results. It should be indicated,
however, that this possible computational advantage of the ‘‘compactification’’ method is
contingent upon the choice of the transformation. For example, if the polar co-ordinates
for the example system above were chosen with the origin far from the region of interest
for the system, the results would be very poor.

5. COMPARISON OF COMPUTATIONAL FEATURES OF CONTINUOUS CCMT TO
DISCRETE CCMT

In order to investigate the computational features of continuous CCMT with respect
to the discrete CCMT, a set of parametric studies were carried out for the example system
with m=1·0 using a different number of cells (i.e., N), quadrature points or subcells C
for the approximation of the integral in equation (6) and a different mapping step size t

(see equation (6)). The results are shown in Table 2. The predicted asymptotic behavior
of the system for Cases 1–12 (see Table 2) as well as the exact solution are shown in
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Figures 9–11. Cases 1–12 in Figures 9–11 have been plotted using the ‘‘local maxima’’; i.e.,
selecting the cells with probabilities higher than the surrounding cells. The lack of
convergence for Case 8 is attributed to the possible cyclicity of the transition matrix for
Case 8. A solution to such a convergence problem is to use a convergence criterion based
on the Cesaro sums instead of the criteria given in section 4. The following observations
are made from Table 2 and Figures 9–11:

(1) Continuous CCMT leads to large reduction in Markov model setup time. Comparison
of Tmatrix times in Table 2 shows that the generation of the transition rate matrix Q (see
equation (14)) is 0·20/0·1=20 to 10217·81/0·04=255 445 times faster than the generation
of the transition matrix G (see equation (7)), depending on the partitioning scheme and
the number of subcells used in the approximation of the integral in equation (4).
Comparison of Cases 6–9 with Cases 10–13 in Table 2 also shows that model construction
time for discrete CCMT increases very rapidly with the number of subcells or quadrature
points used in the approximation of the integral in equation (6).

Figure 9. Asymptotic solutions of the van der Pol oscillator with m=1·0 for Cases 1–6 obtained from the
local maxima: (a) Case 1 (CCCMT 20×20 cells); (b) Case 2 (CCMT 20×20 cells, t=0·1 s); (c) Case 3 (CCCMT
50×50 cells); (d) Case 4 (CCMT 50×50 cells, t=0·1 s); (e) Case 5 (CCCMT 100×100 cells); (f) Case 6
(CCMT 100×100 cells, t=0·1 s).
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Figure 10. Asymptotic solutions of the van der Pol oscillator with m=1·0 for Cases 6–9 obtained using the
local maxima: (a) Case 6 (t=0·1 s); (b) Case 7 (t=1·0 s); (c) Case 8 (t=10·0 s); (d) Case 9 (t=100·0 s).

(2) Continuous CCMT leads to large reduction in memory requirements. For example,
for Cases 5 and 13 in Table 2 the reduction is by a factor of 53 262/19 968=2·67.

(3) Continuous CCMT saves a large amount of computational time in the validation of
the results. The time savings originate from the fact that the discrete CCMT requires
experimentation with t and the number of subcells used in the approximation of the
integral in equation (4) to validate the results for a given partitioning scheme. Table 2
shows that the total time used to validate the results for the 100×100 partitioning scheme
(i.e., the sum of Ttotal for Cases 6–13) is about 13 350 s which is 13 350/197·65=67·5 times
larger than Ttotal for Case 5.

(4) For comparable accuracy on the predicted asymptotic system behavior, continuous
CCMT can still be computationally advantageous. For example, a fairly conservative choice
of Case 10 results in Figure 11 as being comparable to Case 5 results in Figure 9 regarding
accuracy and the corresponding data in Table 2 indicate that while the total computational
time to obtain the results increases by about 197·65/128·45=1·54, the reduction in
memory requirements is by a factor of 37 319/19 968=1·87. For a more favorable choice
of Case 11 in Figure 11 for comparison, results instead of Case 10, Table 2 shows that
both the total computational time and memory requirements are lower for continuous
CCMT by a factor of 299·46/197·65=1·52 and 37 073/19 968=1·86, respectively.
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On a more negative note, Table 2 and Figures 9–11 indicate the following difficulties
with the continuous CCMT:

(5) Convergence of equation (14) to the asymptotic solution is very slow. Inspection of
the Tmatrix and Ttotal data in Table 2 shows that while the model generation times are much
smaller than the discrete CCMT, the total computational time to obtain the results can
be much longer.

(6) Equation (14) may only have a trivial asymptotic solution. This situation is relevant
to systems where the dynamic variables are defined on an unbounded domain. Since there
is always a finite transition probability between adjacent cells according to equation (15),
the sink cell is reachable from all the cells in this situation and hence all the cells eventually
lead to the sink cell. In that respect, approximations may need to be used such as was done
in this study (i.e., Method 1 and Method 2 described in section 3). However, such a
problem does not occur if compactification is possible.

(7) Continuous CCMT may erroneously predict paths to the sink cell as part of the
attractor. Comparison of Cases 1, 3 and 5 in Figure 9 to the exact asymptotic solution
in Figure 11 shows that the continuous CCMT predicts 4 paths to the sink cell which
should not be there. Again, this phenomenon originates from the sink cell being reachable
from all the cells when the dynamic variables are defined on an unbounded domain. The
paths indicate the path of probability flow out of R. Note that such paths may also exist

Figure 11. Exact and asymptotic solutions of the van der Pol oscillator with m=1·0 for Cases 10–12 obtained
using the local maxima: (a) Case 10 (t=0·1 s); (b) Case 12 (t=10·0 s); (c) Case 11 (t=1·0 s); (d) exact solution.
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Figure 12. Asymptotic solutions of the van der Pol oscillator with m=1·0 for Cases 3–6 obtained using a
minimum cutoff on pn(t): (a) Case 3 (Continuous CCMT, 50×50 cells); (b) Case 4 (CCMT, 50×50 cells, 4
subcells, t=0·1 s); (c) Case 5 (continuous CCMT, 100×100 cells); (d) Case 6 (CCMT, 100×100 cells, 4
subcells, t=0·1 s).

for coarse mesh partitionings with CCMT for small t (i.e., Cases 2 and 4 in Figure 9) which
may lead to a similar connectivity between the cells. Comparison of Case 6 results in
Figure 10 to Cases 7–9 results show that while the paths start disappearing with the
refinement of the partitioning and also with increasing t for the discrete CCMT, Cases
1, 3 and 5 in Figure 9 show that the paths remain for the continuous CCMT irrespective
of the partitioning scheme used. Since the probability of finding the system on the attractor
is much higher than on these paths, it is possible to remove the paths by not plotting points
with probabilities lower than some specified value as shown for Cases 3–6 in Figure 12,
instead of plotting the local maxima as was done in Figures 9–11. However, this approach
may lead to more blurring or ‘‘fattening’’ of the attractor using continuous CCMT than
CCMT as again shown for Cases 3–6 in Figure 12.

6. CONCLUSION

This study investigates the computational features of the continuous CCMT using the
van der Pol oscillator. The results of the study show that the continuous CCMT leads to
a large reduction in Markov model setup time and in memory requirements and can be
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computationally advantageous with respect to the discrete CCMT for comparable
accuracy on the predicted asymptotic system behavior for some choices of the mapping
time step t and state-space partitioning scheme. On the other hand, the results of the study
also show that convergence of the continuous CCMT to the asymptotic solution is very
slow, sometimes requiring the use of additional approximations, as well as the
improvement of the accuracy of the results with increasing refinement in partitioning. In
these respect, the continuous CCMT approach is expected to be most effective as a scoping
tool to determine the approximate location of the attractors. Then the discrete CCMT can
be used to refine the results without excessive experimentation on the choice of the
partitioning scheme and the mapping time step t. It should be also indicated that both
the discrete CCMT and the continuous CCMT are different discretization methods to solve
equation (14) and more effective other discretization methods may be possible. Similarly,
it may be possible to find more effective integration algorithms to alleviate the problem
of slow convergence of equation (14).
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APPENDIX A: SOME PROPERTIES OF THE MATRIX Q

First one shows that sN+1
m

qm,n =0. Indeed

s
m

qm,n = qn,n + s
m$ n

qm,n =−
1
nn gn̂(xs) · f(xs, t)q 0

xs$Sn

n̂(xs ) · f(xs , t) dxs

+ s
m$ n

1
nn gn̂(xs) · f(xs, t)q 0

xs$Sn +Sm

n̂(xs ) · f(xs , t) dxs (from equation (15))

=−
1
nn gn̂(xs) · f(xs, t)q 0

xs$Sn

n̂(xs ) · f(xs , t) dxs +
1
nn

s
m$ n gn̂(xs) · f(xs, t)q 0

xs$Sn +Sm

n̂(xs ) · f(xs , t) dxs

=−
1
nn gn̂(xs) · f(xs, t)q 0

xs$Sn

n̂(xs ) · f(xs , t) dxs +
1
nn gn̂(xs) · f(xs, t)q 0

xs$Sn

n̂(xs ) · f(xs , t) dxs =0

Now one proves that: (1) Q has only eigenvalues equal to zero or with a negative real part,
and (2), all zero eigenvalues are non-degenerated. For this purpose, let A= I+ aQ, where
I is the (N+1)× (N+1) identity matrix and 0Q aEmaxn =qn,n =−1. Then

lA =1+ alQ , (A.1)

where lA and lQ are the eigenvalues of A and Q, respectively. Since

qm,n =6e0
E0

if m$ n,
if m= n,

(A.2)

one must have aqn,n e−1 and hence it follows from the definition of A that the elements
am,n of matrix A are all non-negative. Also, since

s
N+1

m=1

qm,n =0 (A.3)

from above,

s
N+1

m=1

am,n = s
N+1

m=1

dm,n + aqm,n =1, (A.4)
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where dm,n is the Kronecker delta of arguments (m,n) and hence A is a (column) stochastic
matrix.

Property (A.4) shows that the N+1 row vector (1 1 · · · 1) is a left eigenvector of
matrix A, associated with the eigenvalue 1. From Gershgorin’s theorem [21], one knows
that the eigenvalues lA are included in the union of the circles of center an,n and of radius
SN+1

m=1,m$ n =am,n = (n=1, . . . , N+1). Then =lA =E 1 and Re lA E 1 and since 1 is an
eigenvalue, the spectral radius r(A) of A is 1. From equation (A.1), this result implies that:
(1) Q has only eigenvalues equal to zero or with negative real parts and (2), there is at
least one lQ =0. From the Perron-Frobenius theorem, it can be also shown that [22, 23],
all the eigenvalues lA of modulus equal to r(A) (=1) are non-degenerated and hence all
lQ =0 are non-degenerated.

APPENDIX B: AN EXAMPLE ON THE CONVERGENCE OF CONTINUOUS
CCMT FOR Vn:0

Consider the system

dx
dt

= a, x(0)=0, (B.1)

where R0 [0, xmax ]. The associated probabilistic problem is

1p(x, t)/1t+ a 1p(x, t)/1x=0, p(0, t)= d(x), (B.2)

and its exact solution is p(x, t)= d(x− at), te 0.
Let Vn 0 (n−1)hQ xE nh (n=1, . . . , N) with h= xmax /N. From equations (14) and

(15), one has

dpn (t)
dt

= s
N

m=1

qn,mpm (t), p1(0)=1, pn (0)=0, for nq 1, (B.3)

where

qn,m = 8a/h
−a/h
0

if n=m+1,
if n=m,
otherwise.

(B.4)

The solution of equation (B.3) is

pn (t)= [(at/h)n−1 e−at/h]/(n−1)!. (B.5)

Define g= n/N. One has to prove that pn (t)/h tends to p(x, t), with x= nh= gxmax , for
h:0 or N, n:a, since (n−1)hQ xE nh and thus n1 x/h for small h. Now integrate
this function from x= x1 to x= x2 (0E x1 Q x2):

I=g
x2

x1

pn (t)
h

dx=
1
at g

x2

x1

(atn/j)n e−atn/j

(n−1)!
dj

=
n

n−1 $e−u s
n−2

k=0

uk

k!%
atn/x2

atn/x1

=
n

n−1
(Fn (b2)−Fn (b1)), where bi = atn/xi (B.6)
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and

lim
n:a

Fn = lim
n:a 0 n

n−1
e−bn s

n−2

k=0

(bn)k

k! 1=60, bq 1,
1, bQ 1.

Then, if x1 Q x2 Q at, one has b1 q b2 q 1 and I=0−0=0; if atQ x1 Q x2, one has
1q b1 q b2 and I=1−1=0; if x1 Q atQ x2, one has b1 q 1q b2 and I=1−0=1. I
equals 1 if and only if at $ (x1, x2) and I=0 otherwise. Since the interval x1 Q atE x2 can
be chosen to be arbitrarily small, pn (t)/h as given by equation (B.5) corresponds for n:a
to the definition of d(x− at), which is the exact solution of the problem.


