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Compared to piezoceramic material, polyvinylidene fluoride polymer has anisotropic
electromechanical material properties. Using the fact that the anisotropy and shape of
distributed piezopolymer actuators have coupling effects with the vibration modes of
structures, studies on the design of distributed piezopolymer actuators are performed in
order to improve the effectiveness of active control of the sound fields radiated from
composite structures. The sound fields induced by the complicated dynamic behaviors of
a composite structure was analyzed using coupled finite element and boundary element
methods. Active control of sound fields is attempted through minimization of the radiated
sound power from a plate. Some numerical results of sound control problems are presented
with actuators of various shapes and lamination angles. The results indicate that the
anisotropy and shape of distributed piezopolymer actuators are promising factors in the
design of distributed piezoelectric actuators for controlling acoustic radiation from
structures.
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1. INTRODUCTION

Sound radiation from vibrating structures is an important problem in numerous
engineering applications. One of the representative examples is sound radiation and
transmission by aircraft fuselage panels. During recent decades, considerable efforts have
been devoted to active control techniques to reduce low frequency sound radiated from
vibrating structures. For structurally radiated or transmitted noise, the sound field
is directly coupled to the structural motion. Therefore it is efficient to apply the control
force inputs to the vibrating structure directly for the minimization of radiated sound fields
[1, 2].

Fiber reinforced composite, which has anisotropic material properties, presents various
distinguished features compared to conventional materials. It has been widely used as a
primary material in industrial fields. In recent years, the acoustical characteristics of
composite structures have been investigated [3, 4].

As a result of rapid advances in smart structures, the research thrust today is towards
using the piezoelectric materials as distributed sensors or actuators in control applications.
These smart materials have also been employed as actuators or sensors in active structural
acoustic control problems. In particular, piezoelectric materials have received a
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considerable amount of attention in vibration control due to their availability.
Polyvinylidene fluoride polymer (PVDF) is characterized by good properties such as
flexibility, ruggedness, softness and lower weight. However, it is not as powerful as
piezoceramic material (PZT). Hence, compared to PZT, PVDF has usually been used as
a sensor rather than an actuator. However, PVDF has anisotropic electromechanical
properties; that is, the piezo strain constants d31 and d32 of PVDF differ by an order of
magnitude. This anisotropic characteristic of PVDF is an advantageous property for
actuators and sensors in control applications [5].

Analyses on active structural acoustic control by using piezoelectric materials as
actuators and sensors have been carried out extensively in recent years. Fuller et al. [6]
used one collocated PZT actuator for the control experiment of sound fields from an
isotropic plate. In this analysis, the piezoelectric actuator provided global attenuation of
sound radiation from structural elements. In another experimental analysis [7], it was said
that for the improvement of sound attenuation, the number of collocated piezoelectric
actuators needs to be increased, and that the position of the collocated actuator is
important in sound control. Koshigoe et al. [8] applied a simple PZT actuator to the
control of sound transmission into a cavity, using a simple PZT actuator in their numerical
investigation. PVDF film has been generally used as a sensor. Therefore, the effects of its
shape have usually been discussed in connection with distributed sensors. Clark et al. [9]
implemented the PVDF sensor as a narrow strip bonded horizontally and vertically on
an isotropic plate for sound control. Then Clark et al. applied the PVDF sensor to the
control of sound from an isotropic beam structure, through designing the shape of a PVDF
modal sensor [10].

The main focus of current research is to investigate the effects of the
anisotropic characteristics and the shape of distributed PVDF actuators in active
control of sound radiation induced by the vibration of a composite plate structure.
The distributed PVDF actuator attached to the surface of a composite has its own
ply angle, similar to each lamina in a composite plate. Sound fields from an
integrated structure are highly influenced by the interaction of vibration modes of the
structure. Therefore the shape and directional characteristics of a PVDF actuator can
be utilized in order to design an efficient actuator by considering the relationship
between the vibration modes of the structure and the control effects due to the PVDF
actuator.

The vibration of a composite plate and the sound radiation from the plate are analyzed
by using the coupled finite element and boundary element methods. The finite element
model of the composite plate is based on the first order shear deformation theory. Classical
plate theory has usually been applied in the analysis of sound fields from isotropic plates.
However, it is well established that in the analysis of composite plates a theory
that includes shear deformation is required [11]. The finite element method (FEM) is
efficient for simulating the dynamic behavior of composite plates with anisotropic
characteristics, which is a formidable task by an analytical approach. The acoustic field
is to be analyzed through the boundary element method (BEM) based on the Rayleigh
integral equation.

For the global reduction of acoustic noise from the structure, the sound power is selected
as the objective function in the control scheme. Some numerical calculations are carried
out on sound fields from elastic plates. In order to investigate the effects of the anisotropy
and shape of distributed piezopolymer actuators, various kinds of distributed PVDF
actuators are applied in sound control simulation for isotropic and anisotropic plates.
The PVDF actuators applied are different from each other in their shapes and laminate
angles.
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2. FORMULATION OF THE SYSTEM EQUATION

2.1.     

The structural system is an integrated plate (length a, width b and thickness h)
containing fiber reinforced composite lamina and distributed piezoelectric actuators that
are assumed to be perfectly bonded on the surface. The plate is supported in an infinite
rigid baffle dividing the three-dimensional free space into two semi-infinite acoustic fields,
as shown in Figure 1. Let the x–y plane coincide with the mid-plane of the plate, with
the z-axis being normal to the mid-plane. The plate is a laminate consisting of a finite
number of thin laminae, assumed to be perfectly bonded together. For a lamina, which
is a fiber reinforced composite or piezoelectric material, its material axes are denoted as
the 1-, 2- and 3-axes. The lamination angle of the ith lamina, ui , is defined as the angle
from the x-axis to 1-axis in counterclockwise direction along the z-axis.

2.1.1. Kinematics

The displacement field {u1, u2, u3}, based on the first order shear deformation theory [12],
is given by

u1(x, y, z, t)= u(x, y, t)+ z8x (x, y, t), u2(x, y, z, t)= v(x, y, t)+ z8y (x, y, t),

u3(x, y, z, t)=w(x, y, t), (1)

where u, v and w are the displacements of a point (x, y) on the mid-plane, t is time and
8x and 8y are the rotations of the line element, initially normal to the mid-plane, about
the y- and x-axes, respectively.

The infinitesimal strain relations give the strain, written as

o=[o0
xx + zkxx o0

yy + zkyy o0
xy + zkxy gxz gyz ]T

where the membrane strain o0, the bending strain k, and the shear strain g are expressed
as follows:

o0 = [o0
xx o0

yy o0
xy ]T =$1u

1x
1v
1y

1u
1y

+
1v
1x%

T

,

Figure 1. An integrated composite plate structure supported on an infinite rigid baffle.
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k=[kxx kyy kxy ]T =$18x

1x
18y

1y
18x

1y
+

18y

1x %
T

,

g=[gxz gyz ]T =$1w
1x

+8x
1w
1y

+8y%
T

. (2)

2.1.2. Constitutive relation

Through co-ordinate transformation, the electromechanical constitutive relations for the
ith lamina can be written using the x-, y- and z-axes, as

s=Cio− diEi, (3)

where s is the stress, Ci is the elastic stiffness matrix, Ei is the applied electric field intensity
in the z-direction, and di is expressed in terms of the piezoelectric strain/charge coefficients
d31 and d32 [13]:

sxx di
xx (m2

i Ci
11 + n2

i Ci
12)di

31 + (n2
i Ci

11 +m2
i Ci

12)di
32F J F J F J

G G G G G Gsyy di
yy (n2

i Ci
11 +m2

i Ci
12)di

31 + (m2
i Ci

11 + n2
i Ci

12)di
32

j f j f j fs= sxy , di = di
xy = b mini (Ci

11 −Ci
12)di

31 −mini (Ci
11 −Ci

12)di
32 ,

J F J F J F
txz di

xz 0G G G G G G
tyz di

yz 0f j f j f j
where b is +1 for positive polling and −1 for negative polling, mi =cos ui and ni =sin ui .
Equation (3) is the general expression for the piezoelectric material, while for a composite
lamina the piezoelectric strain/charge coefficients should be zero. For isotropic PZT, for
which d31 and d32 are equal, dxx is always equal to dyy and dxy is always zero, irrespective
of the lamination angle. Thus isotropic PZT cannot generate a shear stress component,
in case of anisotropic PVDF, for which d31 and d32 are different from each other, is able
to generate a shear stress component. The shear stress component produced by a
directionally attached anisotropic PVDF actuator can be taken advantage of effectively
in the control of sound fields from a plate structure.

The laminate constitutive relations are expressed as

N=Ao0 +Bk−N� , M=Bo0 +Dk−M� , Q=ASg, (4)

where N and Q are force resultant vectors and M is the moment resultant vector. These
are expressed in terms of in-plane stresses, {sxx syy sxy}, and transverse shear stresses,
{txz tyz}, as follows:

{Nij , Mij}=g {1, z}sij dz, i, j= x, y,

{Qx , Qy}=g{txz , tyz} dz,

and the elastic coefficient matrices obtained from elastic stiffness matrix:

{Amn Bmn Dmn}=g {1 z z2}Ci
mn dz, m, n=1, 2, 6,
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{AS11 AS12 AS22}= k g {Ci
44 Ci

45 Ci
55} dz,

where k is the transverse shear correction factor, which is 5/6 in this analysis.
In equation (4), N� and M� are the force and moment resultants due to the piezoelectric

actuator:

E1F J K LN�xx N
 11 N
 12 N
 1NL

E2j f G GN�yy = N
 21 N
 22 · · · N
 2NL g
G

G

F

f

···
h
G

G

J

j

,J F G G
N�xy N
 31 N
 32 N
 3NL ENLf j k l

E1F J K LM�xx M
 11 M
 12 M
 1NL

E2j f G GM�yy = M
 21 M
 22 · · · M
 2NL g
G

G

F

f
···

h
G

G

J

j

, (5)J F G G
M�xy M
 31 M
 32 M
 3NL

ENLf j k l
and

8N
 1i

N
 2i

N
 3i9=g zi

zi−1 8d
i
xx

di
yy

di
xy9 dz, 8M
 1i

M
 2i

M
 3i9=g zi

zi−1

z8d
i
xx

di
yy

di
xy9 dz, i=1, 2, . . . , NL ,

and NL is the total number of laminae in a laminate.

2.1.3. Finite element formulation

The variational statement of the equation of motion for an integrated structure is
obtained using the Hamilton variational principle [14], which is expressed as

1
2 gS

rhdu̇Tu̇ dS− 1
2 gS

(do0TN+ dkTM+ dgTQ) dS+gS

(qext (x, y, t)dw

− p(x, y, t)dw) dS=0, (6)

and leads to the final weak form in terms of the kinematic variables {u, v, w, 8x , 8y}. The
external loads acting on the integrated structure are the distributed external load
qext (x, y, t) and the acoustic loading p(x, y, t) due to the acoustic medium adjacent to the
plate surface.

A four-node quadrilateral plate element is used in finite element discretization of the
weak form. The displacement vector in a typical element e is interpolated using the
Lagrangian interpolation function

ue unF J F J
G G G Gve vn

G G G G
ue = we = s

4

n=1

cn (j, n) wn 0Heqe, (7)g h g h
G G G G8e

x 8xnG G G G
8e

y 8ynf j f j
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where the Lagrangian interpolation function is expressed as

cn (j, h)= 1
4(1+ jnj)(1+ hnh), n=1, 2, 3, 4, (8)

in which (jn , hn ) are the local co-ordinates of node n. In order to avoid the shear locking
phenomenon, the mixed interpolation technique of Bathe et al. [15] is applied, so that the
element matrices are calculated using a full four-point Gauss integration rule. Finally, the
finite element equation of motion for the integrated structure is obtained as

Mq̈(x, t)+Kq(x, t)= fe (x, t)+ fp (x, t)+ fa (x, t), (9)

where M is the mass matrix, K is the stiffness matrix, q is the displacement vector, fe is
the external force vector, fp is the force vector due to the piezoelectric actuator, and fa is
the force vector due to the sound pressure load. The force vector fp due to the piezoelectric
actuator is expressed as

fp =$ s
Ne

k=1 gSe

{BeT

MN
 +BeT

B M
 } dS%E0GE,

where Be
M and Be

B are the interpolation matrices of the in-plane and bending strain in typical
element e, respectively.

With the mass and stiffness matrices, the natural frequencies and mode shapes are found
using the subspace iteration method. Equation (9) is transformed using the modal
co-ordinate transformation

q=Fh, (10)

where F is the modal matrix and h is the modal co-ordinate vector. With the introduction
of modal damping, the transformed modal co-ordinate equation can be written as

{L+J−v2I}h=FT(fe + fa +GE) (11)

where

L=FTKF, J=diag (2ziviv},

I is the identity matrix, and the zi are modal damping coefficients.

2.2.     

2.2.1. Governing equation

The acoustic sound pressure at x in the acoustic domain induced by a vibrating plate
in a baffle is governed by the Rayleigh equation, expressed as [16]

p(x)=gS(xs)
6G(x, xs )

1p(xs )
1ns 7 dS, (12)

where k is the wavenumber, defined as k=v/c, with sound speed c and forcing frequency
v, S is the surface of the plate, xs is the point on surface S, and ns is the outward unit
normal on S. The Green function in the semi-infinite domain in equation (12) is

G(x, xs )=
e−ik=x− xs =

2p =x− xs =
.
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At the interface of the plate and the acoustic medium, the normal derivative of the
pressure can be related to the outward normal component of velocity vn on S as follows:

1p(xs )/1ns = r0ün (xs )= ivr0vn (xs ). (13)

2.2.2. Boundary element formulation

When equation (12) is discretized with equation (13) by using the boundary element
technique, one obtains the matrix equation as

p=Gvn , (14)

where p is the vector containing the sound pressure at x and vn is the normal velocity vector
at a node on S. Matrix G in equation (14) is expressed as follows:

G= s
Ne

k=1 $gSe(xs)
6ivr0

e−ik=x− xe
s =

2p =x− xe
s =

He7 dS%,

in which Ne is the number of elements. A four-node quadrilateral element with the same
shape function as applied in equation (8) is used for the discretization, which promises
compatibility with FEM through wet nodes.

When the pressure on S is to be calculated, x is collocated on a node of the element
Se. Then the integrand has an inverse distance singularity. This singular integrand should
be treated carefully. In this analysis, the transformation method is used for singular
integration [17]. The method divides the quadrilateral element domain into two triangular
domains according to the collocation node. The triangular domains are then transformed
into square domains, and so a Jacobian cancels out the singularity of the integrand. In
the element calculation, a nine-point Gaussian quadrature rule is used for accuracy.

2.3.    

The vector of normal velocities vn in equation (14) is related to the vector of modal
co-ordinates by the modal transformation and the transformation matrix T, which
transforms the nodal velocities in the finite element system into the normal velocity in the
boundary element system:

vn =Tq̇=ivTFh. (15)

If the velocity vn is eliminated from equation (14), the resulting equation is

p=ivGTFh. (16)

When the acoustic medium is a light fluid such as air, the effect of acoustic loading on
the plate structure can be considered to be negligible. Acoustic sound is calculated by
equation (16) and the modal co-ordinate vector is obtained by solving equation (11). The
structural response of the composite plate is obtained from the modal transformation in
equation (10).

2.4.     

For the global minimization of sound fields induced by vibrating plates, sound power
is selected as the control objective. The anisotropic PVDF films bonded on the surface of
the plate are used as distributed actuators for sound suppression. The radiated sound
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power is defined as the integral of the sound intensity over the surface of the vibrating
plate:

P= 1
2gS

Re [p*(xs )vn (xs )] dS, (17)

where the superscript asterisk denotes a complex conjugate. One calculates the sound
power by integrating the nodal values of the pressure and normal velocity, as

P= 1
2 Re $pH6 s

Ne

k=1 gSe

HeTHe dS7vn%= 1
2Re [pHRvn ],

where

R= s
Ne

k=1 gSe

HeTHe dS

and the superscript H denotes the Hermitian transpose of a matrix. Using equations (15)
and (16), the suppression for the sound power can be written as

P= 1
2 Re [v2hHFTTTGRTFh].

Eliminating the modal co-ordinate vector using equation (11), the sound power is
written in terms of external loads and control inputs to PVDF actuators as

P= 1
2Re [(fe +GE)HZ(fe +GE)], (18)

where

Z=v2F(L+J−v2I)−HFTTTGRTF(L+J−v2I)−1FT.

The input electric field into the piezoelectric actuator is limited to less than about 10
volts per 1 mm. Therefore, the minimization problem for the sound power expressed in the
form of equation (18) has the constraint that the control input should be less than the
allowable limit for each PVDF actuator. The problem can be stated as follows:

Minimize
subject to

1
2 Re [(fe +GE)HZ(fe +GE)]
>Ek>E lk , k=1, . . . , nA ,

where lk is the allowable limit of the input for the kth actuator and nA is the total number
of actuators. This minimization problem is approached by applying the steepest descent
method, so that the optimal control input can be obtained.

3. NUMERICAL RESULTS

In this section the results of numerical analyses are presented. These analyses involve
the active control of sound radiation from a rectangular integrated composite plate
supported on an infinite baffle and excited by vibrating forces. The acoustic medium is air,
the density of which is 1·21 kg/m3 and the wave velocity of which is 343 m/s. The coupled
FEM–BEM analyses are carried out for the cases of an isotropic aluminum plate and an
anisotropic composite plate with various boundary conditions. PVDF actuators used for
control of the sound radiation and with different shapes and lamination angles to
demonstrate various features of the actuators. In the analysis, 20 vibration modes of the
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Figure 2. The modal radiation efficiencies of a simply supported isotropic plate. ——, Wallace [17]; w, present
result.

structure are used in modal transformation and a small amount of modal damping
(zi =0·01) is used.

3.1.       : 

In order to verify the coupled FEM–BEM analysis, the radiation efficiencies of lower
vibration modes for a simply supported aluminum plate are analyzed. The radiation
efficiency of an acoustic radiator is commonly defined as

s=P/P0 =P/1
2r0ab�v2

n�,

where r0 is the density of the acoustic medium and �v2
n � is the spatial mean square velocity.

The plate has dimensions of 0·3×0·2×0·001 m. The material properties of aluminum
are as follows: Young’s modulus 70×109 N/m2, Poisson ratio 0·3, density 2700 kg/m3. The
results from the analytical approach of Wallace [18] are compared with the present results.
The comparison reveals good agreement, as shown in Figure 2.

3.2.        :  



The integrated structure of an aluminum host structure and PVDF materials, bonded
on the top and the bottom surface of the plate, and has the lay-up of
[0p+/45p+/I/−45p+/0p−], in which I represents the isotropic material, the subscript p
represents the PVDF material, and the + and − signs represent the pole direction of the
PVDF material in the thickness direction. The PVDF pair bonded at 0° with positive pole
at the top surface and at 0° with negative pole at the bottom surface produce bending
moments due to the electric field applied in the thickness direction; and the PVDF pair
skewly bonded at −45° at the top and at 45° at the bottom with positive pole can induce
a torsional moment due to the electric field applied in the thickness direction. Therefore,
these two actuators have different control effects on the vibration modes of the cantilevered
plate.

The integrated plate is clamped along the side on which x= a/2 and are free on the other
sides (see Figure 1). The material properties of aluminum are the same as mentioned in
the above example and the material properties of PVDF film are shown in Table 1. The
dimensions of this structure are a=0·3 m, b=0·2 m and h=0·00144 m. The harmonic
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T 1

Material properties of graphite/epoxy and PVDF film

Graphite/epoxy PVDF film

E11 =181·0 GPa E=2·0 GPa
E22 =10·3 GPa n=0·3
G12 =7·17 GPa r=1780 kg/m3

G13 =7·17 GPa d31 =23·0×10−12 V/m
G23 =2·87 GPa d32 =3·0×10−12 V/m
n12 =0·28 t=0·11 mm
t=0·125 mm
r=1520 kg/m3

point force at (0·15, −0·1), a free corner of the cantilevered plate, excites all of the
vibration modes of plate structure. The natural frequencies and mode shapes are shown
in Table 2. The uncontrolled and controlled responses of the sound power are shown in
Figure 3.

When only the [0p+/0p−] actuator is used, the sound power is effectively suppressed in
the off-resonance frequency region. In the frequency region of resonance corresponding
to bending vibration modes (the first, the third, and so on), the sound power is also
suppressed, as shown in Figure 3(a), although the peaks cannot be removed due to the
limited control input. However, this actuator is not able to reduce the sound power induced
by the plate in the frequency region of resonance corresponding to the torsional vibration
modes—the second, the fourth, and so on—since the actuator cannot produce the
necessary twisting moment for controlling the torsional motion of structure. When only
the [45p+/−45p+] actuator is used, the sound power is not effectively reduced in almost
all of the frequency region. However, in the frequency region of resonance corresponding
to torsional vibration modes, the actuator is effective, for it can generate pure torsional
moments due to its skewed lamination angle. With these observations, two actuators are

T 2

Natural frequencies and mode shapes of cantilevered isotropic plate

Mode number Natural frequency (Hz) Mode shape*

1 8·58 1LB
2 28·59 1T
3 53·69 2LB
4 97·43 2T
5 134·28 1CB
6 157·56 3LB
7 202·37 3T
8 213·79 2CB
9 314·07 4B

10 338·94 3CB
11 354·00 4T
12 378·33 5T
13 443·94 4CB
14 509·72 5CB
15 541·54 5LB

* LB, longitudinal bending mode; T, torsional mode; CB, chord-wise bending mode.
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Figure 3. The sound power radiation from a simply supported integrated plate of [0p+/45p+/0I/−45p+/0p−].
- - - -, Uncontrolled; ——, controlled with (a) only [0p+/0p−] actuator, (b) only [45p+/−45p+] actuator and (c)
both [0p+/45p+/−45p+/0p−] actuators.

used simultaneously, which results in the reduction of sound power radiation over the
entire frequency region, as in Figure 3(c).

The anisotropic characteristic of PVDF actuators is utilized for the reduction of sound
fields induced by bending and torsional vibrations of the structure. The results show that
the anisotropy of PVDF actuators can improve the effectiveness of sound power control.

3.3.        :
    

In this section, the composite plate and PVDF actuators with their own shapes and
laminate angles are considered in order to investigate the influences of shape and
anisotropy. The integrated plate is made of graphite/epoxy fiber reinforced composite
materials and PVDF materials, bonded on both surfaces of the plate. The host structure
is the laminated composite plate of [0c/uc/−uc/90c]s, in which the subscript c represents the
composite material. The material properties of the graphite/epoxy composite are shown
in Table 1. The dimensions of host structure are 0·3×0·2×0·001 m. The harmonic point
force is applied at (0·05625, 0·06) in order to invoke all of the vibration modes of the
composite plate.

The actuators used in this analysis are PVDF pairs, bonded with positive pole at the
top surface and with negative pole at the bottom surface. The shapes of PVDF actuators
considered here are depicted on the finite element mesh shown in Figure 4. The shaded
area is the region of the actuator. The first one (Figure 4(a)) was used in the previous
example of a cantilevered isotropic plate. The second actuator (Figure 4(b)) is denoted as
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Figure 4. Four actuators used in control of the sound radiation from a composite plate: W is the position
of point force. (a) A1G; (b) A1C; (c) A1P; (d) A2M.

A1C and the third one (Figure 4(c)) is A1P. The lay-up angle of the PVDF actuator is
represented by the subscript following the name of actuator; that is, A1Pu denotes the
actuator A1P with [up+/up−] lay-up angles. The actuator, A2M, in Figure 4(d) consists of
A1P45 and the actuator covering the remaining surface area.

The control simulations for a simply supported composite plate are performed. The
modal analysis results are presented in Table 3. First, actuator A1C0 is used for the control
of sound power. The result is shown in Figure 5. Actuator A1C0 is effective for
off-resonance frequencies and near-resonance frequencies related to odd vibration modes
such as (1, 1), (3, 1) and (1, 3), but has no effect on near-resonance ranges about the even
vibration modes. This actuator cannot control the even modes in an effective way since
it is not coupled to those modes, due to its symmetrical shape with respect to x- and y-axes.
Therefore it will be helpful to use another actuator with a non-symmetrical shape. Two

T 3

Natural frequencies and mode shapes of a simply supported composite plate

Mode number Natural frequency (Hz) Mode shape

1 88·99 (1, 1)
2 213·14 (2, 1)
3 242·14 (1, 2)
4 359·54 (2, 2)
5 438·59 (3, 1)
6 519·38 (1, 3)
7 568·56 (3, 2)
8 647·70 (2, 3)
9 764·89 (4, 1)

10 826·52 (3, 3)
11 921·79 (4, 2)
12 974·10 (1, 4)
13 1094·82 (2, 4)
14 1138·85 (4, 3)
15 1218·36 (5, 1)
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Figure 5. The sound power radiation from a simply supported integrated plate of [0p/0c/45c/−45c/90c]s. - - - -,
Uncontrolled; ——, controlled with actuator A1C0.

actuators have been tested for the same composite plate—one is A1P0 and the other is
A1P45. These two actuators differ in their actuating moments. From equation (5), the
actuating moments due to A1P0 and A1P45 are expressed as follows:

8M�xx

M�yy

M�xy9
A1P0

A8C11d31 +C12d32

C12d31 +C11d32

0 9, 8M�xx

M�yy

M�xy9
A1P45

A8(C11 +C12)(d31 + d32)
(C11 +C12)(d31 + d32)
(C11 −C12)(d31 − d32)9.

Thus actuator A1P0 can actuate bending moments only in the x and y directions, while
A1P45 can actuate not only bending moments in the x and y directions but also twisting
moments.

Two actuators represent similarly good effectiveness for most frequencies, as shown in
Figure 6. However, actuator A1P45 is more effective in the sense that it can control more
vibration modes than A1P0, for example, the 12th mode. In order to compare the control

Figure 6. The sound power radiation from a simply supported integrated plate of [0p/0c/45c/−45c/90c]s. - - - -,
Uncontrolled; ——, controlled (a) with actuator A1P0 and (b) with actuator A1P45.
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Figure 7. The modal velocity components of a simply supported integrated plate of [0p/0c/45c/−45c/90c]s at
260 Hz. A, uncontrolled; B, controlled with actuator A1C0; C, controlled with actuator A1P0; D, controlled with
actuator A1P45.

effectiveness of actuators, the square modal velocity components are plotted at 260 Hz,
close to the natural frequency of the third mode, (1, 2), in Figure 7. At this frequency, the
response of the (1, 2) mode is dominant before control. After control, the third modal
velocity is reduced when actuators A1P0 and A1P45 are used, but is not changed with
actuator A1C0; and the reduced value is the smallest in the case of actuator A1P45.

Actuators A1P0 and A1P45 are effective over most of the frequency range, but they do
not bring about notable reduction of the sound radiation from the resonance of the (1, 1)
mode because their control force is not sufficient, due to the control input constraint.
Actuator A1C0 is efficient at the near-resonance of the (1, 1) mode. Therefore, actuator
A2M is designed by adopting these advantages of A1P45 and A1C0. When actuator A2M
is used, the sound radiation in the overall frequency regions can be attenuated effectively,
as shown in Figure 8.

The same composite plate with a clamped boundary condition is also analyzed. With
actuators A1P0 and A1P45, the radiated sound power is calculated in the frequency domain
before and after control. The results in Figure 9 reveal that A1P0 is more effective than
A1P45 for a clamped boundary condition, which is a different result from the case of the
simply supported plate. It can be deduced that the actuator designed by the combination

Figure 8. The sound power radiation from a simply supported integrated plate of [0p/0c/45c/−45c/90c]s. - - - -,
Uncontrolled; ——, controlled with actuator A2M.
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Figure 9. The sound power radiation from a clamped integrated plate of [0p/0c/45c/−45c/90c]s. - - - -,
Uncontrolled; ——, controlled (a) with actuator A1P0 and (b) with actuator A1P45.

of A1P0 and A1C0 will show good effectiveness in the control of sound radiation from a
clamped composite plate.

4. CONCLUSIONS

By using the anisotropic features and shapes of distributed polyvinylidene fluoride
(PVDF) actuator, numerical investigations on the control of sound fields from a composite
plate excited by a steady state point force were studied. The sound fields induced by the
complicated dynamic behavior of the composite plate can be efficiently calculated with the
coupled FEM–BEM code. For the cantilevered isotropic plate, the actuator, which is
attached to produce the bending moment only, cannot reduce the radiated sound fields
at near-resonance frequencies of torsional vibration modes. By combining this actuator
with the actuator that has a skewed lamination angle, which can produce twisting
moments, the effective reduction of sound radiation in the overall frequency range was
obtained. The results show that the anisotropic characteristics of PVDF can be utilized
as an efficient means of active control of structurally radiated sound fields. In the case of
a simply supported composite plate, some distributed actuators with various shapes and
ply angles are considered. The shape of the distributed actuator proved to be highly
coupled to the vibration modes of the composite plates. It is possible to take advantage
of the features to improve the effectiveness in acoustic noise control. Furthermore, the
effects due to coupling between vibration modes and distributed PVDF actuator could be
made better, without increasing the number of actuators, by changing the lamination angle
of the actuator with the determined shape. The results obtained so far indicate that the
anisotropy and the shape of the distributed piezopolymer suggest promising means for the
design of more efficient actuators for controlling acoustic radiation from structures.
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