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OPTIMUM PARAMETERS OF MULTIPLE TUNED
MASS DAMPERS FOR BASE-EXCITED DAMPED

SYSTEMS

A. S. J  R. S. J

Department of Civil Engineering, Indian Institute of Technology, Bombay 400076, India
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The optimum parameters of multiple tuned mass dampers (MTMD) for suppressing the
dynamic response of a base-excited structure in a specific mode is investigated. The base
excitation is modelled as a stationary white noise random process. The stationary response
of the structure with MTMD is analyzed for the optimum parameters of the MTMD
system. The criterion selected for optimality is the minimization of the root mean square
(r.m.s.) displacement of the main structure. The parameters of MTMD that are optimized
include the damping ratio, the tuning frequency ratio and the frequency bandwidth of the
MTMD system. The optimum parameters of the MTMD system and corresponding
effectiveness are obtained for different damping ratios of the main structure and mass ratios
of the MTMD system. In addition, the effectiveness of an optimally designed MTMD
system is compared with that of an optimum single tuned mass damper. It is shown that
the optimally designed MTMD system is more effective for vibration control than the single
tuned mass damper.
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1. INTRODUCTION

The tuned mass damper (TMD) is a classical engineering device consisting of a mass, a
spring and a viscous damper, attached to a vibrating main system in order to attenuate
any undesirable vibration. The natural frequency of the damper system is tuned to a
frequency near to the natural frequency of the main system. The vibration of the main
system causes the damper to vibrate in resonance, and as a result, the vibration energy
is dissipated through the damping in the tuned mass damper. The solution for determining
the optimum tuning frequency and the optimum damping of the tuned mass damper for
an undamped main system subjected to harmonic external force over a broad band of
forcing frequencies is described in Brock [1] and Den Hartog [2]. Using Den Hartog’s
procedure, Warburton and Ayorinde [3] have derived the optimum damper parameters for
the undamped main system subjected to an harmonic support motion, where the
acceleration amplitude is fixed for all input frequencies and other kinds of harmonic
excitation sources. The explicit formulae for the optimum parameters of a tuned mass
damper and its effectiveness are available under different types of system excitation [4–10].

The main disadvantage of a single tuned mass damper is its sensitivity of the effectiveness
to the error in the natural frequency of the structure and/or that in the damping ratio of
the tuned mass damper. The effectiveness of a tuned mass damper is reduced significantly
by mistuning or off-optimum damping. As a result, the use of more than one tuned mass
damper with differing dynamic characteristics, has been proposed in order to improve the
effectiveness. Iwanami and Seto [11] have shown that two tuned mass dampers are more
effective than a single tuned mass damper. However, the improvement of the effectiveness
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was not significant. Recently, multiple tuned mass dampers with distributed natural
frequencies have been proposed by Xu and Igusa [12, 13] and also studied by Yamaguchi
and Harnpornchai [14], Abe and Fujino [15], Jangid [16], Abe and Igusa [17] and Jangid
and Datta [18]. It is shown that the MTMD is more effective for vibration control as
compared to the single TMD. Also, the effectiveness of the MTMD is not much influenced
by the change or estimation error in the natural frequency of the structure.

In spite of several studies on the effectiveness of the MTMD, the optimum parameters
of the MTMD system have not yet been studied. Here, the optimum parameters of the
MTMD system for a base-excited main system are presented. The criterion selected for
optimality is minimization of the r.m.s. displacement of the main system. The base
excitation is modelled as a white noise stationary random process. The optimum
parameters of the MTMD system are obtained for different damping ratios of the main
system and mass ratios of the MTMD, which may find application in the effective design
of MTMD’s for base-excited systems. Furthermore, the optimum parameters of the
MTMD system are compared with those of a corresponding single tuned mass damper
system.

2. STRUCTURAL MODEL

The system configuration consists of a main system supported by n tuned mass dampers
with different dynamic characteristics, as shown in Figure 1. The main system is
characterized by natural frequency vs , damping ratio js and mass ms . The main system
and each TMD is modelled as a single-degree-of-freedom system so that the total degrees
of freedom of the structural system is n+1. The various assumptions made for the system
under consideration are as follows: (i) the natural frequencies of the main structure are
not closely spaced; (ii) the vibration to be suppressed is only in the specific vibration mode;
(iii) the stiffness and damping of each TMD is the same; and (iv) the natural frequencies
of the MTMD are uniformly distributed around their average natural frequency. The
distribution of natural frequencies of the MTMD can be made by varying either the
stiffness or mass of each TMD. However, the manufacturing of a TMD with uniform
stiffness and constant damping is simpler than that of one with varying stiffness and

Figure 1. The structural model.
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damping properties (the mass remains unchanged). Note that MTMD’s with identical
dynamic characteristics are equivalent to a single TMD in which the damping ratio and
natural frequency of the equivalent single TMD are the same as those of the individual
MTMD. However, the mass is the sum of all the MTMD’s masses. The model considered
above is the same as given by Xu and Igusa [12]. However, for the sake of completeness,
the system parameters used for the present optimization study are briefly summarized
below.

Let vT be the average frequency of all MTMD’s (i.e., vT =an
j=1 vj /n), where n is the

total number of MTMD’s. The natural frequency of the jth TMD is expressed as (a list
of notation is given in the Appendix)

vj =vT $1+0j− n+1
2 1 b

n−1%, (1)

where the parameter b is the non-dimensional frequency spacing of the MTMD, defined
as

b=
vn −v1

vT
. (2)

If kT and cT are the constant stiffness and damping of each TMD, respectively, then the
mass and damping ratio of the jth TMD are expressed as

mj = kT /v2
j , jj = cT /2mjvj =(cT /2kT )vj . (3, 4)

Note that the masses of the MTMD’s in equation (3) follow an inverse quadratic relation
to the natural frequency of the TMD. However, in reference [13] it has been shown that
the masses should follow an elliptical relation with frequency under optimal condition. A
more complex relation has also been proposed in reference [15].

The average damping ratio of the MTMD is expressed as

jT = s
n

j=1

jj

n
=

vTcT

2kT
. (5)

The ratio of the total MTMD’s mass to the main system’s mass is defined as the mass ratio;
i.e.,

g=

s
n

j=1

mj

ms
=

mT

ms
, (6)

where mT is the total mass of the MTMD; and ms is the mass of the main system.
The constant stiffness and damping of each TMD may be evaluated using

kT = gms>0 s
n

j=1

1
v2

j 1, cT =2jTgms>0vT s
n

j=1

1
v2

j 1. (7, 8)

The ratio of the average frequency of the MTMD to the natural frequency of the main
system is defined as the tuning frequency ratio; i.e.,

f=vT /vs . (9)
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2.1.    

The governing equations of motion for the system under consideration are given in
reference [12]. Furthermore, the amplitude of the steady state harmonic displacement of
the main system, xs (v), to the harmonic base acceleration, ẍg =eivt (where v is the circular
frequency and i=z−1) is given by

xs (v)=
ms −(iv)−1Z(v)

ks −ivcs −v2ms −ivZ(v)
, (10)

where

Z(v)=−iv s
n

j=1

mj (kj −ivcj )
kj −ivcj −v2mj

. (11)

If the base excitation is modelled as a stationary random process characterized by its power
spectral density function (PSDF), then the PSDF of the displacement of main system[19]
is given by

Sxs (v)= =xs (v) =2Sẍg (v), (12)

where Sẍg (v) is the PSDF function of the ground acceleration.
The mean square displacement of the main system is given by [19]

s2
xs
=g

a

−a

Sxs (v) dv. (13)

3. NUMERICAL STUDY

The stochastic response of the base-excited main system with the MTMD is investigated
for the optimum parameters of the MTMD system. The criterion selected for optimality
is minimization of the r.m.s. displacement of the main system. The base excitation is
modelled as a stationary white noise random process; i.e.,

Sẍg (v)=S0, −aEvEa. (14)

The effectiveness of the MTMD is defined by its equivalent damping added to the main
system. The equivalent damping of the MTMD system is expressed by

jeq =
pS0

2v3
s s

2
xs

− js , (15)

where s2
xs

is the mean square displacement of the main system obtained from equation (13).
Equation (15) is obtained by equating the mean square displacement of the main system
with the MTMD to the equivalent main system response without the MTMD, but with
a damping ratio equal to js + jeq. Thus, the effect of the MTMD is considered in terms
of the damping added to the main system. Note that jeq is a measure of the effectiveness
of the MTMD system, and that a positive value indicates that the MTMD system is
effective in reducing the dynamic response of the main system. The ratio (R) of r.m.s.
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displacement of the main system with the MTMD to that without the MTMD is given
by

R=X js

js + jeq
. (16)

The structural system considered in the present study is quite complex, and it is very
tedious to obtain the expression for the optimum parameters in closed form. As a result,
the optimum parameters are obtained using a numerical searching procedure. For a given
js , g and n, the parameters of the MTMD (i.e., jT , b and f ) are varied such that the r.m.s.
displacement of the main system attains the minimum value (i.e., jeq attains the maximum
value). The constraints applied on the values of parameters jT , b and f for the optimization
study are as follows:

0E jT Q 1, 0E bQ 2, fq 0. (17a–c)

The above conditions satisfy the conditions that (i) the natural frequencies of the TMD’s
are positive real, and (ii) the TMD’s are under-damped. The optimum parameters of the
MTMD system are obtained for four values of the main system damping; i.e., js =0, 2,
5 and 10%. The superscript ‘‘opt’’ is used to denote the optimum parameters and
corresponding jeq at the optimum parameters.

3.1.       ’    

In Figure 2 is shown the variation of the optimum parameters jopt
T , bopt, f opt and jopt

eq ,
versus the number of tuned mass dampers, n for the mass ratio g=1% and js =0, 2, 5
and 10%. The optimum damping ratio, jopt

T , decreases sharply as the number of TMD’s
increases. The optimum damping ratio for a single TMD is much higher than that for the
MTMD system. Furthermore, the optimum damping is insensitive to changes in the main
system damping. Warburton [5] has shown that the optimum damping of the single TMD
is not influenced by the damping of the main system, and the same is also confirmed for
the MTMD system. The optimum frequency bandwidth, bopt, of the MTMD system
increases with the increase in both the number of TMD’s as well as the damping of the
main structure, as shown in the figure. The optimum tuning frequency ratio, f opt, increases
with an increase in the number of TMD’s. However, it remains almost constant beyond

Figure 3. Variation of the optimum MTMD damping, jopt
T , versus the mass ratio, g, for f= f opt, b= bopy and

js =0. ———, n=1; ----, n=11; ·····, n=21.
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Figure 4. Variation of the optimum frequency range of the MTMD, bopt, versus the mass ratio, g, for f= f opt,
jT = jopt

T . (a) js =0%; (b) js =2%; (c) js =5%; (d) js =10%. ----, n=11; ·····, n=21.

a certain number of TMD’s (in this case for nq 5). The optimum tuning frequency for
single TMD is smaller than that for the MTMD system. Also, the optimum tuning
frequency ratio decreases with an increase in the damping of the main structure. The
equivalent damping, jopt

eq , added to the main system at the optimum parameters shows a
trend very similar to that of the optimum frequency bandwidth. There is an initial steep
increase in the value of the equivalent damping. However, as the number of TMD’s
increases, the equivalent damping remains almost constant. The equivalent damping of the
MTMD system is more, although marginally, than that for a single TMD system. Thus,
an optimum designed MTMD system is more effective than the optimum single TMD
system. Furthermore, jopt

eq decreases as the main structure damping increases. This signifies
that the effectiveness of the MTMD system decreases as the damping in the main structure
increases.

3.2.          

In this section, the variation of the optimum parameters jopt
T , bopt, f opt and jopt

eq , versus
the mass ratio, g, is studied for different number of TMD, n=1, 11 and 21. In Figure 3
the variation of jopt

T is plotted against the mass ratio for js =0. The optimum damping
ratio increases with an increase in the mass ratio, being more pronounced for a single TMD
as compared to the MTMD system. The optimum damping ratio for a single TMD is
sufficiently larger than that for the MTMD system. Thus, the optimum damping ratio of
the MTMD increases with an increase in the mass ratio. Furthermore, it is observed that
the optimum damping ratio remains insensitive to variation of the main system damping,
and that the graphs for js =2, 5 and 10% are indistinguishable from that of js =0.
Therefore, the same plot may be used for the optimum damping of the MTMD system
for different damping ratios of the main system.
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The variation of the optimum frequency bandwidth of the MTMD system versus the
mass ratio is shown in Figure 4. As the mass ratio increases, the optimum frequency
bandwidth also increases. The difference in the optimum frequency bandwidth between
n=11 and n=21 increases mildly with the increase of mass ratio. It can also be seen from
the figure that as the main structure damping increases, the optimum frequency bandwidth
also increases for a given mass ratio and number of tuned mass dampers. Thus, the
optimum frequency bandwidth of the MTMD system increases with an increase in both
the mass ratio and the main system damping.

In Figure 5, variation of the optimum tuning frequency ratio, f opt, is plotted versus the
mass ratio. The optimum tuning frequency ratio decreases with an increase in the mass
ratio. The difference in the optimum tuning frequency ratio for n=11 and n=21 is not
significant. For low values of the mass ratio, the optimum tuning ratio is the same for a
single TMD and for the MTMD system. The optimum tuning ratio for a single TMD is
much lower than that for the MTMD system for higher values of the mass ratio. At a given
mass ratio, the optimum tuning frequency ratio increases with an increase in the number
of TMD’s and decreases with an increase in the main structure damping. Thus, the
optimum tuning frequency ratio decreases with an increase in the mass ratio, being more
pronounced for a single TMD as compared to the MTMD system.

In Figure 6 is shown the variation of the equivalent damping of the TMD and MTMD
added to the main system at the optimum parameters versus the mass ratio, g. The
optimum equivalent damping increases with an increase in the mass ratio. The equivalent
damping of the optimum MTMD system is greater compared to that of the optimum single
TMD. This indicates that an optimally designed MTMD system is more effective than a
single TMD. The optimum equivalent damping added by the MTMD system and a single

Figure 5. Variation of the optimum tuning frequency ratio, f opt, versus the mass ratio g, for b= bopt and
jT = jopt

T . (a) js =0%; (b) js =2%; (c) js =5%; (d) js =10%. ———, n=1; ----, n=11; ·····, n=21.
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Figure 6. Variation of the optimum equivalent damping ratio, jopt
eq , versus the mass ratio, g, for f= f opt, b= bopt

and jT = jopt
T . (a) js =0%; (b) js =2%; (c) js =5%; (d) js =10%. Key as for Figure 5.

TMD is a maximum for the undamped system and decreases with an increase in the main
system damping. Thus, the effectiveness of the MTMD system and the single TMD
increases with an increase in the mass ratio. However, it is reduced for higher damping
in the main system.

4. CONCLUSIONS

The stochastic response of a structure with the MTMD system subjected to base
excitation is investigated. The base excitation is modelled as a stationary white noise
random process. The optimum parameters of the MTMD system are obtained for
minimum r.m.s. displacement of the main structure. The parameters of the MTMD system
(i.e., the damping ratio, tuning frequency and frequency spacing) are obtained for different
numbers of TMD’s, and for different values of the mass ratio and the damping of the main
structure. In addition, the optimum parameters of the MTMD system are compared with
those corresponding to the single TMD system. From the trends of the results of the
present study, the following conclusions may be drawn.

1. For the same mass ratio, the optimum designed MTMD system is found to be more
effective than the optimum single TMD system.

2. The optimum damping ratio for the MTMD system is found to be quite low as
compared to that of a single TMD. The optimum damping ratio increases with an increase
in the mass ratio, being more pronounced for a single TMD system as compared to the
MTMD system.

3. The damping in the main system does not influence the optimum damping ratio of
both the single TMD and the MTMD system.
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4. The optimum frequency bandwidth of the MTMD system increases with an increase
in both the mass ratio and the damping of the main system.

5. The optimum tuning frequency of the MTMD system is found to be higher than that
for single TMD. Furthermore, the optimum tuning frequency decreases with an increase
in both the mass ratio and the damping of the main system.

6. The effectiveness of the MTMD and the single TMD system is reduced for higher
damping in the main system.

7. For the MTMD system, the optimum damping ratio decreases whereas the frequency
bandwidth increases mildly with an increase in the number of TMD’s.

8. The number of TMD’s does not have much influence on the optimum tuning
frequency and the corresponding effectiveness of the MTMD system.
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APPENDIX: NOTATION

cj damping of the jth TMD
cs damping of main system
cT damping constant of each TMD
f tuning frequency ratio
kj stiffness of the jth TMD
ks stiffness of main system
kT constant stiffness of each TMD
mj mass of the jth TMD
mT total mass of MTMD
ms mass of the main system
n number of the tuned mass dampers
R the response ratio
Sẍg (v) PSDF of the base acceleration
S0 intensity of the white noise excitation
Sxs (v) PSDF of the displacement of main system
xs displacement of the main system relative to ground
xj displacement of the jth tuned mass damper relative to ground
ẍg base acceleration
b non-dimensional frequency bandwidth of MTMD system
g mass ratio
v circular frequency
vT average natural frequency of the MTMD
vj natural frequency of the jth TMD
vs natural frequency of the main system
js damping ratio of the main system
jj damping ratio of the jth TMD
jT average damping ratio of MTMD
jeq equivalent damping added to main system by MTMD
s2

xs
mean square displacement of the main system

Superscript
opt optimum value


