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1. 

The vibration of classical circular plates of variable thickness has been studied by many
investigators for a very long period. All the results have been thoroughly summarized by
Leissa in his landmark reference [1] and consequent update [2].

Analytical solutions for axisymmetric vibrations in terms of Bessel functions for
particular Poisson ratios were given by Conway [3, 4] for the thickness variation described
by a power function and by Conway et al. [5] for the thickness variation described in a
linear manner. By employing the Forbenius method, the vibration equations of
axisymmetric vibrations were solved by Jain et al. [6] for the linear case, the solutions being
given in infinite power series. Using the perturbation method, Yang [7] also studied the
linear thickness variation case.

In the present paper, the vibrations of plates with generalized variable thickness are
studied, and the power series solutions are given. These solutions, represented by the
recursive relations of the coefficients of the infinite power series, can be applied to various
boundary conditions to obtain the resonance frequency spectra and mode shapes. These
infinite power series, which are Bessel functions for a particular Poisson ratio and other
parameters, can be effectively evaluated without special difficulty for most parameters
involved.

2.      

The axisymmetric vibration equation of a circular isotropic plate [1] is
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where w is the transverse displacement, n is the Poisson ratio, r is the density of the
material, v is the frequency, and h= h(r) is the thickness of the plate. The stiffness of the
plate is

D=Eh3/12(1− n2), (2)

where E is Young’s modulus of the material. The moments and shear force are
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Now one expands equation (1), and by taking into account that the thickness h is a
function of r, one has

H2R3W2+2HR2(H+3H'R)W1+R[3R2(2H'2 +HH0)+3(2+ n)HH'R−H2]W0

+[3nR2(2H'2 +HH0)−3HH'R+H2]W'−V2R3W=0, (4)

where the dimensionless quantities are

R=
r
a
, W=w(R), H=

h(R)
h0

, V=
v

v0
, v0 =

h0

a2X E
12(1− n2)r

, (5)

where a is the radius of the plate and h0 is the thickness at the center of the plate.
Now one can see that the equation is being determined by the dimensionless thickness

function H. For some special H, there may be analytical solutions, like the uniform case,
which can be represented by letting H=1. In this study, it will be assumed that the
function is a power function, and two special cases, H=1+ jRm and H=Rm, will be
solved in infinite power series.

3.     =1+ jRm

It is clear now that the differential equation of motion is of fourth order with variable
coefficients. Generally there is no closed form solution in tabulated functions except in
some special cases [3–5], which are Bessel functions. Since Bessel functions themselves are
obtained from second order differential equations by the Forbenius method, one can
employ this method for the above equation, and be able to get a group of power series
solutions which are generalized functions, with Bessel functions as a special case.

Here the thickness variation parameter is defined as

j= h1/h0 −1, (6)

where h1 is the thickness of the plate at the edge, where R=1 or r= a, and h0 is the
thickness at the center, where R=0 or r=0. When j=0, one has a uniform plate. By
substituting for H in equation (4), one has

(1+ jRm)2R3W2+2(1+ jRm)R2[1+ j(1+3m)Rm]W1

+R{[3m(1+ n+3m)−1]j2R2m +[3m(1+ n+m)−2]jRm −1}W0

+ {[3m(3mn− n−1)+1]j2R2m +[3m(mn− n−1)+2]jRm +1}W'−V2R3W=0.

(7)

Let the solution be

W= s
a

n=0

anRn+ s, a0 $ 0. (8)

A substitution of equation (8) into equation (7) yields

s
a

n=0

{ f1(n)anRn+ s−1 + f2(n)anRn+ s−1+m + f3(n)anRn+ s−1+2m −V2anRn+ s+3}=0, (9)
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with

f1(n)= (n+ s)2(n+ s−2)2,

f2(n)= j(n+ s){2(n+ s−1)(n+ s−2)(n+ s+3m−1)

+[3m(m+ n+1)−2](n+ s−1)+3m(mn− n+1)+2},

f3(n)= j2{(n+ s)2(n+ s−2)2 +3m(n+ s)(n+ s−1)[2(n+ s)+3(m−1)+ n]

+3m(n+ s)(3mn− n−1)}. (10)

From equation (9), one obtains the indicial equation as

s2(s−2)2 =0, or s=0, 0, 2, 2. (11)

Also it is clear that, for m=1, 2, a degree of four recursive relation will be obtained from
equation (9). For me 3, the degree of the recursive relation will be 2m.

Now one investigates the case m=1 in detail. From equation (9) one has the recursive
relation for the coefficients of equation (8) as

an+4 =−[(n+ s+3)j/(n+ s+2)2(n+ s+4)2]

×{(n+ s+2)[2(n+ s+1)(n+ s+5)+4+3n]−1}an+3

−[j2/(n+ s+2)(n+ s+4)2]

×{(n+ s+1)[(n+ s)(n+ s+7)+11+3n]+2(3n−1)}an+2

+[V2/(n+ s+2)2(n+ s+4)2]an , (12)

for n=0, 1, 2, . . . , a. With s=0, one finds that there are two independent coefficients
obtained from equations (9) and (12), and thus two independent solutions. For s=2, one
obtains two solutions which are identical to those from s=0, so one can conclude that
there are only two solutions associated with s. The other two solutions must be obtained
by the Forbenius method, and are singular at R=0. Also, from the above equation one
can see that the series will be convergent for RQ =1/j =.

By assuming

a0 =A+B, a2 =A−B, (13)

where A and B are two arbitrary constants, one obtains

an = f1(n)A+ f2(n)B, (14)

and the first few terms of fi (n) for i=1, 2 are

f1(0)=1, f1(1)=0, f1(2)=1, f1(3)=−2j(1+ n)/3,

f1(4)= (V/8)2 + 3
32(1+ n)(3+2n)j2 . . . ,

f2(0)=1, f2(1)=0, f2(2)=−1, f2(3)=2j(1+ n)/3,

f2(4)= (V/8)2 − 3
32(1+ n)(3+2n)j2 . . . , (15)

and the two solutions are

Wi (R, n, j)= s
a

n=0

fi (n)Rn, i=1, 2. (16)
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To obtain the singular solutions at R=0, one can assume that the solutions are

W3(R, n, j)=C1W1(R, n, j) ln R+ s
a

n=0

bnRn, b0 $ 0;

W4(R, n, j)=C2W2(R, n, j) ln R+ s
a

n=0

cnRn, c0 $ 0, (17)

and substitute them into equation (7) with known W1 and W2 from equation (16);
coefficients bn and cn and constants C1 and C2 can be determined by another two recursive
relations, thus a pair of solutions in the form of power series will be obtained. With these
two, the solutions set for equation (7) is now complete, and the annular plates can also
be studied.

For cases with me 1, one can obtain the solutions in a similar manner.
As a numerical example, the resonance frequencies for various j are compared in Table 1

with the approximate results from perturbation and FEM by Yang [7]. From the above
computations, it is found that the power series functions converge very quickly, and the
computer programming is also straightforward. There is no difficulty in obtaining these
results. From the result at j=0 one can see that the exact frequency is obtained for the
uniform thickness plate from the power series solution.

4.     = m

In this case, the thickness of the plate at the center, which is R=0, is zero, and h0 will
be the thickness at the edge.

From equation (4), the equation of motion in this case becomes

R2mW2+2(1+3m)R2m−1W1+[3m(1+3m+ n)−1]R2(m−1)W0

+{3m[3nm−(1+ n)]+1}R2m−3W'−V2W=0. (18)

T 1

Comparison of exact V2 for n=0·3 with approximate results by Yang [7] for clamped circular
plates

j Perturbation [7] FEM [7] Present

−0·70 – – 15·7528
−0·50 – – 42·2463
−0·30 – – 67·8149
−0·20 – – 80·2763
−0·10 86·8 92·9 92·4751
−0·05 95·1 99·1 98·4612

0·00 103·4 105·3 104·3631
0·05 111·7 111·6 110·1741
0·10 120·0 118·2 115·8873
0·20 136·7 131·6 126·9920
0·30 153·3 145·8 137·6199
0·50 – – 157·2105
0·70 – – 174·1848
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Now let one examine (18) for different m. For m=1, by substituting equation (8) into
equation (18), one has

s
a

n=0

{ f1(n)anRn+ s−1 −V2anRn+ s+1}=0, (19)

where

f1(n)= (n+ s)[(n+ s−1)(n+ s−2)(n+ s+5)+ (11+3n)(n+ s−1)+2(3n−1)],

(20)

and the indicial equation will be

s[(s−1)(s−2)(s+5)+ (11+3n)(s−1)+2(3n−1)]=0, (21)

which will give

s=−1, −1
2 −z13−12n/2, 0, −1

2 +z13−12n/2. (22)

The coefficients of the series will be again given by a recursive relation,

an+2 =
V2an

(n+ s+2){(n+ s+1)[(n+ s)(n+ s+7)+11+3n]+2(3n−1)}. (23)

The infinite series will be of the R2 type.
Since −1Q nQ 1

2, one has four distinct solutions for each s, and two of the solutions
are finite at R=0, which correspond to the two larger roots.

For m=2, equation (18) will be an Euler equation, and by using z=ln R, can be
transformed into

W2+8W1+2(5+3n)W0−24(1− n)W'−V2W=0. (24)

Assuming W(z)= elz =Rl, the characteristic equation will be

l4 +8l3 +2(5+3n)l2 −24(1− n)l−V2 =0, (25)

and the solutions are

l1,2 =−22z7−3n+z9(1− n)2 +V2, l1,2 =−22z7−3n−z9(1− n)2 +V2.

(26)

This has been studied by Conway [3]. Due to the transformation z=ln R, these solutions
may be singular at R=0, and therefore these solutions cannot be applied to the vibration
of a circular plate.

For m=3, by applying a transformation z=1/R, one has a new equation

z3W2−8z2W1+(5+9n)zW0+18(5−3n)W'−V2zW=0. (27)

Again, the four solutions of the indicial equation are

s=7−z85−36n/2, 0, 7, 7+z85−36n/2, (28)

and the recursive equation for the coefficients is

an+2 =
V2an

(n+ s+2){(n+ s+1)[(n+ s)(n+ s−9)+5+9n]+18(5−3n)}, (29)

which will give solutions in terms of an infinite power series of (1/R)2. The interesting
phenomenon is that these solutions are singular at R=0 due to the transformation
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T 2

First three frequencies V of a clamped plate with H=R for various Poisson ratios

n=1/3 Conway [4] n=1/3 n=0·30 n=0·25

8·72 8·7193 8·8194 8·9656
21·15 21·1457 21·3340 21·6094
38·45 38·4538 38·7253 39·1222

z=1/R, which means these solutions cannot be applied to the cases in which the plate
is a circular plate rather than an annular one. Apparently, it is conceivable that for me 3,
the displacements at the center of the plate may be so large that the vibration could not
occur, given the fact that the stiffness of the plate close to the center is very small. With
this in mind, the singular solutions at R=0 will not be hard to understand, and then it
can be concluded that for me 2, there is no more vibration, and the natural frequency
will be zero. But if the plate is an annular one, the fast convergent solutions can be applied
to analyze the frequency spectra.

For me 3, one needs transformations such as z=1/Rn, where ne 1. This will enable
one to achieve solutions by the Frobenius method similar to the previous ones. And, as
one can see from the m=2 case, one needs to be careful to distinguish the solutions which
are singular at R=0, or at the center of the plate.

It is also interesting to note that the indicial equation of the differential equation changes
with m, which is different from the results of the previous section.

As a numerical example, the case for m=1 is computed. It is found that the frequencies
for n=1/3 are precisely the results by Conway [4]. For comparison, the first few
frequencies for n are given in Table 2. It is found that the power series here converges even
faster than in the previous case, and no difficulty in both speed and precision were
experienced.

5. 

From the above solutions and numerical results, it is proven that the axisymmetric
vibrations of circular plates can be analyzed with available exact solutions in terms of
power series. These series, which converge rapidly for parameters which do not represent
limiting cases, can be evaluated efficiently with currently available computing resources.

The singular solutions in many cases, which include some limiting cases, reflect the
physical feature of axisymmetric vibrations. Keeping this in mind, the real implications
of these solutions can be well interpreted to mean that the excessive displacement in the
center makes the vibration impossible.

Although only two special cases of thickness variation are studied here, this method can
be readily extended to other thickness variation schemes to cover a wide range of practical
problems for precise analytical solutions.
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