
Journal of Sound and Vibration (1997) 202(3), 438–445

EXPERIMENTS ON THE ACTIVE CONTROL OF BROADBAND SOUND
RADIATION FROM A LIGHTWEIGHT PARTITION

D. R. T

School of Engineering, University of Sussex, Falmer, Brighton, BN1 9QT, England



P. A. N

Institute of Sound and Vibration Research, University of Southampton, Highfield,
Southampton, S017 1BJ, England

(Received 8 March 1996, and in final form 18 August 1996)

1. 

For many aircraft, a dominant source of interior noise at cruise is the noise generated by
the turbulent boundary layer on the skin of the aircraft. The low frequency component
of this noise is difficult to deal with by using passive sound insulation measures without
adding considerably to the mass of the aircraft. It has been suggested that the feedback
control of the fuselage vibration could be used to reduce the transmission of this noise
into the aircraft interior [1]. Vibration sensors on the fuselage skin could be used to provide
the signals which, when passed through an appropriately designed compensator, could
provide the inputs for piezoceramic actuators bonded to the fuselage or inertial actuators
attached to the fuselage skin. An alternative to using piezoceramic actuators or inertial
actuators has also been suggested [2]. In this alternative approach one utilizes actuators
placed between the fuselage and stiff lightweight trim panels. If the motion of the panel
is restricted by its mounting to be predominatly along an axis perpendicular to its surface,
then at low frequencies (below the first bending mode frequency of the panel), a reduction
in the velocity of the panel produces a reduction in the sound radiated from the panel.
This is not the case for a flexible panel (i.e., one which has its first bending mode somewhere
in the frequency range of interest) where a reduction in the vibration of the panel does
not necessarily produce a reduction in the sound power radiated [3, 4]. In this work, the
results are presented of some preliminary experiments which have been used to evaluate
the possibility of reducing broadband transmission through feedback control of the motion
of a pair of stiff lightweight panels. It is concluded that the approach shows considerable
promise.

2.    

Optimal reductions in the panel velocity can be obtained by first estimating an ARMAX
model [5] of the system: i.e., a model of the form

A(q−1)y(t)= q−kB(q−1)u(t)+C(q−1)w(t), (1)

where q−1 is the delay operator, y(t) is the system output, u(t) is the control input and
w(t) is a Gaussian white noise sequence. Given such a model, the plant (panel dynamics,
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Figure 1. A block diagram of the feedback control problem.

actuator dynamics and dynamics of the ADC and DAC) is represented by the rational
z-transform *

Wp = z−kB(z−1)/A(z−1), (2)

and the disturbance (accelerometer output due to the Ling shaker input) is modelled as
Gaussian white noise passed through the shaping filter with the rational z-transform

Wd =C(z−1)/A(z−1). (3)

Given such a model for the system the feedback control problem can be illustrated by the
block diagram given in Figure 1. An appropriate cost function to minimize is the linear
quadratic Gaussian cost which for a time invariant plant and stationary disturbance can
be written as

J(u)=E[ y2(t)+ bu2(t)] (4)

where E is the expectation operator and b is a scalar constant. It can be shown [6, 7] that,
in the case in which the plant is stable, a stabilizing compensator that minimizes the cost
given by equation (4) can be found by obtaining the minimal degree solution of the
Diophantine equation

Dc (q)G(q−1)+ qgF(q−1)A(q−1)= qkB(q)Df (q−1), (5)

where G(q−1) and F(q−1) are the unknowns, g=max (ndc , nb . . . , nb + k) and Dc (q−1) and
Df (q−1) are spectral factors given by

Df (q−1)Df (q)=QwC(q−1)C(q)+QvA(q−1)A(q), (6)

Dc (q)Dc (q−1)=B(q)B(q−1)+ bA(q)A(q−1). (7)

Note that a function of the form B(q), for example, simply implies the mirror image
‘‘anti-casual’’ counterpart of the function B(q−1). The scalars Qw and Qv are the variances
of w(t) and the measurement noise respectively. Given a minimal degree solution of
equation (5), the optimal compensator is given by

C0(q−1)=
−G(q−1)A(q−1)

Dc (q−1)Df(q−1)− q−kG(q−1)B(q−1)
. (8)

This form of solution of the LQG control problem was originally suggested by Kučera
[8] and was discussed in some detail by Grimble and Johnson [6] and, in the context of
the active control of sound and vibration, by Thomas and Nelson [7].

* The delay operator (q−1) and the complex variable z−1 are used here interchangeably.
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Figure 2. A plan view of the reverberation suite showing the five microphone positions.

The experiment described here was intended as a preliminary test of the transmission
characteristics of the active double panel arrangement shown below in Figure 3, in which
the compensator was designed using the approach outlined above.

3.  

The experiment was carried out in a small reverberation suite, which is illustrated
diagrammatically in Figure 2. A double partition consisting of two aluminium honeycomb
panels (dimensions 340 mm by 460 mm by 26·6 mm thick) mounted on flexible gaskets in
a wooden frame was sealed into the aperture between the two chambers. The double
partition is illustrated in Figure 3 together with the feedback control arrangement used
in the experiments. A modified loudspeaker unit was used to provide a control force
between the two panels. The control actuator was mounted on an axis passing through

Figure 3. A diagram of the double panel and feedback control system.
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the centres of the two panels. The signal from an accelerometer mounted at the centre of
the receiving room panel is fed, via a charge amplifier to the input of a digital signal
processing card incorporating a Texas instruments TMS320c30 processor. A feedback
compensator is implemented on the DSP card as an infinite impulse response filter. The
output of the card is fed via a reconstruction filter and necessary amplification to the input
of the control actuator. The panel in the source room was excited by shaker attached at
an off-centre position. Initial attempts to use an acoustic primary source were unsuccessful,
since the transmission loss of the partition in the absence of control was sufficiently large
to make the output of the accelerometer too low to be used as the control signal.

In order for an optimal compensator to be designed, the A(q−1), B(q−1) and C(q−1)
polynomials in equation (1) need to be identified. Acceleration data was obtained with the
primary source in operation and the loop open. This data was used to form an ARMA
model of the disturbance with a 19th order numerator and a 20th order denominator. This
was achieved by using the ARMAX function in the MATLAB System Identification
Toolbox, which uses an iterative Gauss–Newton algorithm to minimize a quadratic
prediction error criterion [5]. The power spectrum which results from driving the
disturbance model with Gaussian white noise is compared with the measured disturbance
in Figure 4. A Gaussian white noise signal was then passed through an all-pass filter
implemented on the DSP card, the output of which was made to drive the reconstruction
filter and hence the control actuator. Input white noise data and acceleration data were
simultaneously acquired and from this data an auto-regressive model of the plate (i.e., the
transmission path from the DSP input to the charge amplifier output) was identified by
using the ARX function in the MATLAB System Identification Toolbox (ARX treats the
least squares estimation problem as an overdetermined set of linear equations). This model
has a 15th order numerator and 15th order denominator. The plant and disturbance
models were combined to give an ARMAX model of the system. The frequency response
of the plant model is compared with the measured frequency response of the plant in
Figure 5. The polynomials that form this model were used in equations (5)–(8) to obtain
a discrete time compensator that would minimize equation (4) with b=0·0003. The

Figure 4. A comparison of the power spectrum of the output of the disturbance mode (---) when driven by
white noise with the measured disturbance power spectra (——).



0

–800
0

Frequency (Hz)

–200

–400

–600

200

F
re

qu
en

cy
 r

es
po

n
se

ph
as

e 
(d

eg
re

es
)

400 600 1000 1200800

20

–60

0

–20

–40

F
re

qu
en

cy
 r

es
po

n
se

m
ag

n
it

u
de

 (
dB

)

500

–2000
0

Frequency (Hz)

–500

–1000

–1500

200

Tr
an

sf
er

 f
u

n
ct

io
n

ph
as

e 
(d

eg
re

es
)

400 600 1000 1200800

0

40

10

30
25
20

Tr
an

sf
er

 f
u

n
ct

io
n

m
ag

n
it

u
de

 (
dB

)

35

15

   442

Figure 5. A comparison of the frequency response of the plant model (---) with the measured plant frequency
response (——).

spectral factors given by equations (6) and (7) were obtained by first finding the roots of
the polynomial on the right-hand side of each equation by using the MATLAB function
ROOTS, and then taking the stable roots to be those of the spectral factor and using the
POLY function to obtain the spectral factor polynomial from the roots. The variances Qw

and Qv appearing in equation (6) were set to 1 and 0·01 respectively. The frequency
response of the compensator which was used in the experiment is shown in Figure 6.

The results obtained by using this compensator can be seen in Figure 7, which shows
the sum of power spectra at the five microphone locations with and without the control
loop closed. In Figure 8 are shown the open and closed loop responses up to 300 Hz,
and from this it can be seen that there is a significant reduction in transmission in this
region. The piston-like rigid body mode dominates the radiation for a large part of this

Figure 6. The frequency response of the compensator used.
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Figure 7. The sum of the power spectra of the microphone outputs with the feedback loop open (———) and
the feedback loop closed (- - -) with b=0·0003.

region. Above 150 Hz there is a frequency region in which the feedback control of the
acceleration at the centre of the panel actually increases the sum of the power spectra at
the microphones. Measurement of the acceleration at different points on the receiving
room panel indicated that the rotational rigid body modes have a resonance in this
frequency region. Uneven stiffness in the mounting gasket (required to seal the internal
air cavity) is likely to have caused the control force to be coupled into these modes which
are weakly excited by the Ling shaker. Measurement at a number of points on the panel
demonstrated that at around 550 Hz the bending modes of the panels become significant

Figure 8. As Figure 7, but with b=0·0003 for 0–300 Hz.
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and it can be seen from Figure 7 that above this frequency feedback control has variable
effects depending upon which modes dominate radiation at any particular frequency.

To illustrate the effectiveness of the controller in minimizing the variance of the
controlled variable at the centre of the panel, in Figure 9 is shown the acceleration at the
centre of the receiving room panel with and without feedback loop closed.

When designing a feedback controller it is not sufficient to assess simply the performance
of the system. It is also necessary to assess the robustness of the system. Of particular
interest in this case is the robustness of the controller to changes in the plant or errors
in the plant model used to design the compensator. One analytical technique developed
for Ha control which can be used to assess robustness to plant changes requires a model
for the uncertainties in the plant. It has been suggested [9] that an appropriate model for
the uncertainties in an acoustic plant is the unstructured multiplicative output uncertainty
model in which the plant is modelled as

W( jv)= (1+DW( jv))W0( jv), (9)

where W0( jv) is the nominal plant response and DW( jv) is the fractional uncertainty in
the plant. If the fractional uncertainty has an upper bound, B(v), then robust stability is
assured if the following expression is satisfied:

>T0( jv)B(v)>a Q 1, (10)

where T0( jv) is the complementary sensitivity function for the nominal plant. In this case
the complementary sensitivity function is given by

T0(z−1)= z−kG(z−1)B(z−1)/Dc (z−1)Df (z−1), (11)

where De (z−1) and Df (z−1) are given by equations (7) and (6) and G(z−1) is found by solving
equation (5). In Figure 10 is shown the magnitude of the complementary sensitivity for
the compensator used in the experiment presented here. The maximum value of =T0( jv) =
is 2·05 which, from equation (10), gives an upper bound on fractional plant uncertainty

Figure 9. The power spectrum of the acceleration of the centre of the receiving room panel with the feedback
loop open (——) and the feedback loop closed (---) with b=0·0003.
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Figure 10. The magnitude of the complementary sensitivity function for the closed loop system.

of approximately 49%, which corresponds to an error in the plant model magnitude of
3·46 dB.

4. 

The experiments presented here have demonstrated that feedback control of broadband
structural acoustic transmission through a double partition incorporating a control
actuator can yield reductions in excess of 10 dB in averaged sound pressure over a useful
frequency range. If excitation of the rotational rigid body modes can be prevented this
frequency range could be extended up to the natural frequency associated with the first
bending mode of panels.
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