
Journal of Sound and Vibration (1997) 202(4), 555–569

A METHOD OF ANALYZING FINITE PERIODIC
STRUCTURES, PART 1: THEORY AND EXAMPLES

J. W*

8 Abberton Road, Withington, Manchester M20 1HU, England



M. P

Institute of Sound and Vibration Research, University of Southampton, Southampton
SO17 1BJ, England

(Received 24 April 1996, and in final form 9 December 1996)

The application of the Rayleigh–Ritz and extended Rayleigh–Ritz energy methods to
finite periodic structures with sinusoidal displacement functions is discussed. The coupling
relationships among the assumed functions for a stiffened beam are derived. It is shown
that, by neglecting a secondary coupling, the coupling relationships become relatively
simple. For a periodically constrained beam the geometric constraints can be replaced by
a set of equivalent constraints, each of which only involves the functions in one coupling
group dictated by the coupling relationships when the stiffeners are also added at the
constrained points. A method of analyzing finite periodic structures is therefore proposed
by making use of the coupling relationships. The benefits of using the proposed method
are demonstrated with numerical examples.
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1. INTRODUCTION

Many engineering structures are found to be periodical or pseudo-periodic. The fuselages
of civil transport airplanes, railway bridges and railway carriages are examples. In practice,
these structures may often be modelled as periodically stiffened and/or supported beams,
plates or shells. Research into the vibration of these structures have been carried out by
many investigators. The mathematical principle of wave propagation in periodic structures
was discussed extensively by Brillouin [1]. The early applications to structural engineering
include the works of Heckl [2], Ungar [3], Bobrovnitskii and Maslov [4] and Mead and
Wilby [5]. They studied the flexural wave motion in periodically supported beam
structures. Mead and Sen Gupta [6–11] studied the free and forced vibrations of periodic
beams and rib–skin structures. The behaviour of propagation and attenuation of waves
in mono-coupled and multi-coupled periodic structures were discussed by Mead [12, 13],
using characteristic receptance functions. Orris and Petyt [14, 15] used finite element
techniques to obtain the equations of motion of a periodic element and to study the free
wave propagation and response due to a convected random pressure field in
one-dimensional periodic systems. Their work was further extended by Rahman [16, 17]
to two-dimensional periodic systems. More recently, Mead and Bardell [18–21] extended
the analysis to stringer or ring stiffened shells, and combined the hierarchical finite element
method with wave propagation theory to calculate the phase constant surfaces of
orthogonally stiffened shell and plates.

* This work was carried out while the first author was a member of the ISVR.
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The feature of the analysis mentioned above is that the periodicity of a structure is
assumed to be extended to infinity. The characteristics of wave propagation along such
an infinite periodic structure can then be extracted by studying only a single element of
the system in terms of propagation constants. The natural frequencies and normal modes
of a finite periodic structure can be calculated from the propagation constants [7]. This
is advantageous when the number of periodic elements is not small and when each element
is subject to the same type of loading. However, when the number of elements is small
and/or the excitation has not the same periodicity as the structure, the analysis procedure
becomes less efficient. This problem can be avoided if the analysis is based directly on a
finitely long periodic structure model. However, very few studies have been found in the
literature in this regard. Miles [22] proposed a set of assumed displacement functions and
used them to formulate the mass and stiffness matrices of periodic beams and plates of
finite length, but no numerical calculations were presented.

It has long been noticed by many investigators [23–26] that when sinusoidal
displacement functions are used in the Rayleigh–Ritz method to analyze shells with equally
spaced stiffeners, not all of the functions are coupled together. Thus, including an
uncoupled function in the eigenvalue equations makes no improvement to the convergence
of the modal frequency concerned. Miller [25] theoretically derived the coupling
relationships found for an orthogonally stiffened shell, although an error exists in his
formulae. Wei and Petyt [26] have re-examined the coupling relations found for a
ring-stiffened shell and have used the coupling relationships to reduce the size of eigenvalue
equation. They have shown that the technique is an efficient method for periodically
ring-stiffened shells of finite length. The technique has been further developed, and it has
been established that the proposed analysis is a very efficient approximate method to
analyze periodic structures of finite length. The study reported in this paper presents the
first part of the work and describes the methodology of the proposed method.

In order to demonstrate the methodology of the analysis clearly, the presentation in this
paper is based on periodically stiffened or supported beams. After a brief discussion of
the procedure of applying the Rayleight–Ritz and extended Rayleigh–Ritz methods, the
coupling relationships among the assumed sinusoidal displacement functions for a
periodically stiffened beam, simply supported at the two extreme ends, are first examined.
A periodically simply supported beam is then studied in the next section. In the
accompanying paper [27], the relation between the present analysis and the analyses based
on an infinite periodic structural model is discussed. It will be demonstrated that the
method can also be used to calculate the propagation constants in the frequency
pass-bands of an infinite periodic structure. The applications of the method to point
supported plates, and to orthogonally stiffened shells with or without an interior plate, can
be found in reference [28].

2. THE RAYLEIGH–RITZ AND EXTENDED RAYLEIGH–RITZ METHODS

The Rayleigh–Ritz method is a procedure that produces an approximate solution for
a vibration problem. The main feature of this method is to expand each displacement
component of the structure into a linear combination of a series of prescribed functions.
Each of the prescribed functions should satisfy the geometric boundary conditions and
internal kinematic compatibility conditions. In the extended Rayleigh–Ritz method, the
latter requirement is dropped, but constraint equations must be applied to enforce these
conditions.

The general procedure of applying the extended Rayleigh–Ritz method to a vibration
problem is outlined in the following steps. (1) Assume a series expansion of prescribed
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functions for each displacement component. (2) Substitute the expansions into the kinetic
and strain or potential energy expressions of the system. For a forced response problem,
the work done by applied load is also calculated. (3) Apply constraints to enforce those
geometric boundary conditions and/or kinematic compatibility conditions which are not
satisfied by the assumed displacement functions. (4) Derive the equations of motion using
Hamilton’s principle. (5) Solve the equations of motion. For the Rayleigh–Ritz method,
the third step is dropped, since the assumed functions already satisfy these conditions. In
later discussions, not all of these steps are presented and only those necessary are retained
to save space. The equations of motion are often expressed in matrix form in terms of the
generalized co-ordinates, which are the unknown coefficients associated with the prescribed
functions in the assumed series. For a free vibration problem, these are given by

[K−v2M]{u}= {0}, (1)

where [K] and [M] are the system stiffness and mass matrices and v is the circular
frequency. The vector {u} contains the generalized co-ordinates.

3. THE COUPLING RELATIONSHIP FOR A BEAM WITH EQUALLY SPACED
STIFFENERS

The layout of a simply supported beam with equally spaced stiffeners is shown in
Figure 1. All of the stiffeners are identical and each stiffener consists of a mass Mt ,
rotational inertia Ir , and vertical and rotational stiffnesses Kt and Kr (not shown). The
assumed displacement expression in this case is

w(x)= s
a

m=1

wm sin (mpx/L), (2)

where w(x) is the beam flexural displacement and L is the beam length. m indicates the
number of half sine waves in the shape of the corresponding prescribed function, and wm

is an unknown coefficient associated with this function. The kinetic and strain energy of
the beam itself are

Tb = 1
2 g

L

0

r[Aẇ2 + Iẇ2
,x ] dx, Ub = 1

2 g
L

0

EIw2
,xx dx, (3, 4)

where r is the beam mass density. A and I are the cross-sectional area and the second
moment of area of the beam, respectively. E is Young’s modulus. The second term in
equation (3) is the contribution of beam rotational inertia. w,x and w,xx are the derivatives
of w with respect to x, once and twice respectively. A dot over w indicates the derivative
with respect to time.

Figure 1. A periodically stiffened beam simply supported at the two ends.
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The total kinetic and potential energy of the stiffeners are

Ta = 1
2 s

Na

k=1

[Mtẇ2
k + Ir (ẇk,x )2], Ua = 1

2 s
Na

k=1

[Ktw2
k +Kr (wk,x )2], (5a, b)

where Na is the number of stiffeners and subscript k denotes the kth stiffener. Substituting
equation (2) into equtions (3), (4) and (5), the system mass and stiffeness matrices are
obtained as

[M]= [M]b +[M]a , [K]= [K]b +[K]a , (6a, b)

where [M]b and [K]b are diagonal, since the prescribed functions are the natural modes of
the unstiffened beam. The diagonal elements are

Mii =0·5rLA[1+ (I/A)(mip/L)2], Kii =0·5rLEI(mip/L)4. (7a, b)

The expressions for [M]a and [K]a are as follows:

[M]a =[Mij], Mij =MtSij + IrCij (mip/L)(mjp/L), (8a)

[K]a =[Kij], Kij =KtSij +KrCij (mip/L)(mjp/L), (8b)

with

Cij = s
Na

k=1

cos (mipxk /L) cos (mjpxk /L), (9a)

Sij = s
Na

k=1

sin (mipxk /L) sin (mjpxk /L), (9b)

where in equations (7) and (8), i, j=1, 2, 3, . . . , etc., and mi and mj are the corresponding
values of m at the ith row and jth column respectively. xk is the location of kth stiffener.
Equations (7) and (8) demonstrate clearly that stiffeners cause the coupling between the
functions having different values of m and the coupling is represented by two summations,
Cij and Sij , in equation (8). It appears that in order to account for the effect of this coupling
all the functions of mQM*, where M* is the largest value of m which is included in the
solution, have to be included in the final equation simultaneously, or at least half of them
have to be included if the symmetric property of the structure is used. However, it can
be shown that, for a periodically stiffened beam, explicit expressions for these two
summations may be derived. The details of evaluating these summations are given in
Appendix A. Only the final results are listed here, as follows:

Nb /22 1 if =mi −mj ==2pNb or =mi +mj ==2qNb , (10a)

Nb 2 1 if =mi −mj ==2pNb and =mi +mj ==2qNb , (10b)
Cij =g

G

G

F

f
0 if =mi −mj = is odd; (10c)

21 otherwise; (10d)

Sij = 8Nb /2
−Nb /2
0

if =mi −mj ==2pNb and =mi +mj = $ 2qNb ,
if =mi −mj = $ 2pNb and =mi +mj ==2qNb ,
otherwise;

(11a)
(11b)
(11c)
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where Nb is the number of beam segments. p and q are any integers or zero. The value
+1 in equation (10) is for the cases in which there is a stiffener on either end of the beam
(Na =Nb +1), while −1 is for the cases in which there is nothing on both ends
(Na =Nb −1). If mi is odd and mj is even (or vice versa), both =mi −mj = and =mi +mj = are
odd. Therefore equations (10c) and (11c) indicate that there is no coupling between odd
and even functions, where odd or even functions are the prescribed functions having odd
or even values of m, and they represent symmetric or anti-symmetric beam motions,
respectively. Equations (10a, b) and (11a, b) subdivide the even and odd terms into groups.
The functions within each group are coupled together. The coupling relations governed
by these equations can be stated as follows:

For a given m, if mQNb , the coupling exists between the functions which have

m1 =m, m2 =2Nb −m, m2 =2Nb +m, m3 =4Nb −m, . . . , etc.

(12a)

with

Cij =Nb /22 1, Sij =6 Nb /2 if =mi −mj ==2pNb ,
−Nb /2 if =mi +mj ==2qNb .

If m=Nb , the coupling exists between

m1 =Nb , m2 =3Nb , m3 =5Nb , m4 =7Nb , . . . , etc. (12b)

If m=2Nb , then

m1 =2Nb , m2 =4Nb , m3 =6Nb , m4 =8Nb , . . . , etc. (12c)

For the latter two cases, Cij =Nb 2 1 and Sij =0.
Equations (12) indicate that, for a beam of Nb segments, there is a total of Nb +1

coupling groups. The lowest value of m in each group is m1 =1, 2, 3, . . . , Nb and 2Nb ,
respectively. As a convention, these values will be used to identify each group. For
example, in the case of Nb =5, there are six coupling groups; namely, m1 =1, 2, 3, 4, 5
and 10. The first seven values of m in each group are listed in Table 1.

In the cases in which Na =Nb +1 or Na =Nb −1, equation (10d) exists, which indicates
that there are couplings between the even or odd groups (e.g., between even groups of
m1 =2, 4 and 10, or between odd groups of m1 =1, 3 and 5 in Table 1). This coupling
is dependent on the end situations of the beam. The value of Cij due to this coupling is
always one, no matter what Nb is. Naturally, it becomes less important when Nb increases

T 1

Example of coupling groups for Nb =5

The first seven values of mi

Group ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV
m1 i=1 i=2 i=3 i=4 i=5 i=6 i=7

1 1 9 11 19 21 29 31
2 2 8 12 18 22 28 32
3 3 7 13 17 23 27 33
4 4 6 14 16 24 26 34
5 5 15 25 35 45 55 65

10 10 20 30 40 50 60 70
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and therefore may be neglected. This kind of coupling may be called secondary coupling.
In the cases in which the structure is perfectly periodic, i.e., there is a half-stiffener, which
has half the mass and stiffness of those in between, at each end of the beam (Na =Nb ),
this coupling does not exist and all 21 in equations (10) and (12) will be dropped (see
Appendix A). In general, if the secondary coupling due to Cij is neglected, equation (12)
becomes the only coupling relationship between the prescribed functions. Therefore it is
only necessary to solve a problem which is formed by retaining only the functions coupled
to each other. This means that the original problem can be resolved into Nb +1
sub-problems, but the order of each sub-problems is only 1/Nb of the original one, if the
same accuracy is maintained in both cases. This will obviously save computer time, since
the solution time for an eigenvalue problem is approximately proportional to the cube of
the order of the problem. Moreover, when the number of stiffeners is not small, it becomes
necessary to adopt this technique and to include the coupled functions only in the solution,
the order of which will otherwise be unmanageable.

The general effect of omitting the secondary coupling due to Cij is very difficult to
estimate, since it depends not only on the number of stiffeners but also on the relative mass
and stiffness ratios between beam and stiffener. However, it becomes decreasingly
important as the number of beam segments Nb increases. This is demonstrated in Table 2,

T 2

The first two natural frequencies of periodically stiffened beams with three different end
situations

Na =Nb −1 Na =Nb +1
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV Na =Nb ,

Nb M* B A d (%) B A d (%) A and B

1 30 9·869604 9·869604 0·0 4·740209 4·740209 0·0 5·301018
30 39·47842 39·47842 0·0 6·331425 6·331425 0·0 7·980884

2 30 2·839505 2·839505 0·0 3·416108 3·416108 0·0 3·241466
15 5·853870 6·118407 4·52 4·919312 4·947100 0·57 5·306099

3 20 2·166674 2·218630 2·40 2·586745 2·600920 0·55 2·451258
20 4·241264 4·242725 0·03 4·126148 4·126360 Q0·01 4·166614

4 15 1·994388 2·040499 2·31 2·234144 2·249184 0·67 2·159696
15 3·071456 3·093687 0·72 3·337003 3·343643 0·20 3·242572

5 12 1·922615 1·957677 1·82 2·067161 2·078972 0·57 2·024566
12 2·565528 2·605482 1·56 2·830464 2·844412 0·49 2·741451

10 6 1·826781 1·836376 0·53 1·852246 1·855097 0·15 1·846103
6 1·970905 1·995941 1·27 2·049867 2·058326 0·41 2·028655

15 4 1·806627 1·810426 0·21 1·815470 1·816500 0·06 1·813530
4 1·872772 1·884636 0·63 1·903209 1·906776 0·19 1·895992

20 3 1·798379 1·800186 0·10 1·802363 1·802832 0·03 1·801528
3 1·837098 1·843286 0·34 1·851632 1·853366 0·09 1·848409

30 2 1·795109 1·795877 0·04 1·796866 1·797032 Q0·01 1·796458
2 1·815285 1·818029 0·15 1·821237 1·821891 0·04 1·819976

40 1 1·792714 1·793046 0·02 1·793403 1·793485 Q0·01 1·793266
1 1·804347 1·805606 0·07 1·807014 1·807337 Q0·01 1·806472

30 3 1·792454 1·793245 1·792853
3 1·812114 1·815210 1·813678

40 3 1·789649 1·789984 1·789817
3 1·800862 1·802185 1·801528

A, The results excluded the effect of secondary coupling due to Cij .
B, The results included the effect of secondary coupling due to Cij .
M*= the number of the coupled terms used in the calculation of A.
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in which the first two lowest natural frequencies of a stiffened beam are calculated for three
end situations, Na =Nb −1, Na =Nb +1 and Na =Nb . A non-dimensional frequency
V=vl2(rA/EI)0·5 is used, where l is the length of a beam segment. The properties of the
stiffeners are Mt =0·2rAl, Ir =0·25rAl2, Kt =4EI/l3 and Kr =4EI/l. The secondary
coupling is included in the results shown in column B, but it is excluded in the results in
column A. These two frequencies are the lowest natural frequencies of the coupling groups
for m1 =1 and 2, respectively. For the results which include the secondary coupling, 30
odd (m=1, 3, 5, . . . , 59) or even (m=2, 4, 6, . . . , 60) functions were used in the
calculation. Therefore, when Nb increases, the number of the coupled functions as defined
by equation (12) decreases within these 30 functions. The actual number of the coupled
functions included in the 30 odd or even functions is indicated in the second column of
the table. The results excluding the secondary coupling were calculated by using the
coupling functions for mi Q 61 in each coupling group.

For Nb =1, there are only two coupling groups containing either even or odd functions,
and hence the results which include and exclude the secondary coupling are the same. For
Nb =2, the coupling group of m1 =1 contains all odd functions and thus gives the same
frequency as those of B. The effect of the secondary coupling does exist in the rest of the
results. The frequencies that include the secondary coupling are smaller than those where
it is excluded. The relative differences are gradually reduced as Nb increases. When Nb is
large, say, larger than ten, the differences are less than 1%. However, the number of
coupled functions used in A is much less than those for B. When the number of coupled
functions used for A is allowed to increase, the frequencies for A become smaller than those
in B, as shown at the bottom of the table for Nb =30 and 40. This shows the necessity
of using the proposed technique in these cases if a very large order of eigenvalue problem
is to be avoided.

Table 2 can also be used to examine the effect of three end situations by comparing the
results in columns A or B horizontally. It can be seen that the different end situations do
result in different frequencies and that the differences decrease as Nb increases. The
proposed method can effectively take this into account by including end situations in
the calculation of Cij in equation (12), even if the secondary coupling due to Cij is
neglected.

4. CONSTRAINT EQUATIONS FOR PERIODICALLY SIMPLY SUPPORTED BEAMS

Consider a periodically simply supported beam of finite length (see Figure 2). The
prescribed displacement functions in equation (2) may still be used in this case, since they
satisfy the boundary conditions at two ends. However, the geometric conditions imposed
by the supports between the ends are not satisfied. These conditions are

w(xk )=0 at xk = kL/Nb , for k=1, 2, . . . , Nb −1, (13)

Figure 2. A periodically simply supported beam.



.   . 562

where Nb is the number of beam segments and L is the beam length. Substituting the
displacement expression into equation (13) gives

s
a

m=1

wm sin (mpk/Nb )=0, k=1, 2, . . . , Nb −1. (14)

There are Nb −1 constraints that need to be imposed. However it is very difficult, if not
impossible, to apply equation (14) directly to impose the constraints. Nor do these
constraints in the present form provide any insight into the coupling relations between the
assumed functions. In order to apply the extended Rayleigh–Ritz method to this problem
efficiently and with good effect, an alternative approach must be found to impose the
constraints. The idea is to try to find a new set of constraints which is equivalent to
equation (14) but is easy to implement. The least squares technique may be used for this
purpose. The constraints in equation (14) are first relaxed and the total squared error due
to the relaxation is then calculated as follows:

o= s
Nb −1

k=1

w2
k = s

Nb −1

k=1 0 s
a

m=1

wm sin (mpk/Nb )1
2

. (15)

To minimize the error, we have

1o

1wmj

=2 s
a

mi =1

wmi s
Nb −1

k=1

sin (mipk/Nb ) sin (mjpk/Nb )

=2 s
a

mi =1

wmiSij =0, with j=1, 2, 3, . . . , etc., (16)

where the summation Sij is given in equation (9b), with Na being replaced by Nb −1.
According to the discussion in the above section, Sij divides the displacement functions into
Nb +1 coupling groups, as stated in equation (12). In the coupling group for m1 =Nb or
m1 =2Nb , the functions already satisfy all the constraints. The remaining functions fall
into Nb −1 coupling groups, as indicated by equation (12a). For any given mi , Sij is zero
if mj is not in the same coupling group as mi . This gives rise to Nb −1 independent
constraint equations from equation (16). Each equation only involves the functions in only
one coupling group. Equation (16) becomes

s
a

i=1

wmi (−1)i−1 =0, with m1 =1, 2, 3, . . . , Nb −1, (17)

and mi is defined by equation (12a).
The significance of the above conclusion is that the coupling relationships discussed in

the last section for a periodically stiffened structure are still applicable when discrete
constraints are imposed at the same locations of the stiffeners. Thus, the problem can still
be divided into Nb +1 sub-problems. For each sub-problem, only the prescribed functions
in one coupling group are involved, and the geometric conditions are imposed by using
equation (17) to eliminate any one of the unknown coefficients associated with these
functions. It should be pointed out that equation (17) is exactly equivalent to the original
set of geometric constraints of equation (14), that is, equation (14) is satisfied if and only
if equation (17) is met, although from the derivation of equation (17) here, it seems that
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T 3

The natural frequencies of a five-bay, periodically simply supported beam: comparison with
Sen Gupta’s results

m1 A B

1 4·5519 4·55
2 4·1537 4·15
3 3·7007 3·70
4 3·3092 3·30
5 3·1416 3·14

A, The present results with nine coupled terms; B, Sen Gupta’s results.

the geometric conditions might be only approximately satisfied. The proof of this is in
Appendix B.

To demonstrate the above discussion, the first five natural frequencies of a five-bay
periodically simply supported beam are calculated using the proposed method. The
frequencies are listed in Table 3. The example is taken from the work of Sen Gupta [7].
He used the periodical structure theory to calculate the natural frequencies of the beam.
His results are also shown in the table. It can be seen that the two sets of results agree
with each other very well. Nine coupled functions are used in the calculation of the present
results. The convergence of the calculation is also examined by increasing M*, the number
of the coupled functions in the calculation. The results are shown in Table 4. Since the
functions in the coupling group m1 =5 already satisfy all of the constraints, there is no
coupling among them and therefore the frequency in the last row is independent of M*.
The last column gives the percentage differences between the results of M*=9 and
M*=21. The differences are very much negligible and therefore nine coupled functions
provide adequate results in this case.

When external loading is added, the response of a finite periodic structure can be readily
solved once the system mass, stiffness and damping matrices and the generalized force
vector are calculated. The procedure for calculating the generalized force vector is again
standard, regardless of the geometric distribution of the load.

5. CONCLUSION

The application of the Rayleigh–Ritz and extended Rayleigh–Ritz energy methods to
finite periodic structures with sinusoidal displacement functions is discussed. The coupling
relationships among the assumed functions for a stiffened beam are derived. It has been

T 4

The convergence of natural frequencies of a five-bay, periodically simply supported beam

M*
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

m1 3 5 7 9 11 17 21 %

1 4·5843 4·5583 4·5534 4·5519 4·5512 4·5506 4·5505 0·030
2 4·1725 4·1575 4·1546 4·1537 4·1534 4·1531 4·1530 0·017
3 3·7093 3·7026 3·7012 3·7007 3·7006 3·7004 3·7004 0·008
4 3·3096 3·3097 3·3093 3·3092 3·3091 3·3091 3·3091 0·003
5 3·1416 3·1416 3·1416 3·1461 3·1416 3·1416 3·1416 —
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shown that by neglecting a secondary coupling the coupling relationships become relatively
simple. For a periodically constrained beam the geometric constraints can be replaced by
a set of equivalent constraints, each of which only involves the functions in one coupling
group dictated by the coupling relationships when the stiffeners are also added at the
constrained points. A method of analyzing finite periodic structures is therefore proposed
by making use of the coupling relationships. The benefits of using the proposed method
are demonstrated with the numerical examples. The proposed method inherits the main
advantages of the Rayleigh–Ritz and extended Rayleigh–Ritz methods. The concept and
procedure of the analysis is simple. It also enables these methods to be applied effectively
to structures with many stiffeners and/or supports. It is shown, and will be further
demonstrated in the accompanying paper [27], that the method is a very useful
approximate approach for the analysis of periodically stiffened or constrained structures
of both finite and infinite length.

REFERENCES

1. L. B 1946 Wave Propagation in Periodic Structures. New York: Dover.
2. M. A. H 1964 Journal of the Acoustical Society of America 36, 1315–1323. Investigations

on the vibrations of grillages and other simple beam structures.
3. E. E. U 1966 Journal of the Acoustical Society of America 39, 887–894. Steady state

response of one dimensional periodical flexural systems.
4. Y. I. B and Y. P. M 1966 Soviet Physics—Acoustics 12, 150–154. Propagation

of flexural waves along a beam with periodic point loading.
5. D. J. M and E. W. W 1966 Shock and Vibration Bulletin 35, 45–54. The random vibration

of a multi-supported heavily damped beam.
6. D. J. M 1970 Journal of Sound and Vibration 11, 181–197. Free wave propagation in

periodically supported infinite beams.
7. G. S G 1970 Journal of Sound and Vibration 13, 89–101. Natural flexural waves and

normal modes of periodically supported beams and plates.
8. G. S G 1970 Journal of Sound and Vibration 16, 567–580. Natural frequencies of periodic

skin–stringer structures using wave approach.
9. D. J. M and G. S G 1970 Proceedings of the Symposium on Structural Dynamics,

Loughborough University of Technology, Paper No. D-3. Wave group theory applied to the
analysis of the forced vibrations of rib–skin structures.

10. G. S G 1970 Ph.D. Thesis, University of Southampton. Dynamics of periodically stiffened
structures using a wave approach.

11. D. J. M 1971 Transactons of the American Society of Mechanical Engineers, Journal of
Engineering for Industry 93, 783–791. Vibration response and wave propagation in periodic
structures.

12. D. J. M 1975 Journal of Sound and Vibration 40, 1–18. Wave propagation and natural modes
in periodic systems, I: mono-coupled system.

13. D. J. M 1975 Journal of Sound and Vibration 40, 19–39. Wave propagation and natural
modes in periodic systems, II: multi-coupled system, with and without damping.

14. R. M. O and M. P 1974 Journal of Sound and Vibration, 223–236. A finite element study
of harmonic wave-propagation in periodic structures.

15. R. M. O and M. P 1975 Journal of Sound and Vibration 43, 1–8. Random response of
periodic structures by a finite element technique.

16. A. Y. A. A-R 1980 Ph.D. Thesis, University of Southampton. Matrix analysis of wave
propagation in periodic systems.

17. A. Y. A. A-R and M. P 1980 Proceedings for Conference on Recent Advances
in Structural Dynamics, Southampton 1, 361–373. Free and forced wave propagation in
two-dimensional periodic systems using matrix techniques.

18. D. J. M and N. S. B 1986 Journal of Sound and Vibration 111, 229–250. Free vibration
of a thin cylindrical shell with discrete axial stiffeners.

19. D. J. M and N. S. B 1987 Journal of Sound and Vibration 115, 499–520. Free vibration
of a thin cylindrical shell with periodic circumferential stiffeners.



    , 1 565

20. D. J. M, D. C. Z and N. S. B 1988 Journal of Sound and Vibration 127, 19–48.
Free vibration of an orthogonally stiffened flat plate.

21. N. S. B and D. J. M 1989 Journal of Sound and Vibration 134, 55–72. Free vibrations
of orthogonally stiffened cylindrical shell, part II: discrete general stiffeners.

22. R. N. M 1989 Journal of Sound and Vibration 134, 165–174. An approximate method for
modal analysis.

23. D. M. E and J. L. S 1968 American Institute of Aeronautics and Astronautics Journal
6, 518–526. An analysis of free vibration of orthogonally stiffened cylindrical shells with stiffeners
as discrete elements.

24. S. A. R 1970 Ph.D. Thesis, Engineering Mechanics, Georgia Institute of Technology.
Vibration of longitudinally stiffened cylindrical shells.

25. P. R. M 1957 A.R.C. Technical Report, R. & M. No. 3154. Free vibrations of a stiffened
cylindrical shell.

26. J. W and M. P 1988 Proceedings of the Third International Conference on Recent Advances
in Structural Dynamics, 55–64. Free vibration of ring-stiffened cylindrical shells.

27. J. W and M. P 1997 Journal of Sound and Vibration 202, 571–583. A method of analyzing
finite periodic structures, part 2: comparison with infinite periodic structure theory.

28. J. W 1995 Ph.D. Thesis, University of Southampton. Modelling of fuselage/floor structures and
associated cabin acoustics for the prediction of propeller induced interior sound fields.

APPENDIX A: EVALUATION OF Cij AND Sij

Two summations given in equation (9) are

Cij = s
Na

k=1

cos (mipxk /L) cos (mjpxk /L), (A1a)

Sij = s
Na

k=1

sin (mipxk /L) sin (mjpxk /L), (A1b)

where L is the length of the structure over which Na stiffeners are equally spaced. xk is the
location of the kth stiffener. First examine the case in which there is no stiffener at either
end of the structure. In this case, Na =Nb −1 and

xk = lk, k=1, 2, . . . , Nb −1, (A2)

with L=Nbl and l is the pitch of stiffeners or the length of a segment. Substituting equation
(A2) into equation (A1) gives

Cij = s
Nb −1

k=1

cos (mipk/Nb ) cos (mjpk/Nb ),

= 1
2 $ s

Nb −1

k=1

cos ((mi −mj )pk/Nb )+ s
Nb −1

k=1

cos ((mi +mj )pk/Nb )%, (A3a)

Sij = s
Nb −1

k=1

sin (mipk/Nb ) sin (mjpk/Nb ),

= 1
2 $ s

Nb −1

k=1

cos ((mi −mj )pk/Nb )− s
Nb −1

k=1

cos ((mi +mj )pk/Nb )%, (A3b)
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It is clear that if we can evaluate a summation which is defined as

SUMC= s
Nb −1

k=1

cos (Mpk/Nb ), (A4)

where M is an integer between −a and +a, Cij and Sij can then be calculated readily.
From equation (A.4), if M=0, 2Nb, 4Nb , . . . , etc., then cos (Mpk/Nb )=1; thus

SUMC=Nb −1. (A5)

If M$ 0, 2Nb , 4Nb, . . . , etc. then

SUMC=Re6 s
Nb −1

k=1

exp ( jMpk/Nb )7, (A6)

where j=z−1 and Re{} indicates the real part of a complex number. Since

s
Nb −1

k=1

xk =(x− xNb)/(1− x), (A7)

the complex expression in equation (A6) becomes

s
Nb −1

k=1

exp (jMpk/Nb )=
exp (jMp/Nb )− exp (jMp)

1−exp (jMp/Nb )

=
exp (jMp/2Nb )− exp (jMp) exp (−jMp/2Nb )

exp (−jMp/2Nb )− exp (jMp/2Nb )

=
exp (jMp/2Nb )− (−1)M exp ( − jMp/2Nb )

−2j sin (Mp/2Nb )

=6−1
j tan−1(Mp/2Nb )

if M is even;
if M is odd.

(A8)

Combining equations (A5), (A6) and (A8) gives

SUMC= 8Nb −1
0
−1

if =M ==2pNb ,
if =M = is odd,
otherwise,

(A9)

where p is any integer or zero. Likewise,

s
Nb −1

k=1

cos ((mi −mj )pk/Nb )= 8Nb −1
0
−1

if =mi −mj ==2pNb ,
if =mi −mj = is odd,
otherwise,

(A10)

and

s
Nb −1

k=1

cos ((mi +mj )pk/Nb )= 8Nb −1
0
−1

if =mi +mj ==2qNb ,
if =mi +mj = is odd,
otherwise,

(A11)
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where q is any integer. Noticing that if =mi −mj = is odd, =mi +mj = is odd as well, and if
=mi −mj = is even =mi +mj = is also even, substituting equations (A10) and (A11) into
equation (A3) yields

Nb −1 if =mi −mj ==2pNb and =mi +mj ==2qNb , (A12a)

Nb /2−1 if =mi −mj ==2pNb or =mi +mj ==2qNb only, (A12b)
Cij =g

G

G

F

f
0 if =mi −mj = is odd; (A12c)

−1 otherwise; (A12d)

(A13a)
(A13b)Sij = 8Nb /2

−Nb /2
0

if =mi −mj ==2pNb ;
if =mi +mj ==2qNb ;
if =mi −mj ==2pNb and =mi +mj ==2qNb or otherwise (A13c)

For the case in which there are stiffeners at both ends of the structure, Sij is unchanged
while Cij becomes

Cij = s
Nb −1

k=1

cos (mipk/Nb ) cos (mjpk/Nb )+1+cos (mip) cos (mjp)

Nb +1 if =mi −mj ==2pNb and =mi +mj ==2qNb , (A14a)

Nb /2+1 if =mi −mj ==2pNb or =mi +mj ==2qNb only, (A14b)
=g

G

G

F

f
0 if =mi −mj = is odd; (A14c)

+1 otherwise; (A14d)

If the stiffeners at the ends have half of the mass and stiffness properties of those stiffeners
in between, Cij becomes

Cij = 8Nb

Nb /2
0

if =mi −mj ==2pNb and =mi +mj ==2qNb ,
if =mi −mj ==2pNb or =mi +mj ==2qNb only,
otherwise,

(A15a)
(A15b)
(A15c)

Equation (A13) is equation (11), while equations (A12), (A14) and (A15) give equation
(10).

APPENDIX B: THE EQUIVALENT CONSTRAINTS OF PERIODICAL SIMPLY
SUPPORTS

The constraints in equation (15) for a periodically simply supported beam are

s
a

m=1

wm sin (mpk/Nb )=0, k=1, 2, . . . , Nb −1. (B1)

Divide sin (mpk/Nb ) into Nb +1 groups according to the coupling relations given by
equation (12). The lowest values of m in each group are m1 =1, 2, . . . , Nb −1, Nb and 2Nb ,
respectively. For the groups with m1 =Nb and 2Nb , sin (mpkNb )=0; therefore the
functions in this group do not appear in the constraints. In other words, the motions
represented by them pre-satisfy the constraints. For each of the remaining Nb −1 groups,
if 0QmQNb ,
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m1 =m, m2 =2Nb −m, m3 =2Nb +m, m4 =4Nb −m, , . . . , etc.

(B2)

For m2, m4, m6, etc.,

sin (mipk/Nb )= sin ((2pNb −m)pk/Nb )=−sin (mpk/Nb ), (B3)

while for m3, m5, m7, etc.,

sin (mipk/Nb )= sin ((2pNb +m)pk/Nb )= sin (mpk/Nb ), (B4)

where p and q are any integers or zero. Thus the displacement contributed by the coupling
group of m1 =m at the constrained point k is

wkm =sin (mpk/Nb ) s
a

i=1

wmi (−1)i−1 = sin (mpk/Nb )Wm (B5)

with k, m=1, 2, . . . , Nb −1 and

Wm = s
a

i=1

wmi (−1)i−1. (B6)

Substituting equation (B5) into equation (B1) gives

s
Nb −1

m=1

Wm sin (mpk/Nb )=0, k=1, 2, . . . , Nb −1. (B7)

Rewriting equation (B7) in matrix form gives

[A]{W}= {0}, (B8)

where [A] is a square matrix of order Nb −1, with its kth row, mth column element
akm =sin (mpk/Nb ). Vector {W} contains Wm , m=1, 2, . . . , Nb −1. Clearly, if [A] is
non-singular, the only {W} that can satisfy equation (B7) is

{W}= {0} or Wm =0, for m=1, 2, . . . , Nb −1. (B9)

This will give the equivalent constraint conditions shown in equation (18). To prove this,
we may first look at a matrix [C]= [A][A]. Since =C== =A= =A== =A=2, if =C= is non-zero,
=A= must be non-zero as well and therefore [A] is non-singular.

The ith row and jth column element of [C] is

cij = s
Nb −1

k=1

sin (ipk/Nb ) sin ( jpk/Nb ). (B10)

It is clear that [C] is symmetric and we only need to examine the elements having ie j.
For diagonal elements, i= j,

cii = s
Nb −1

k=1

1
2[1−cos (2ipk/Nb )]. (B11)
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From equation (A9),

s
Nb −1

k=1

cos (2ipk/Nb )=−1, for i=1, 2, . . . , Nb −1. (B12)

Therefore,

cii =Nb /2. (B13)

For iq j,

cij = 1
2 $ s

Nb −1

k=1

cos (i− j)pk/Nb − s
Nb −1

k=1

cos (i+ j)pk/Nb%. (B14)

Again, from equation (A9),

s
Nb −1

k=1

cos (i− j)pk/Nb =6−1 if i− j is even,
0 if i− j is odd,

(B15a)

s
Nb −1

k=1

cos (i+ j)pk/Nb =6−1 if i− j is even,
0 if i− j is odd,

(B15b)

Thus

cij =0, if iq j. (B16)

Matrix [C] is diagonal, and

=C==(Nb /2)Nb −1 $ 0, if Nb $ 0. (B17)

This proves that =A= is non-zero if Nb $ 0 and the geometric constraints in equation (14)
or equation (B1) are satisfied if and only if the equivalent constraints in equation (18) or
equation (B9) are satisfied.


