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1. 

This letter is concerned with the stability of a rotating beam subject to a motion-dependent
moving force. The model is chosen for study of the vibration of the workpiece in the lathing
process. Interactions of rotation, force motion and motion-dependence are particularly
discussed.

Papers related to the current research are as follows. Kenney [1] derived the formulation
of the critical moving speed of the load on a beam on an elastic foundation. Florece [2]
solved the problem of the dynamic behavior of a beam excited by a constant moving force.
The stability and response of a non-rotating beam acted on by a motion-dependent force
moving at a constant speed was discussed comprehensively by Katz et al. [3]. Their results
showed the increase of stiffness of the beam due to the motion-dependent external force.
Lee et al. [4] studied the vibration problem of a rotating beam subject to a constant moving
load via the method of modal analysis. Katz et al. [5] further published a paper about the
dynamic response of a rotating beam subject to a constant moving force at a constant
speed. They showed the induction of the deflection perpendicular to the load direction due
to the effect of rotation. Huang and Chen [6] solved the problem of a spinning orthotropic
beam excited by a moving harmonic load. Argento et al. [7–10] have also presented a series
of papers related to the present topic. Their results were, however, primarily based on a
numerical scheme. The authors here explore the stability phenomenon from an analytic
approach and eventually verify the approach with numerical solutions.

A rotating Rayleigh beam model is used in this paper. Compared to an Euler beam,
the Rayleigh beam formulation contains additional rotary inertia terms. The reason for
including the rotary inertia of the shaft is that the inertia, subsequently the gyroscopic
effect as well, becomes significant at high rotation frequencies.

2.   

A slender beam of length l and cross-section A, is shown in Figure 1. V(x, t) and W(x, t)
are the absolute displacements in the inertia co-ordinates xyz. The beam is rotating about
the x-axis at a constant frequency V. Via Hamilton’s principle, the equations of motion
of the rotating beam are obtained as [11]
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In equations (1) dimensionless parameters are defined for simplicity as
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V*=V/l, W*=W/l, r*=zI/A/l, V*=V/(b2
1zEI/rA),

x*= x/l, t*= (zEI/rA/l 2)t, p*y =(l3/EI)py , p*z =(l3/EI)pz , (2)

where r, E, py and pz are the mass density, Young’s modulus, and force magnitudes,
respectively. The beam is assumed to be symmetric: i.e., Iy = Iz = I. In equations (1) and
(2), r* is equivalent to the slenderness ratio of the beam, bm (m=1, 2, . . . ) denotes the
mth eigenvalue of the non-rotating Euler beam, and is related to its mth natural frequency
vEm by b2

m =vEmzrA/EI. Furthermore, the corresponding dimensionless eigenvalue is
defined as b*1 = b1l.

The partial differential equations (1) can be further discretized via Galerkin’s method.
Let

V*= s
N

m=1

zm(t*)Xm(x*), W*= s
N

m=1

hm(t*)Xm(x*), (3)

where zm(t*) and hm(t*) are two generalized co-ordinates associated with the mth trial
mode Xm(x*), and N is the number of modes deemed necessary for satisfactory
convergence. A reasonable choice of the Xm(x*) set is that of the modes of the
corresponding non-rotating Euler beam.

The external force considered here moves along the axial direction of the beam at a
constant speed v. Thus, the non-dimensional force can be expressed as

p*y (x*, t*)= p̂*y d(x*− (l*c /2p)b*2
1 v*t*),

p*z (x*, t*)= p̂*z d(x*− (l*c /2p)b*2
1 v*t*), (4)

where p̂*y and p̂*z are the force magnitudes, and the dimensionless characteristic length, of
mode X1(x*), is denoted as l*c = lc/l with lc wavelength of the first mode shape. The
non-dimensional speed of the external force is defined as v*= v/vEcr with vEcr =(b2

1lc/
2p)zEI/rA the critical speed of a non-rotating Euler beam [1].

The motion-dependent force components are functions of the displacement,

p̂*y =P*y − gV*, p̂*z =P*z , (5)

with g a constant. The displacement W* as well as the force in the z direction was found
to only affect slightly the dynamic behavior of the rotating beam [12]; therefore, the
dependence of the force p̂*y on W* is ignored and p̂*z is assumed to be a constant.

Figure 1. The rotating beam.
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The two ends of the beam are taken to be simply supported herein. The equations of
motion derived, nevertheless, are suitable for various combinations of different end
conditions. The discretized governing equations, subject to the motion-dependent force,
are then obtained as

z� m+bmḣm +[km1 −2o(Ca*1 /a*m ) cos (Vmt*)]zm +2o(Ca*1 /a*m )

× s
N

n=1,n$m

{cos[((b*m − b*n )/2b*m )Vmt*]−cos [((b*m + b*n )/2b*m )Vmt*]}zn

=(z2P*y /a*m ) sin (1
2Vmt*), ḧm−bmz� m + km2hm =(z2P*z /a*m ) sin (1

2Vmt*), (6)

where the parameters are defined as a*m =1+ r*2b*2
m , bm =2V*r*2b*2

1 b*2
m /a*m ,

km2 = (b*4
m −V*2r*2b*1 4b*2

m )/a*m , km1 = km2 +2oCa*1 /a*m , o= g/2Ca*1 �1, C being a dummy
constant for maintaining a small o, and Vm =(2/p)b*2

1 b*m v* is the excitation frequency of
the mth mode due to the moving force.

3.  

The method of multiple scales [13] is used here for analysis of the stability of the rotating
beam. The non-homogeneous terms in the equations affect the solution but they have no
effect on the stability of the solution of the linear equations (6). Therefore, those terms
are omitted in the following stability analysis.

According to the method, the homogeneous solutions of equations (6) are expanded as

zm = zm(0)(T0, T1, . . . )+ozm(1)(T0, T1, . . . )+· · · ,

hm = hm(0)(T0, T1, . . . )+ohm(1)(T0, T1, . . . )+· · · , (7)

where Tn = ont1 (n=0, 1, 2, . . . ) denote time variables of different time scales. Substitution
of the expanded solution (7) into the discretized equations and collecting coefficients of
different powers of o yields, to order o0,

D2
0zm(0) + bmD0hm(0) + km1zm(0) = 0, D2

0zm(0) − bmD0hm(0) + km2hm(0) = 0, (8)

and to order o1,

D2
0zm(1) + bmD0hm(1) + km1zm(1) =−2D0D1zm(0) − bmD1hm(0) + 2(Ca*1 /a*m ) cos(VmT0)zm(0)

+ 2(Ca*1 /a*m ) s
N

n=1,n$m $cos0b*m + b*n
2b*m

VmT01−cos 0b*m − b*n
2b*m

VmT01% zn(0),

D2
0hm(1) − bmD0zm(1) + km2hm(1) =−2D0D1hm(0) + bmD1zm(0) (9)

where the differential operator Di is defined as Di = 1/1Ti .
The eigenvalues of equations (8), vm1 and vm2, are called the resonance frequencies of

the mth mode, with vm2 qvm1. Note that these resonance frequencies are exactly the
natural frequencies of the rotating beam if one lets o=0. The general solution of equations
(8) is thus of the form
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zm(0) =Am1 exp(ivm1T0)+Am2 exp(ivm2T0)+c.c.,

hm(0) =
i(km1 −v2

m1)
bmvm1

Am1 exp(ivm1T0)+
i(km1 −v2

m2)
bmvm2

Am2 exp(ivm2T0)+c.c., (10)

where c.c. represents the corresponding complex conjugate terms, and Am1, Am2 are complex
functions of T1, T2, . . . . Thus, equations (9) can be rewritten as

D2
0zm(1) + bmD0hm(1) + km1zm(1)

=−
i(km1 +v2

m1)
vm1

A'm1 exp(ivm1T0)−
i(km1 +v2

m2)
vm2

A'm2 exp(ivm2T0)

+Ca*1 /a*m {Am1 exp[i(Vm +vm1)T0]+A�m1 exp[i(Vm −vm1)T0]

+Am2 exp[i(Vm +vm2)T0]+A�m2 exp[i(Vm −vm2)T0]}

+
Ca*1
a*m

s
N

n=1,n$m 6An1 $exp0i0b*m + b*n
2b*m

Vm +vn11 T01
−exp0i 0b*m − b*n

2b*m
Vm +vn11 T01%

+A�n1$exp0i0b*m + b*n
2b*m

Vm −vn11 T0 1−exp0i0b*m − b*n
2b*m

Vm −vn11 T01%
+An2$exp0i0b*m + b*n

2b*m
Vm +vn21 T0 1−exp0i0b*m − b*n

2b*m
Vm +vn21 T01%

+A�n2$exp0i0b*m + b*n
2b*m

Vm −vn21 T0 1−exp0i0b*m − b*n
2b*m

Vm −vn21 T01%+c.c.,

D2
0hm(1) − bmD0zm(1) + km2hm(1)

=
2km1 + b2

m −2v2
m1

bm
A'm1 exp(ivm1T0)+

2km1 + b2
m −2v2

m2

bm
A'm2 exp(ivm2T0)+ c.c.,

(11)

in which the superscript ' denotes a derivative with respect to T1 and − denotes the complex
conjugate. Consider the equations of the mth mode only. The possible unstable conditions,
can be seen by inspection of the right sides of equations (9), are found to be

Vm 1 2vm1, Vm 1 2vm2, Vm 1vm1 +vm2, Vm 1vm2 −vm1. (12)

The first two cases are the so-called superharmonic resonances and the others are
combination resonances. There would be an additional 16 possible instability conditions
for each combination of m,n if the coupling effects of two different modes were taken into
account. These conditions are

(b*m 2 b*n /2b*m )Vm 1vm1 2vn1, (b*m 2 b*n /2b*m )Vm 1vm1 2vn2,

(b*m 2 b*n /2b*m )Vm 1vm2 2vn1, (b*m 2 b*n /2b*m )Vm 1vm2 2vn2. (13)

The non-resonant and resonant cases are now discussed.
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(a) No resonance. The system is in the non-resonant condition if none of the relations
(12) and (13) occurs. Part of the non-homogeneous terms, in the right sides of equation
(11), are of frequencies vm1, or vm2. They may induce an unstable response of the system.
The unstable solution can be expressed as

zm(1) =Pm1 exp(ivm1T0)+Pm2 exp(ivm2T0)+c.c.,

hm(1) =Qm1 exp(ivm1T0)+Qm2 exp(ivm2T0)+c.c., (14)
where Pm1, Pm2, Qm1, and Qm2 are complex functions of T1, T2, . . . . Substituting expressions
(14) into equations (11) and equating coefficients of exp(ivm1T0) and exp(ivm2T0) on both
sides, one obtains

(km1 −v2
m1)Pm1 + ivm1bmQm1 =Rm1, −ivm1bmPm1 + (km2 −v1

m2)Qm1 =Rm2, (15)

(km1 −v2
m2)Pm2 + ivm2bmQm2 =Sm1, −ivm2bmPm2 + (km2 −v2

m2)Qm2 =Sm2, (16)

with

Rm1 =−(i(km1 +v2
m1)/vm1)A'm1, Rm2 = [(2km1 + b2

m −2v2
m1)/bm]A'm1, (17)

Sm1 =−(i(km1 +v2
m2)/vm2)A'm2, Sm2 = [(2km1 + bm −2v2

m2)/bm]A'm2. (18)

The conditions

bkm1 −v2
m1

−ivm1bm

Rm1

Rm2b=0 and bkm1 −v2
m2

−ivm2bm

Sm1

Sm2b=0 (19, 20)

are required for non-trivial solutions of equations (15) and (16). As a consequence, one
has

A'm1 =0 and A'm2 =0, (21)

which imply that Am1, Am2 are not functions of T1. In other words, these two amplitudes
can never go divergent; and consequently, no unstable response can be found. Therefore,
the dynamic system in the non-resonant case is always stable.

(b) Vm 1 2vm1. When Vm is close to 2vm1, let

Vm =2vm1 + os (22)

where s is called the detuning parameter. One has

exp[i(Vm −vm1)T0]= exp(isT1)exp(ivm1T0), (23)

and, for this case, only part of the solution of frequency vm1 needs to be considered. The
analysis of equation (15), with different Rm1 and Rm2 from those in case (a), consequently
gives the equation of the instability boundaries as

Vm =2vm1 2 2oGm1 +O(o2), (24)

or

v*= [p/(2b*2
1 b*m )](2vm1 2 2oGm1)+O(o2), (25)

with

Gm1 = 1
2 [(km1 −v2

m1)2/bm + km1bm ]−1Ca*1 bmvm1/a*m .

(c) Vm 1 2vm2. For this case, let

Vm =2vm2 + os (26)
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and consider the portion of the solution of frequency vm2. The instability boundaries are
obtained as

v*= [p/(2b*2
1 b*m )](2vm2 2 2oGm2)+O(o2) (27)

with

Gm2 = 1
2[(km1 −v2

m2)2/bm + km1bm ]−1Ca*1 bmvm2/a*m .

(d) Vm 1vm1 +vm2. Define

Vm =vm1 +vm2 + os. (28)

Two sets of equations are obtained, similar to equations (15) and (16), but with

Rm1 =−
i(km1 +v2

m1)
vm1

A'm1 + (Ca*1 /a*m )A�m2 exp(isT1),

Rm2 =
2km1 + b2

m −2v2
m1

bm
A'm1, (29)

Sm1 =−
i(km1 +v2

m2)
vm2

A'm2 + (Ca*1 /a*m )A�m1 exp(isT1),

Sm2 =
2km1 + b2

m −2v2
m2

bm
A'm2. (30)

Using equations (19) and (20) yields

A'm1 =Gm1A�m2 exp(isT1 + ip/2); A'm2 =Gm2A�m1 exp(isT1 + ip/2). (31)

The solution of equations (31) is of the form

Am1 = (a1r +ia1i )exp[jT1 + 1
2 i(sT1 + p/2)],

Am2 = (a2r +ia2i )exp[jT1 + 1
2 i(sT1 + p/2)], (32)

in which a1r , a1i , a2r , and a2i are real functions of T2, T3, . . . , and j is a real constant. For
non-trivial Am1 and Am2, the condition

j=2zGm1Gm2 − (s/2)2 (33)

must be satisfied. If Gm1Gm2 Q (s/2)2, the solution of the system is stable. The equation of
the instability boundary is then written as

v*= [p/(2b*2
1 b*m )](vm1 +vm2 2 2ozGm1Gm2)+O(o2). (34)

(e) Vm 1vm2 −vm1. The calculation is much the same as that for case (d) and it shows
no instability when Vm 1vm2 −vm1.

(f) [(b*m 2 b*n )/(2b*m )Vm 1vmp +vnq (p, q=1, 2). In the present and next cases, consider
two sets of discretized equations with mode numbers m and n. Through a procedure similar
to that for case (a) but with more complicated calculations; the instability boundaries are
found to be

v*= {p/[2b*2
1 (b*m 2 b*n )]}(vmp +vnq +2ozGmpGnq )+O(o2). (35)

(g) [(b*m 2 b*n )/(2b*m )]Gm 1vmp −vnq (p, q=1, 2). No instability occurs in these cases.
Analysis of the method of order higher than one, which is omitted here, can be performed

by following similar processes but with much more work. Nevertheless, the possible
instability conditions of order o2 and mode m can be obtained with less effort. They are
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Figure 2. Instability regions for m=1, r*=0·0125 and V*/V*cr =0·10. (a) From the numerical method; (b) from
the method of multiple scales. ——, V112v11; · · · · , V1 1v11 +v12; ––– , V1 1 2v12.

Vm 1vm1, vm2, (vm1 +vm2)/2 and (vm2 −vm1)/2. These frequencies are exactly half of the
instability frequencies given in equations (12).

4.    

The stability of the time response of a rotating beam subject to the motion-dependent
moving force is discussed next. The constant part of the external force is taken to be
P*y =P*z =10, and the dummy constant C=100. Note that the amplitude of the
motion-dependent force and the stability of the solution are dependent on g and not on
the choice of C. The value of g can be obtained after o and C are known. First, consider
only the instabilities for the first mode (m=1). Figures 2, 3 and 4 illustrate the instability
regions for r*=0·0125 and various frequencies of rotation. The abscissa denotes the
dimensionless speed v* of the external force, and the ordinate o is proportional to the
magnitude of the motion-dependent force. The results obtained by numerical integration
in conjunction with the Floquet theory are given in parts (a), and those obtained by the
method of multiple scales are shown in parts (b). The dotted areas given in (a) are stable
regions found by the numerical method and the white areas are the unstable regions. In
parts (b), the area between two solid lines is the unstable region near V1 1 2v11, the area
between two dotted lines is that near V1 1v12 +v11, and the area within two dashed lines
is that close to V1 1 2v12. No instability occurs, as mentioned before, when V1 1v12 −v11.

The stability of the solution for V*/V*cr =0·1 is given in Figure 2. Here V*cr is defined
as the smallest critical frequency of rotation and one has V*cr =1/(pr*) for a simply
supported beam. The results obtained by the two different methods, as shown, agree very
well. For a relatively low frequency of rotation, most of the unstable regions occur near
v*=1·0. The instability region near V1 =2v12 is quite large and merges with the small
instability region close to V1 =v11 +v12. On the other hand, the instability region near
V1 =2v11 is too small to be found by the numerical method. Those instability boundaries
look like straight lines for low frequencies of rotation. One can notice that in Figure 2(a)
a narrow unstable region near v*=0·5 exists. This region can be found analytically from
the second order (o2) multiple scales analysis.

Figure 3 illustrates the instability boundaries for a medium rotational speed,
V*/V*cr =0·65. Satisfactory consistency between the results from two methods is seen. The
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Figure 3. Instability regions for m=1, r*=0·0125 and V*/V*cr =0·65. (a) From the numerical method; (b) from
the method of multiple scales. ——, V112v11; · · · · · , V1 1v11 +v12; ––– , V1 1 2v12.

instabilities happen at comparatively lower force speeds than those for the smaller
rotational frequency. As previously, numerical results shown some additional, small
instability regions at low force speeds.

The instability regions for the case of V*/V*cr =0·99 are presented in Figure 4. Since the
rotational frequency is close to the critical one, numerous and complicated unstable
regions were observed. All of the instabilities occur at low force speeds because the
resonance frequencies of the rotating beam are small and the rotating beam itself has a
tendency to instability. The instability boundaries become curves for a high rotational
frequency. For the present case, the results given by the first order perturbation method
seem not good enough to show all the instability regions. Some of the instability regions
at low force speeds and corresponding to the high-order multiple scales method, look even
wider than those of the first order.

The instability regions determined by the method of multiple scales, for r*=0·05 and
V*/V*cr =0·65, are illustrated in Figure 5. The instability boundaries are similar to those
in Figure 3(b) except found at larger force speeds.

Figure 4. Instability regions for m=1, r*=0·0125 and V*/V*cr =0·99. (a) From the numerical method; (b) from
the method of multiple scales. ——, V112v11; · · · · · , V1 1v11 +v12; ––– , V1 1 2v12.
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Figure 5. Instability regions for m=1, r*=0·05 and V*/V*cr =0·65. ——, V112v11; · · · · · , V1 1v11 +v12;
––– , V1 1 2v12.

The typical instability regions for the second mode (m=2) are given in Figure 6. This
figure is for the case of r*=0·0125 and V*/V*cr =0·65. All the instabilities occur near
v*=2. These regions are much smaller than those of the first mode (m=1) given in Figure
3(b).

To illustrate coupling effects of the first and the second modes (m=1, n=2), the
instability regions for r*=0·0125 and V*/V*cr =0·65, are shown in Figure 7. The eight
unstable regions, as derived in case (f) of the previous section, are divided into two groups.
One group was found at force speeds close to v*=1·5 and corresponds to the case of
b1 + b2. The other was found at high force speeds near v*=4·5 and corresponds to the
case of b1 − b2. The instability regions in the second group are much larger then those in
the first group, and are about the same size as those of the fundamental mode (m=1).
This phenomenon suggests that the instability due to the coupling between different
vibration modes should not be neglected when the speed of the external force is large.

The unstable regions for higher modes (mq 2) and for other coupling modes, though
not shown in the figures, were found to be quite small. These instabilities usually occur
at high force speeds.

Figure 6. Instability regions for m=2, r*=0·0125 and V*/V*cr =0·65. ——, V212v21; · · · · · ,
V2 1v21 +v22; ––– , V2 1 2v22.
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Figure 7. Instability regions for m=1, n=2, r*=0·0125 and V*/V*cr =0·65.

5. 

The stability of a rotating Rayleigh beam subject to a motion-dependent moving force
has been discussed. The stability behavior was obtained via the method of multiple scales
and verified by numerical methods. From the results, the following conclusions can be
drawn.

1. The method of multiple scales can analytically predict the stability of the time
response quite well provided that the rotational speed of the beam is not close to the critical
rotational speed.

2. The largest instability region was found when the force speed related excitation
frequency V1 was nearly twice the higher resonance frequency v12 of the first mode.

3. Coupling effects between the first two modes can result in large instability regions
at high force speeds.
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