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In regions sufficiently remote from excitation and discontinuities, the flexural motion of
a plate can be expressed as the sum of plane propagating waves. In this paper this fact is
used as the basis of a wave-based technique for plate intensity measurement. It is assumed
that far field conditions exist, and that the displacement within a region can be described
as the sum of a set of plane waves the amplitude of which is a function of propagation
direction. This function is approximated using a truncated complex Fourier series. It is
shown that the time-averaged intensity at the co-ordinate origin can be written in terms
of the five Fourier coefficients of lowest order. The effect that the choice of measured
variables and measurement locations have on systematic errors and on the conditioning
of the problem is discussed. A numerical comparison, under specific conditions, between
a Fourier series approach and a finite difference approach to plate intensity measurement
is shown. This indicates that the Fourier series approach can offer a better compromise
between systematic and random errors. Experimental intensity measurements illustrating
the use of the Fourier series approach are presented and discussed.
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1. INTRODUCTION

The measurement of vibrational energy flow, or intensity, in structures has received
considerable attention from researchers since its proposal by Noiseux [1], and there is no
doubt that the idea of structural intensity measurement is an appealing one, particularly
for the analysis of noise and vibration problems in complex structures. It offers a unifying
concept by which different vibration types in different structural members can be compared
and ranked. Once the relative importance of the various sources, vibration types and
transmission paths are known, the selection of effective vibration treatment is greatly
simplified. Examples of specific applications of structural intensity measurements are given
in references [2, 3].

Expressions for flexural wave intensity in beams and plates in terms of variables that
can be readily measured [4] have been known for many years. There can, however, be many
problems involved in practical intensity measurements. In practice, the intensity is
estimated from the local deformation (i.e., displacement, velocity and their spatial
derivatives of various orders) of the structural member. This deformation is generally
determined from measurements at a finite number of locations at and around the point
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of interest, which involves, explicitly or implicitly, fitting functions to the measured data
and finding the ‘‘deformation’’ of these functions.

If the relationship between the internal stresses and the external deformation is known,
the maximum achievable accuracy of the intensity estmate will be dependent on how well
the functions used to interpolate between the measurement points represent the
deformation of the structural member. This is determined both by the types of function
used and the spacing of the measurement points. If the functions perfectly match the
deformation there will be no systematic error in the intensity estimate provided that certain
spacings, which result in matrix singularity, are avoided. If, however, the interpolating
functions do not match the deformation there will inevitably be a systematic error which
increases with an increasing spacing between the measurement points.

Although systematic errors can be minimized through the use of a small spacing (in
terms of wavelengths) between the measurement points, such a measurement system will
be sensitive to errors in the input data. This can be readily appreciated when one considers
the effects of errors in measurements or transducer placement on the estimate of the
deformed shape if the measurement points are closely spaced, and thus the measured
variables are near-identical. The sensitivity of a calculation to errors in the input data is
termed the conditioning of the problem, with a well conditioned problem being relatively
insensitive to errors.

If the conditioning of the intensity calculation is improved then the effects of
measurement errors are reduced. This potentially allows for better intensity estimates, or
permits measurements to be performed in more demanding conditions than would
otherwise be possible. Improved conditioning can generally be achieved through the use
of more widely spaced measurement points (up to a certain limit, after which the
conditioning deteriorates again), but unless the true and assumed deformations are in close
agreement it can be at the expense of large systematic errors. The use of appropriate
functions to interpolate between the measurement points is therefore fundamental to
achieving a good compromise between systematic errors and conditioning.

In the calculation of flexural wave intensity, the spatial derivatives of displacement in
beams and plates have traditionally been estimated using finite difference approximations
[4–7], which implicitly fit low order polynomials of position to the measured data. In
general these functions do not agree closely with the true deformation over a wide domain,
and therefore their use can result in substantial systematic errors if the measurement points
are not closely spaced [8–10]. More suitable interpolating functions are thus desirable.

Within the limits of thin beam theory, the displacement of a flexurally vibrating beam
can be expressed in terms of propagating and evanescent waves. The deformation can thus
be represented exactly using trigonometric and exponential functions. The technique of
wave decomposition, in which the wave amplitudes are determined, fits these functions to
the measured data, and beam intensity measurements based on this technique [11–13]
therefore can avoid systematic errors. A small separation between measurement points is
thus not necessary, and the spacing may be chosen purely to give low sensitivity to
measurement errors.

In contrast, there does not exist a general closed form solution to the equation of motion
of a plate. It is thus not possible to select interpolating functions that, in a finite expansion,
exactly represent the deformation. As a consequence, any system for plate intensity
measurement that utilizes a finite number of measurement locations will result in a
systematic error. However, through the use of suitable interpolating functions, systematic
errors and/or the sensitivity of the intensity calculation to measurement and other errors
can be reduced.
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It is shown in the following section that, in a region remote from discontinuities and
excitation, the displacement of a plate can be approximated as the sum of plane
propagating waves. Functions of this form would therefore appear to be an appropriate
choice of interpolating function for far field plate intensity measurements. This paper
describes such a measurement system, in which it is assumed that the plate displacement
can be written as the sum of plane waves the amplitude of which is a function of
propagation direction. The amplitude function is expressed as a complex Fourier series
which is truncated to allow the Fourier coefficients to be estimated from a finite number
of measurements. The intensity can be calculated directly from the Fourier coefficients.

In section 3 the displacement of a plate is approximated in terms of a truncated Fourier
series. This approximation is used in section 4 to derive an expression for the intensity in
terms of the Fourier coefficients. The principles of estimating the Fourier coefficients and
the geometry of possible transducer arrays are discussed in section 5. In section 6 the effects
that the choice of measured variables and measurement locations have on the conditioning
of the problem is described. Simulated intensity measurements, using Fourier series and
finite difference based approaches, are compared in terms of systematic errors and
sensitivity to measurement errors in sections 7 and 8 respectively. Finally, the results of
experimental intensity measurements using the Fourier series approach are presented and
discussed in section 9.

2. PLATE RESPONSE IN TERMS OF PLANE WAVES

Consider an infinite plate, with elastic modulus E, density r, Poisson ratio n, and
thickness h, excited by the time-harmonic point force f(r, f, t)=Fd(r) eiv0t acting normal
to the plate surface (a list of symbols used is given in Appendix 2). Within the limitations
of thin plate theory, which apply to isotropic, homogeneous flat plates the thickness of
which is small relative to a wavelength and the displacement of which is small relative to
the thickness of the plate, it can be shown that the equation of motion is given by [14]

D9292w(r, f, t)− rhv2
0w(r, f, t)= f(r, f, t), (1)

where

D=
Eh3

12(1− n2)
(2)

is the flexural stiffness per unit width of the plate and 92 is the Laplace operator. The
response of the plate at a distance, r, from the excitation point is given by [14]

w(r, t)=
−iF eiv0t

8k2
pD

[H(2)
0 (kpr)−H(2)

0 (−ikpr)], (3)

where

kp = 4Xv2
0rh
D

(4)

is the plate wavenumber and

H(2)
0 (kpr)= J0(kpr)− iY0(kpr) (5)

is the zeroth order Hankel function of the second kind.
The displacement field of an infinite plate excited by a time-harmonic point force can

thus be written in terms of the difference of two Hankel functions, the one with a real
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argument (assuming that kpr is purely real) representing radially propagating waves and
the one with an imaginary argument representing the near-field effects. Expressions of this
form can be considered the Green functions for time-harmonic bending waves in a plate,
with the applied forces and boundary conditions of an arbitrary plate being described as
the sum of a number of point sources. This gives an expression for the displacement of
an infinite plate under the resulting force distribution, however the displacements in the
interior domain are identical to those of the finite plate.

Further simplification is possible if only regions remote from excitation and
discontinuities are considered. In these cases the arguments of the Hankel functions are
large, and it is known that, for large z, [15]

H(2)
0 (z)1X 2

pz
e−i(z− p/4). (6)

It is immediately apparent that if the argument has a negative imaginary component then
exponential decay with distance occurs, with the magnitude of this imaginary component
determining the rate of decay. The presence of structural damping introduces a negative
imaginary component to the wavenumber, meaning that the arguments of both Hankel
functions in equation (3) have negative imaginary components. However, in most
structural materials the loss factor is very small, making the wavenumber almost purely
real. Under these circumstances the argument (kpr) has a relatively small imaginary
component, while that of (−ikpr) is relatively large. As a consequence only the Hankel
function, H(2)

0 (kpr), is significant at large r. Equation (3) therefore becomes

w(r, t)1−iF eiv0t

8k2
pD X 2

pkpr
e−i(kpr− p/4). (7)

Now consider a section, S, of the plate surface, upon which the excitation can be
represented by a distribution of point sources F(x0, y0). If (x', y') represents the point of
interest on the plate, then the radial distance of this point from the sources is

r(x0, y0)=z(x'− x0)2 + (y'− y0)2, (8)

and provided that kpr is large the displacement at point (x', y') is given by

w(x', y', t)1gg
S

−iF(x0, y0) eip/4 eiv0t

8k2
pD X 2

pkpr(x0, y0)
e−ikpr(x0, x0) dx0 dy0. (9)

Furthermore, if the dimensions of the area of excitation, S, are small relative to r, then
1/zr(x0, x0) may be considered constant over S, and equation (9) may be rewritten as

w(x', x', t)1−i eip/4 eiv0t

8k2
pD X 2

pkpr gg
S

F(x0, y0) e−ikpr(x0,y0) dx0 dy0. (10)

At the point (x', y') this may be interpreted as a set of plane waves emanating from region
S in the direction of (x', y'). If boundaries and sources of excitation are sufficiently remote
from the point of interest then each may be represented by a number of such regions.
Furthermore, within a small vicinity of point (x', y') there will be little variation in r, and
thus a very similar wave description applies throughout that vicinity. The response at, and
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within a vicinity of, point (x', y') can therefore be expressed as the sum of the contributions
of the individual regions and hence as the sum of plane waves from various directions.

3. WAVE AMPLITUDE AS A COMPLEX FOURIER SERIES

It was seen in the previous section that, within the vicinity of a point, sufficiently remote
from discontinuities or excitation and which we will arbitrarily denote the co-ordinate
origin, the displacement of a plate can be approximated as the sum of plane propagating
waves. These waves may be of any direction, so the displacement can be written as

w(x, y)1g
p

−p

A(u) e−ikp (x cos u+ y sin u) du, (11)

where A(u) is the complex wave amplitude as a function of propagation direction, u.
Writing this amplitude as a complex Fourier series gives

A(u)= s
a

n=−a

Cn einu. (12)

Equation (12) can then be substituted in equation (11) to yield

w(x, y)1g
p

−p 0 s
a

n=−a

Cn einu1 e−ikp(x cos u+ y sin u) du, (13)

or

w(x, y)1 s
a

n=−a

Cn g
p

p

einu e−ikp(x cos u+ y sin u) du. (14)

While there are an infinite number of terms in the Fourier series expansion, in practice
the displacement will be estimated from a finite number of measurements, m. It is therefore
possible to estimate up to m coefficients in the expansion. If m is odd then we may write
m=2q+1 for some non-negative integer, q, and the estimate of displacement given by
the truncated Fourier series approximation is

w̄(x, y)1 s
q

n=−q

Cn g
p

−p

einu e−ikp(x cos u+ y sin u) du. (15)

4. INTENSITY IN TERMS OF COMPLEX FOURIER COEFFICIENTS

Subject to the limitations of thin plate theory, which are paraphrased in section 2, the
components of time-averaged flexural wave intensity in the x- and y-directions can be
shown to be [4]

�Ix (t)�=D$W013w
1x3 +

13w
1x 1y21 1w

1tw−W012w
1x2 + n

12w
1y21 12w

1x 1tw−(1− n)W 12w
1x 1y

12w
1y 1tw%

(16)
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and

�Iy (t)�=D$W0 13w
1x2 1y

+
13w
1y31 1w

1tw−W0n 12w
1x2 +

12w
1y21 12w

1y 1tw−(1− n)W 12w
1x 1y

12w
1x 1tw%

(17)

where � � denotes a time average. In the far field it is known that

12w
1x2 +

12w
1y2 =−k2

pw, (18)

and therefore, for far field conditions, equations (16) and (17) can be rewritten as

�Ix (t)�=D$W− k2
p
1w
1x

1w
1tw−W012w

1x2 + n
12w
1y21 12w

1x 1tw−(1− n)W 12w
1x 1y

12w
1y 1tw%, (19)

�Iy (t)�=D$W− k2
p
1w
1y

1w
1tw−W0n 12w

1x2 +
12w
1y21 12w

1y 1tw−(1− n)W 12w
1x 1y

12w
1x 1tw%. (20)

In order to evaluate equations (19) and (20), it is necessary to estimate spatial derivatives
of displacement of up to second order. This may be achieved by differentiating equation
(15) to give

w(x, y)1 s
q

n=−q

Cn g
p

−p

einu e−ikp(x cos u+ y sin u) du,

1w
1x

(x, y)1 s
q

n=−q

Cn g
p

−p

−ikp cos u einu e−ikp(x cos u+ y sin u) du,

1w
1y

(x, y)1 s
q

n=−q

Cn g
p

−p

−ikp sin u einu e−ikp(x cos u+ y sin u) du,

12w
1x1y

(x, y)1 s
q

n=−q

Cn g
p

−p

− k2
p cos u sin u einu e−ikp(x cos u+ y sin u) du,

12w
1x2 (x, y)1 s

q

n=−q

Cn g
p

−p

− k2
p cos2 u einu e−ikp(x cos u+ y sin u) du,

12w
1y2 (x, y)1 s

q

n=−q

Cn g
p

−p

− k2
p sin2 u einu e−ikp(x cos u+ y sin u) du. (21)

Since the spatial derivatives given in equations (21) are functions of location, it is possible
to estimate the intensity at any point in the region over which the proposed wave
description remains valid. Under these circumstances, when x and y are non-zero, the
integrals in equations (21) are typically non-zero and thus all the calculated coefficients,
Cn , contribute to the intensity estimate. However, at the co-ordinate origin, where
x= y=0, the position dependent exponential term simply equals unity, and the
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orthogonality of trigonometric functions means that the integrals are zero for most values
of n. The displacement and its relevant spatial derivatives given in equations (21) are
therefore, at the co-ordinate origin, determined by a small number of coefficients; namely,

w(0, 0)1 2pC0,
1w
1x

(0, 0)1 −ikpp(C−1 +C1),

1w
1y

(0, 0)1 kpp(−C−1 +C1),
12w
1x1y

(0, 0)1 ik2
pp

2
(C−2 −C2),

12w
1x2 (0, 0)1−k2

pp[0·5(C−2 +C2)+C0],
12w
1y2 (0, 0)1 k2

pp[0·5(C−2 +C2)−C0]. (22)

Substituting equations (22) into equations (19) and (20) gives, as estimates of
time-averaged intensity in the x- and y-directions,

�Ix (t)�FS =
Dvk3

p

2
p2 Re [2C0(C−1 +C1)*+ (1− n)(C*−2C−1 +C*2 C1)

+ (1+ n)C*0 (C−1 +C1)], (23)

and

�Iy (t)�FS =
Dvk3

p

2
p2 Im [2C0(C1 −C−1)*+ (1− n)(C*2 C1 −C*−2C−1)

+ (1+ n)C*0 (C−1 −C1)], (24)

if the wavenumber, kp , is purely real. Five coefficients are thus sufficient to determine the
intensity at the origin under far field conditions.

Adaptation of the intensity calculation to allow for damping poses no problems, through
the use of a complex stiffness, D, and wavenumber, kp . Note, however, that it is the local
damping within the material that is important, rather than the overall damping of the
structure (which may be dominated by losses at joints, boundaries, etc., and is likely to
be much higher than the material damping [14]). The effect of damping within the material
is to change the phase relationships between the velocities and internal forces that are used
to estimate the intensity, and results in expressions for intensity similar to, but rather more
complex than, equations (23) and (24). If the damping is high in the region of the
measurement—due, for example, to the use of constrained layer damping—the inclusion
of damping in this manner may be warranted. For typical levels of material damping,
however, the assumption of a purely real wavenumber will not result in a significant error
in the intensity estimate.

5. ESTIMATION OF FOURIER SERIES COEFFICIENTS

The Fourier coefficients may be estimated from measurements of displacement made at
different points by solving a set of simultaneous equations of the form given in equation
(15). These equations can be rewritten in terms of matrices as

W=TC, (25)
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where

g
p

−p

e−iqu e−ikp(x1 cos u+ y1 sin u) du · · · g
p

−p

eiqu e−ikp(x1 cos u+ y1 sin u) du

T=G
G

G

G

G

K

k

···
··· G

G

G

G

G

L

l

,

g
p

−p

e−iqu e−ikp(xmcos u+ ym sin u) du · · · g
p

−p

eiqu e−ikp(xm cos u+ ym sin u) du

CT = (C−q · · · Cq ), WT = (w(x1, y1) · · · w(xm , ym )), (26)

and thus the Fourier coefficients may be estimated from

C=T−1W. (27)

Similar formulations can be derived for measured variables other than displacement.
If the number of measurements exceeds the number of coefficients being evaluated, then

the Moore–Penrose inverse may be used to obtain a least squares fit to the measured data
[16]. However, for the remainder of the paper it will be assumed, unless specifically stated,
that the number of measurements is equal to the number of Fourier coefficients.

The effects of damping may be included through the use of a complex wavenumber, kp .
However, for this to yield a significantly improved estimate of the Fourier coefficients, the
decay of the waves as they propagate across the region occupied by the transducer array,
which is governed by the material loss factor and the dimensions of the array, must be
measurable.

The basis functions used in the complex Fourier series possess angular periodicity, and
therefore the angular placement of the transducers used to estimate the coefficients must
be appropriate for that purpose. This is analogous to the choice of a suitable linear spacing
of transducers when evaluating wave amplitudes in a beam [13]. In practice, it is necessary
to avoid angular spacings which coincide with a half-period of one of the basis functions,
since this results in singularity of the matrix, T, used to evaluate the Fourier coefficients.
This behaviour is apparent from the determinant of the matrix. Changing to polar
co-ordinates, with

x= r̂ cos f
 , y= r̂ sin f
 , (28)

equation (15) becomes

w(r̂, f
 )1 s
q

n=−p

cn g
p

−p

einu e−ikpr̂(cos f
 cos u+sin f
 sin u) du= s
q

n=−q

Cn einf
 g
p

−p

einu e−ikpr̂ cos u du. (29)

Now consider m measurements of displacement (or velocity or acceleration) taken at
points on the circumference of a circle of radius, R, with uniform angle, 8, between
adjacent measurement points, as shown in Figure 1. It can be shown from equation (29)
that the elements of the transformation matrix, T, are given by

Tj, sn =ein(j−1)8 g
p

−p

einu e−ikpR cos u du=ein(j−1)8Un , (30)

where

Un =g
p

−p

einu e−ikpR cos udu=2p(−i)nJn (kpR) (31)
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and sn is the column of matrix, T, associated with Fourier index n, Jn being the nth order
Bessel function of the first kind. As Un is independent of the angular location of the
measurement, it is constant for any column of the matrix. Furthermore, since multiplying
a row or column of a matrix by a constant factor has the effect of changing the determinant
by that same factor, the zeroes of the determinant of the matrix, T, are the same as the
zeroes for the auxiliary matrix, T�, where

T�j, sn =ein(j−1)8 (32)

or, letting b=ei8,

1 · · · 1 1 1 · · · 1

b−q · · · b−1 1 b · · · bq

T� =G
G

G

G

G

K

k

b−2q · · · b−2 1 b2 · · · b2q G
G

G

G

G

L

l

. (33)
··· · · · ···

···
··· · · · ···

b−q(m−1) · · · b−(m−1) 1 b(m−1) · · · bq(m−1)

Zeroes of the determinant of matrix, T�, indicate angular spacings that will result in
singularity of matrix T. It is apparent in this case that any uniform angular spacing may
be used provided that it does not result in two measurements occurring at the same
location, since singularity occurs only when

8=2p, . . . , 2
2p

(m−2)
, 2

2p

(m−1)
. (34)

A measurement system with all tranducers evenly spaced around the circumference of a
circle would therefore appear to be a practical proposition. If, however, one measurement
is taken at the centre, the elements of the row of matrix, T, associated with this
measurement are of the form

g
p

−p

einu du=0 ([n$ 0)

=2p (n=0). (35)

Thus only the central element of the row is non-zero, with the Fourier coefficient, C0, being
fully determined by this single measurement. The auxiliary matrix, T�, now has the form

0 · · · 0 1 0 · · · 0

1 1 · · · 1 · · · 1 1

T� =G
G

G

G

G

K

k

b−q b−(q−1) · · · 1 · · · b(q−1) bq

G
G

G

G

G

L

l

. (36)
b−2q b−2(q−1) · · · 1 · · · b2(q−1) b2q

···
··· · · · ··· · · · ···

···
b−q(m−2) b−(q−1)(m−2) · · · 1 · · · b(q−1)(m−2) bq(m−2)

Figure 1. The transducer arrangement for Fourier series approximation.
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Singularity occurs at the same angular spacings as in the previous case. In this situation,
however, there are only (m−1) tranducers arranged circumferentially. Uniform
distribution around the circumference therefore results in an angular spacing of
8=2p/(m−1), which, as may be seen from equation (34), gives a singular matrix.

In summary, if the m measurements are uniformly distributed around the circumference
the angular spacing is 8=2p/m which makes the matrix T, in general, non-singular. If
one of those measurements is taken at the centre of the circle and the remaining (m−1)
uniformly distributed around the circumference, the angular spacing is 8=2p/(m−1),
and the resulting matrix is always singular.

The Fourier coefficients may also be estimated solely from measurements of surface
strain. The surface strain in the radial direction is given by

or =−
h
2

12w
1r̂2 (37)

where h is the thickness of the plate. Substituting the expression for displacement given
in equation (29) into equation (37) and differentiating to yield an expression for radial
strain in terms of the Fourier series coefficients gives

er 1
hk2

p

2
s
q

h=−q

Cn einf g
p

−p

cos2 u einu e−ikpR cos u du. (38)

If the strain gauges are placed with a uniform angular spacing, 8, on the circumference
of a circle of radius R, as shown in Figure 1, it can be shown from equation (38) that the
elements of the transformation matrix, T, are given by

Tj, sn =
hk2

p

2
ein(j−1)8 g

p

−p

cos2 u einu e−ikpR cos u du=ein(j−1)8Vn , (39)

where

Vn =
hk2

p

2 g
p

−p

cos2 ueinu u e−ikR cos u du=−
phk2

p

4
(−i)n(Jn−2(kpR)−2Jn (kpR)+ Jn+2(kpR)) (40)

and sn is the column of matrix, T, associated with Fourier index n. The similarity to the
case in which displacement was measured is readily apparent. Since Vn is constant for any
given column, the zeroes of the determinant of matrix, T, are the same as those of the
auxiliary matrix, T�, obtained by dividing each column of T by the appropriate Vn . This
auxiliary matrix is precisely the same as that determined for the displacement
measurements. All of the preceding comments regarding the angular spacing of
displacement measurements and singularity are therefore equally valid for measurements
of radial strain.

Matrix singularity will also occur if one of the values of Un (or Vn for strain
measurements) is zero, since this will result in the elements of a column of the matrix, T,
being identically zero. As Un and Vn are functions of the Fourier index, n, and the radius
of the circle (in radians) upon which the transducers are placed, kpR (that is, the radius
of the circle non-dimensionalized with respect to plate wavenumber, and hereafter referred
to as the tranducer placing radius), they have roots at specific combinations of these
variables. It is therefore necessary to avoid such placing radii for all the Fourier coefficients
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T 1

Transducer placing radii (kpR) resulting in matrix singularity

Fourier index, n Roots of Un (displacement or acceleration) Roots of Vn (strain)

0 kpR=2·40 kpR=1·84
21 kpR=3·84 kpR=3·52
22 kpR=5·14 kpR=1·56
23 kpR=6·39 kpR=2·65

being evaluated. Non-zero transducer placing radii that result in zeroes of Un and Vn , and
hence singularity of matrix T, when evaluating low order Fourier coefficients from
displacement and strain measurements are shown in Table 1. Physically, these radii may
be interpreted as locations at which a particular Fourier coefficient makes no contribution
to the measured variable. This is readily understood when considering the measurement
of displacement. Each Fourier coefficient represents a reverberant wave field, since the
magnitude of the assumed wave remains constant with changing direction—only the phase
varies. If that wave field were present in isolation, then there would be nodes at which there
was no motion. The roots of Un correspond to nodes of the assumed wave field, and thus
if measurements are taken at those points then that particular Fourier coefficient cannot
be determined.

While the use of identical transducers uniformly distributed on the circumference of a
circle will allow the required Fourier coefficients to be estimated if specific placing radii
are avoided, there are other options. These include: (i) the use of an overdetermined
system, in which the number of measurements exceeds the number of Fourier coefficients
being estimated, utilizing the Moore–Penrose inverse; (ii) the use of transducer arrays with
a non-uniform angular spacing; and (iii) modification of the matrix, T, by equating the
very small singular values and their corresponding elements in its inverse to zero, as
proposed by Nash [17].

While the use of an overdetermined system does increase flexibility in transducer placing,
it means that additional transducers and measurement channels are required, increasing
the cost of the measurement system. If near singularity cannot be avoided, the modification
of matrix, T, which improves conditioning at the expense of theoretical accuracy, appears
to hold some promise. However, while such mathematical techniques for dealing with
ill-conditioned problems exist, it is preferable to work with a well-conditioned problem if
possible.

6. CONDITIONING

As stated in section 1, the conditioning of a problem is a measure of the sensitivity of
the final result to errors in the input data. In the calculation of structural intensity, this
is determined both by the measurement system used and the vibrational field present. It
is possible, however, to isolate the two effects and thus to compare different measurement
systems in terms of the conditioning offered. The calculation of the intensity using
equations (23) and (24) is determined, to within a constant factor, by the values of the
Fourier coefficients. Owing to the assumptions and approximations used, the measurement
system will have some influence on the values of these coefficients, but they are essentially
descriptors of the vibrational field. The conditioning of equations (23) and (24) is therefore
primarily determined by the nature of the vibration. In contrast, the evaluation of the
Fourier coefficients from measured variables as described in section 5 involves solving a
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set of simultaneous equations. These may be written in matrix form and the conditioning
judged using the two-norm condition number of the matrix. The matrix is determined by
the parameters being measured, the measurement locations and the number of coefficients
being evaluated, and may be considered a property of the measurement system.

While the condition number of the transformation matrix provides an indication of
conditioning, this may not be sufficient for the comparison of dissimilar measurement
systems. It is governed not only by the choice of measured variables and measurement
spacing, but also by the chosen co-ordinate origin and the relative magnitude of each row
of the matrix. The centre of the measurement array has already been designated as the
co-ordinate origin for mathematical simplicity, eliminating this source of variation, but for
comparative purposes the normalizing of the matrix rows through division by the constant
(i.e., not u dependent) terms associated with each row, is proposed. The two-norm
condition number of this modified matrix is directly analogous to the array condition
number proposed for the comparison of intensity measurement systems on beams [13].
With this standardization, different transducer arrays can be compared in terms of their
sensitivity to measurement error. However, in view of the practical difficulties in obtaining
accurate phase matching between dissimilar transducer types, only arrays involving one
transducer type will be considered in this paper. Normalization is therefore unnecessary,
and we are simply interested in the two-norm condition number of matrix T.

For a transducer system giving m measurements of displacement, at radius R and
uniform angular spacing 8=2p/m, the elements of matrix T are given by equation (30)
as

Tj, sn =e[i2np(j−1)]/mUn . (41)

Since Un is constant for a particular n, the magnitudes of the elements in any given column,
sn , are equal. Furthermore, if each column is normalized to have a magnitude of one by
dividing by the appropriate =Un =, then the resulting matrix has a condition number of unity.
The columns (and rows) of this matrix are therefore orthogonal. As the matrix, T, may
be found from this normalized matrix by multiplying each column by the appropriate =Un =,
the condition number of T is given by the ratio of the largest and smallest =Un =, being

aa = =Un =max/=Un =min . (42)

It is clear that as the magnitude of Fourier index, n, becomes large,

Un =g
p

−p

einu e−ikpR cos u du:g
p

−p

einu du=0, (43)

since the einu term dominates e−ikpR cos u over most of the range of integration, particularly
if the tranducer placing radius, kpR, is small. This can also be seen from the asymptotic
expansion of the Bessel function for large positive real orders [15],

Jn (kpR)0 1
z2pn 0ekpR

2n 1
n

, (44)

which decreases in proportion to (1/n)n+0·5. For typical values of kpR in the range of
0·5–1·5, the maximum =Un = occurs for n=0 or n=21. Subsequent increases in =n = cause
a decrease in =Un =, the rate of decrease being faster for smaller values of kpR . In view of
the previous comments relating =Un = to the condition number it is apparent that
conditioning deteriorates as more Fourier coefficients are estimated or, for typical
spacings, as the transducer spacing is reduced. This is readily understood in physical terms
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by considering the influence that each Fourier coefficient has on the individual
measurements. The conditioning is, in essence, a measure of the relative importance of the
individual coefficients in the Fourier series expansions of the measured variables. Good
conditioning indicates that all the coefficients make a significant contribution to the
expansions, while poor conditioning occurs if one or more coefficients are insignificant in
the expansions. If acceleration is measured at points on a circle centred on the co-ordinate
origin and the radius of that circle is very small, then the Fourier series expansions of those
measurements will be dominated by the C0 coefficient. This is because the displacement,
and hence the acceleration, at the origin is completely defined by C0. The Fourier series
expansions of the measurements therefore converge rapidly, the higher order terms making
little contribution, and the conditioning is poor. As the transducer placing radius is
increased the higher order terms make a larger contribution to the Fourier series
expansions of the measurements, which thus converge more slowly, and conditioning
improves up to a point. Increasing the radius beyond this point causes the condition to
deteriorate owing to the reducing influence of C0. In practical situations, however,
transducer placing radii would be relatively small, and under these circumstances improved
conditioning occurs in conjunction with slower convergence of the Fourier series
expansions.

Similar comments apply to intensity estimates from the measurement of radial strain.
For a transducer system giving m measurements of radial strain at radius R and uniform
angular spacing 8=2p/m, the elements of matrix T are given by equation (39) as

Tj, sn =e[i2np(j−1)]/mVn . (45)

The condition number of the transformation matrix, T, is given by the ratio of the
magnitudes of the largest and smallest Vn , being

as = =Vn =max/=Vn =min . (46)

These characteristics are identical to those inherent with the accelerometer array: however,
the rate at which =Vn = decreases with increasing n and decreasing kpR is substantially lower
than the rate of decrease of =Un =. This means that, for a given small transducer placing
radius, kpR, the conditioning offered by strain measurement can be significantly better than
that offered by displacement or acceleration measurement.

7. SYSTEMATIC ERRORS

The systematic errors that arise from the use of a particular arrangement of transducers
and method of processing are the result of the discrepancy (if any) between the true and
assumed deformations. This discrepancy may be due to assumptions regarding the
vibrational field (e.g., that far field conditions exist, or that only plane propagating waves
are present) or to approximations that are made to simplify measurements and processing
(e.g., that spatial derivatives of displacement may be determined using simple finite
difference approximations and thus the deformation has a low order polynomial form, or
that the higher order terms in the Fourier series expression for wave amplitude may be
ignored when the coefficients are evaluated). The effects of these assumptions and
approximations, and therefore also the resultant systematic errors, are thus dependent on
the specific field conditions.

In this section the systematic errors that result from the use of the Fourier series
approach to plate intensity measurement are discussed. Two simple cases are studied
numerically: intensity measurement in the presence of a plane propagating wave and
intensity measurement in the vicinity of a point source. The former simulation illustrates
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the effect of truncating the Fourier series, since the field conditions match the assumption
of plane wave propagation. In the latter simulation the assumption of plane wave
propagation is violated owing to the presence of near field waves and of propagating waves
that exhibit geometrical decay due to curvature of the wavefront. It thus gives an indication
of the sensitivity of the measurement technique to these characteristics.

7.1.         

The Fourier series approach to intensity measurement, as described in this paper, is
based on the assumption that the wave field is composed purely of plane propagating
waves. Under these conditions it would give an exact result if an infinite number of
coefficients were evaluated. However, as it is only possible to evaluate a finite number of
coefficients, a systematic error is introduced. When certain Fourier coefficients are ignored,
as they are when only m terms are found, those coefficients that are evaluated must deviate
from their true values in compensation. If the Fourier series expansions of the measured
variables converge rapidly, then the higher order coefficients are small, and their truncation
has a relatively small effect on the values of the calculated coefficients. If, however, the
expansions converge slowly the higher order coefficients are large, and the effects of
truncation large also. Since, for typical transducer placing radii, improved conditioning
and slower convergence of the Fourier series expansions both result from increasing the
placing radius, reduced systematic errors are achieved at the expense of conditioning.

In practice, the error that results from truncating the Fourier series appears
predominantly to affect the highest order coefficient evaluated. It is therefore advantageous
to evaluate more than the five coefficients necessary to calculate the intensity. The error
is then largely restricted to coefficients that have no direct influence on the intensity
estimate. This is apparent from Table 2, in which are given the coefficients for a wave of
unit amplitude propagating in the x-direction, calculated from five, seven and nine
acceleration measurements. The true values of the coefficients are given by

Cn =
1
2p g

p

−p

A(u) e−inu du

=
1
2p g

p

−p

d(u) e−inu du

=0·1592, . . . , n=0, 21, 22, . . . . (47)

It can be seen that the evaluation of a larger number of coefficients reduces the error in
the coefficients, C−2–C2, used to calculate the intensity: however, this results in poorer
conditioning, more expensive measurement systems and greater computational
requirements. A measurement system in which seven Fourier coefficients are estimated
therefore seems appropriate, although, depending on the accuracy required, satisfactory
results may be achieved with the evaluation of five coefficients.

The effects of truncation of the Fourier series on the intensity estimate can be seen by
simulating the incidence of a plane propagating wave on the transducer array. In the light
of the foregoing discussion, measurements of acceleration at seven locations, with a
uniform angular spacing on the circumference of a circle, have been simulated and used
to determine seven Fourier coefficients. The intensity has then estimated from these
coefficients as described in section 4. For comparative purposes, the intensity has also
estimated using a finite difference based approach suitable for far field conditions. Spatial
derivatives of up to second order have been estimated from simulated measurements of
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Figure 2. The systematic error in the Fourier series approach using seven accelerometers in the presence of
one-dimensional wave propagation. ——, u=0; -----, u=0·15p; ·····, u=0·3p; –·–·–·–, u=0·45p.

acceleration at nine locations [10], as described in Appendix 1, and substituted in equations
(19) and (20) to calculate the intensity.

A complication arising from this comparison is the different transducer arrangements
required. The Fourier series approach uses accelerometers arranged in a circle, while they
are placed in a square for the finite difference approach. The term ‘‘transducer placing
radius’’ (=kpR) is therefore used to describe the size of the Fourier series array, and
‘‘transducer separation’’ (=kpD) to describe that of the finite difference approach. While
the terminology differs, when these measures are equal the overall size of the arrays, and
the distances between adjacent accelerometers, are very similar.

The component of intensity in the x-direction measured using the Fourier series
approach is shown (normalized with respect to the true intensity in the x-direction) as a
function of transducer placing radius in Figure 2 for four propagation directions, the lines
being overlaid. It is apparent that the systematic errors are very low almost irrespective
of transducer placing radius and propagation direction. The small irregularity visible at
a transducer placing radius of kpR=2·4 is due to near singularity of the transformation
matrix, T, as predicted in Table 1.

The intensity measured using the finite difference approach, again normalized with
respect to the true intensity, is shown in Figure 3. The systematic error in this case is
significantly influenced by both the transducer spacing and the propagation direction.
Large non-dimensionalized transducer spacings result in large relative errors, these being
greatest when the propagation direction, and hence also the direction of energy flow,
coincides with the x-axis, giving large absolute errors.

7.2.         

While the plane wave propagation assumed in the Fourier series approach is possible
in a plate, it is not the only solution to the equation of motion, even in the far field. The
derivation in section 2 leading to this assumption was based not only on the region being
remote from discontinuities (so that the effects of near fields are negligible), but also on
the extent of that region being small relative to the distance from all discontinuities and
sources of excitation (to minimize the effects of geometrical decay). Under other conditions
different wave types may exist, violating the assumption of only plane propagating waves
being present and thus introducing a further systematic error.
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Figure 3. The systematic error in finite difference approach using nine accelerometers in the presence of
one-dimensional wave propagation. ——, u=0; -----, u=0·15p; ·····, u=0·3p; –·–·–·–, u=0·45p.

To illustrate this effect, the Fourier series and finite difference approaches described in
the previous subsection have been used in the simulation of intensity measurements in the
vicinity of a point source. The displacement for this excitation is given by equation (3) and,
as stated in section 2, includes both near fields and non-planar propagating waves. It is
assumed that both the source and the centre of the transducer array lie on the x-axis. The
calculated intensity in the x-direction (normalized with respect to its true value) is shown
as a function of the distance between the source and the array centre in Figures 4 and 5
for the Fourier series and finite difference approaches respectively.

It is apparent that both approaches result in the intensity being underestimated in
measurements close to the source. However, the errors and the influence of the transducer
spacing on these measurements are larger in the finite difference approach than in the
Fourier series approach. At large distances from the source the systematic error in the two
approaches is similar to that for plane wave propagation. Under these circumstances the
error in the Fourier series approach is small almost irrespective of the transducer placing

Figure 4. The systematic error in Fourier series approach in vicinity of a point source. ——, kpR=0·5; -----,
kpr=1; ·····, kpR=1·5.
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Figure 5. The systematic error in finite difference approach in vicinity of a point source. ——, kpD=0·5; -----,
kpD=1; ·····, kpD=1·5.

radius, while the finite difference approach results in an underestimation that increases with
increasing transducer spacing. At intermediate distances from the source the error in both
approaches is dependent on the transducer spacing. It can be seen, however, that the errors
of the Fourier series approach are generally smaller than those of the finite difference
approach when similarly sized transducer arrays are used.

8. RANDOM ERRORS

With perfect knowledge of the measured variables and the relevant properties of the
plate, it would only be necessary to consider systematic errors. In reality, however, there
is a degree of uncertainty in our knowledge of these parameters, and this uncertainty
introduces random errors into the intensity estimate. The degree to which errors in the
input data affect the result of the intensity calculation is governed by the conditioning of
the problem. As stated in section 6, this is determined by both the vibrational field present
and the particular measurement system and processing used.

To illustrate the effects of errors in the input data, numerical simulations have been
performed, assuming that plane waves of amplitude 1 and 0·4 are propagating in the
positive and negative x-directions respectively. The responses at the relevant locations have
been calculated, and random errors then applied to various input parameters. The intensity
was then calculated using the Fourier series and finite difference approaches described
in the previous section. The following graphs show the normalized difference between
this measurement and the intensity calculated in the absence of errors in the input
parameters.

In Figures 6 and 7 are shown the errors that occur when using the Fourier series and
finite difference approaches if the measured variables are subjected to random phase errors
uniformly distributed on the interval [−2°, +2°]. Both approaches show a high sensitivity
to phase error at small non-dimensional transducer spacings, which decreases as the
spacing increases. The sensitivity of the Fourier series approach also becomes large at a
transducer placing radius of kpR1 2·4, this coinciding with the condition of the
transformation matrix, T, deteriorating and approaching singularity. The pronounced
minimum in the sensitivity of the finite difference approach at a quarter-wavelength
spacing is a result of there being an optimal p/2 phase difference between adjacent
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Figure 6. The effect of random phase errors on the intensity estimate: Fourier series approach.

measurements in the x-direction under these circumstances, and is not typical of other
propagation directions.

In Figures 8 and 9 are shown the errors in the intensity estimate if random errors,
uniformly distributed on the interval [−2%, +2%], are applied to the magnitude of the
measured variables. Small spacings result in a high sensitivity to this error for both
approaches, the sensitivity reducing with increasing transducer separation. The sensitivity
of the Fourier series approach again becomes large as the condition of the transformation
matrix deteriorates and nears singularity.

The sensitivity to amplitude and phase errors also gives an indication of sensitivity to
errors in transducer placement. If a transducer is displaced by a small amount, then the
measured variable will change. The size of this change will depend on the field conditions,
but the effect on the intensity estimate will be determined by the sensitivity of the
calculation to changes in the measured variable.

The effect of a random variation in the wavenumber, uniformly distributed on the
interval [−2%, +2%], on the Fourier series and finite difference approaches is shown in

Figure 7. The effect of random phase errors on the intensity estimate: nine-point finite difference approach.
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Figure 8. The effect of random amplitude errors on the intensity estimate: Fourier series approach.

Figures 10 and 11 respectively. The sensitivity of the Fourier series approach to this error
increases with increasing transducer placing radius, reaching a maximum at kpR1 2·4
when the transformation matrix, T, is singular. It is also consistently higher than that of
the finite difference approach, which is almost independent of transducer spacing. The
greater sensitivity of the Fourier series approach may be explained by the use of the
wavenumber both in the evaluation of the Fourier coefficients and as a factor to the third
power in the entire intensity expression. In contrast, it is only used as a factor to the second
power in the estimation of the shear component of intensity in the finite difference
approach.

9. EXPERIMENTAL INTENSITY MEASUREMENT

A brass plate, 1800×850×3 mm, was mounted to approximate simple supports on
three boundaries with the fourth (short) edge free. Damping, in the form of sand and felt,
was applied in the region of the free edge. The use of simple supports meant that, in regions

Figure 9. The effect of random amplitude errors on the intensity estimate: nine-point finite difference approach.



   121

Figure 10. The effect of random errors in wavenumber estimate: Fourier series approach.

sufficiently distant from the excitation point and damping, the effects of near fields at the
plate boundary could be ignored, permitting the use of a far field intensity measurement
system close to the edges of the plate. The driving point accelerance was measured using
a Hewlett Packard HP35665A Dynamic Signal Analyzer, and the natural frequencies and
damping ratios for the plate, in damped and undamped form, estimated using in-built
functions of the analyzer. Measurements on the damped plate showed typical loss factors
of 2–3% in the frequency range 100–500 Hz, these being typically a factor 20–40 times
greater than the loss factors in the undamped plate. The exceptions to this occurred at
around 260 Hz and 460 Hz, where the damping was ineffective, giving loss factors 00·2%.
To a good approximation, however, the energy supplied to the plate may be considered
dissipated solely in the damped region, and the energy flow down the plate should be equal
to the power input.

The plate was excited using a rapid sine sweep through the frequency range of interest,
with the duration of the sweep being selected to ensure that the full response of the plate
was captured in the measurement. Power input to the plate was determined from the
driving force (using a Brüel and Kjær Type 8200 force transducer and Type 2635 charge

Figure 11. The effect of random errors in the wavenumber estimate: nine-point finite difference approach.
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Figure 12. A schematic diagram of the experimental set-up.

Figure 13. The input power and the measured energy flow in a plate: ——, Input power; ---, energy flow.

amplifier) and driving point acceleration (using a PCB 321 A03 accelerometer), while the
intensity was estimated using seven PCB 353B65 accelerometers. All signals were low-pass
filtered using an Onsite Instruments TF16 16-channel filter, with data acquisition and
processing performed using an IBM Pentium 90 PC equipped with a National Instruments
AT-MIO-16L-9 Multifunction I/O board. LabVIEW software was used to control the data
acquisition as well as for subsequent processing. The experimental apparatus and
procedure are described in more detail in reference [18].

For each intensity measurement, seven acceleration measurements were taken at a
uniform angular spacing on a circle of 50 mm radius, this being approximately a tenth of
a wavelength at 100 Hz and a quarter-wavelength at 500 Hz, and used to estimate seven
Fourier coefficients. The intensity at a point was calculated as the average of three
individual intensity measurements, and determined at 31 points, 25 mm apart, on a line
across the plate (see Figure 12). The net energy flow across this line was estimated from
the intensity at these points.

Power input to the plate and the net energy flow as measured using the Fourier series
approach are shown in Figure 13, and the relative difference between the two
measurements in Figure 14. It is apparent that the input power and measured energy flow
are generally in good agreement, with the greatest differences occurring at approximately
260 and 460 Hz. The damping at these frequencies was relatively low, as noted earlier, with
loss factors of 00·2%, and it is believed that the discrepancies are probably due to phase
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Figure 14. The relative difference between the measured power input and the energy flow, measured using the
Fourier series approach.

mismatch between channels, to which intensity measurements are extremely sensitive in
highly reverberant fields.

10. CONCLUDING REMARKS

As there does not exist a general closed form solution for the motion of a vibrating plate,
any attempt to determine the structural intensity in a plate from a finite number of
measurements will result in a systematic error. This error is the result of a discrepancy
between the true and assumed deformations, and the requirements for minimizing it will,
for a particular measurement system, conflict with the requirements for a well-conditioned
problem. It is thus desirable to find an optimum compromise between systematic and
random errors. This can be achieved through the use of appropriate functions to
interpolate between the measurement points in the transducer array. If these interpolating
functions, and thus the assumed deformation, closely approximate the plate deformation
then the systematic errors will be small, regardless of the separation of the measurement
points, and this separation can then be chosen almost purely on the basis of achieving a
well-conditioned problem. The fact that, in a region sufficiently remote from discontinuities
and excitation, the vibrational field in a plate approximates plane wave propagation makes
this form of displacement a logical assumption for far field intensity measurements on
plates.

In the Fourier series approach to intensity measurement, as described in this paper, it
is assumed that, within a region, the motion of the plate can be approximated as the sum
of plane propagating waves, and that the wave amplitude is a function of the propagation
direction. This function is written as a complex Fourier series, which is truncated to allow
the Fourier coefficients to be estimated from a finite number of measurements. The intensity
can be expressed in terms of the Fourier coefficients, with only the five coefficients of lowest
order contributing to the intensity at the co-ordinate origin owing to the orthogonality of
trigonometric functions. The truncation of the Fourier series introduces a systematic error
which, for typical transducer placing radii, increases as the conditioning improves and so
results in the expected compromise between systematic and random errors. However, this
truncation predominantly affects the highest order coefficient, and thus by evaluating more
than the required five coefficients the effects of truncation can be minimized.
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The Fourier coefficients are estimated by solving a set of simultaneous equations relating
to the measured variables. These equations can be written in matrix form, and thus the
conditioning of the problem can be judged in terms of the two-norm condition number
of a matrix, as previously proposed for beam intensity measurements [13]. Measurement
systems involving transducers placed at a uniform angular spacing on the circumference
of a circle have been shown to be suitable for determining the coefficients.

The effects of material damping may be incorporated into this approach through the
use of a complex elastic modulus, E, and a consequent complex plate wavenumber, kp .
This has an influence both on the expressions for intensity in terms of the Fourier
coefficients and on the manner in which the Fourier coefficients are estimated. The presence
of material damping changes the phase relationship between displacement and its various
spatial derivatives, and hence also between the various forces and velocities used to
estimate the intensity. However, provided that the damping is light, the effect on the total
intensity is small, and the assumption of a purely real wavenumber is justifiable. A similar
approach is also warranted in the estimation of the Fourier coefficients when damping is
light. It is necessary for the attenuation due to damping of a wave as it propagates from
one side of the transducer array to the other to be measurable if the use of a complex
wavenumber is to be worthwhile. If a transducer placing radius, kpR=1·5, and a loss
factor of 1% are assumed to be typical, the wave amplitude will be attenuated by
approximately 1% in travelling across the array. In reality, this level of accuracy will be
difficult to achieve, and the use of a complex wavenumber in the estimation of the Fourier
coefficients is probably only worthwhile if the material damping is relatively strong.

Numerical simulations have been performed to compare a Fourier series intensity
measurement in which seven coefficients are evaluated to a finite difference approach using
nine measurement points. These have shown the Fourier series approach to have low levels
of systematic error in the presence of plane waves, almost irrespective of transducer placing
radius and wave propagation direction. In contrast, the finite difference approach exhibits
large systematic errors, which are dependent on the propagation direction, if a large
transducer separation is used. In the vicinity of a point source, where the assumption of
plane wave propagation is violated and therefore where the systematic errors could be
expected to be large, the systematic error of the Fourier series approach was generally
lower than that of the finite difference approach with a similar overall transducer array
size. For typical transducer spacings the effects of the near field and non-planar
propagating waves on the two approaches become relatively small at distances greater than
a half-wavelength from the source, and at large distances the systematic errors
asymptotically approach those found in the presence of a plane propagating wave.

A comparison of these Fourier series and finite difference approaches using similar
overall transducer array sizes in a specific vibrational field showed them to be similar in
terms of sensitivity to errors in the magnitude and phase of the measured variables.
However, the sensitivity of the Fourier series approach to errors in the wavenumber
estimate was seen to be greater than that of the finite difference approach. This is a
consequence of the greater importance of the wavenumber in the Fourier series approach,
it being used both in the estimation of the Fourier coefficients and as a factor to the third
power in the entire intensity expression. In contrast, the wavenumber is only involved as
a factor to the second power in the estimation of the shear component of intensity, and
not at all for the bending and twisting moment components, in the finite difference
approach used.

These sensitivities, while specific to the particular vibrational field assumed, illustrate
how a small transducer spacing results in a high sensitivity to errors in the measured
variables. However, the low systematic error of the Fourier series approach allows
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relatively large transducer placing radii to be used. This is in contrast to the finite difference
approach, where the large systematic errors at large transducer separations mean that the
spacing should ideally be relatively small. As a consequence, the Fourier series approach
would appear to offer a potentially better compromise between systematic errors and
sensitivity to errors in the measured variables. This is achieved at the expense of increased
sensitivity to errors in the wavenumber estimate and the computational requirements
involved in calculating the Fourier coefficients.
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Figure A1. The response locations for finite difference approximation.

APPENDIX 1: FINITE DIFFERENCE APPROXIMATIONS FOR FAR FIELD INTENSITY
MEASUREMENT IN PLATES

In the absence of near-fields the intensity in a plate can be expressed in terms of spatial
derivatives of displacement of up to second order. If displacement or one of its temporal
derivatives is measured at nine locations, as shown in Figure A1, then the required
parameters may be approximated as

w=w5,
1w
1x

1w6 −w4

2D
,

1w
1y

1w8 −w2

2D
,

12w
1x2 1w4 −2w5 +w6

D2 ,

12w
1y2 1w2 −2w5 +w8

D2 ,
12w

1x 1y
1w9 −w7 −w3 +w1

4D2 . (A1)

APPENDIX 2: LIST OF SYMBOLS

A(u) complex wave amplitude as a
function of propagation direction

Cn complex Fourier series coefficient
C vector of Fourier coefficients
D plate flexural stiffness per unit

width
e base of natural logarithm
F complex force amplitude
f(t) time harmonic point force
H(2)

n nth order Hankel function of the
second kind

h plate thickness
Jn () nth order Bessel function of the

first kind
kp plate wavenumber
n order of Bessel or Hankel func-

tion, Fourier index
r, r̂, f, f
 , z co-ordinates in polar space
R, 8, w displacements in polar space
S area of integration

T transformation matrix
t time
Un , Vn related to Bessel functions (see

section 5)
W vector of measured variables
w() displacement (in z-direction)
Yn () nth order Bessel function of the

second kind
x, y, z co-ordinates in Cartesian space
x', y', x0, y0 displacements in Cartesian space
aa , as condition number
d Dirac delta function
or radial strain
n Poisson ratio
r plate density
v angular frequency
u propagation direction

� � time average


