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1. 

The localization factor, which was first developed in solid state physics [1–6], has often
been used to quantify vibration localization in mono-coupled nearly periodic structures
[7–12]. The localization factor is the average exponential decay rate of the vibration
amplitudes, measured from one substructure to the next. For multi-coupled structures, a
traditional localization factor cannot be found, but one may compute the Lyapunov
exponents of the system wave transfer matrix [4, 8]. The Lyapunov exponents are
analogous to the localization factor, since they provide a measure of the spatial amplitude
decay rates for the multiple wave types. In fact, for the mono-coupled case, the largest
Lyapunov exponent is equivalent to the localization factor [13, 14]. Lyapunov exponents
may be calculated numerically using an efficient algorithm developed by Wolf et al. [15].

Spatial wave decay in a nearly periodic structure, however, is not necessarily due to
disorder. The wave decay can be caused by other mechanisms, such as off-resonance or
damping. We are thus posed with the problem that, although we can quantify the decay
rate, we do not know if this value truly indicates localization. Indeed, a localization factor
or Lyapunov exponent is sometimes greatest in frequency regions where there is, in fact,
little localization. The crucial distinction between localization due to disorder and wave
decay caused by other mechanisms is that localization is a confinement, rather than a
dissipation or attenuation, of the vibration energy. This energy confinement can lead to
higher response amplitudes in a disordered system than would be found in its ordered
counterpart. It is therefore of practical interest to identify the frequency regions in which
localization is the primary source of decay.

In reference [16], Lyapunov exponents were shown to provide a valuable tool for
analyzing wave decay in multi-coupled systems. Here, the work of reference [16] is
extended: we propose that localization may be predicted by calculating the statistics of the
Lyapunov exponents. Since a numerical Lyapunov exponent is actually an average of the
values computed at each iteration of the algorithm, by considering only the mean we have
discarded valuable information. The standard deviation of the iterate values can be used
as well. If the decay is due mostly to damping or off-resonance, then each iterate value
will be approximately the same, and the standard deviation will be small relative to the
mean. If the decay is due to disorder, then the iterate values will vary significantly, and
the larger standard deviation indicates localization. Thus, by considering both the mean
and standard deviation, we can systematically identify frequency ranges where localization
occurs.

Very few studies have examined the statistics of Lyapunov exponents. Cha and Morganti
[17] investigated the mean, and probability density of the localization factor for the
mono-coupled system considered here. However, they used this information to make
correct inferences about the rate of exponential decay of a typical system, while we use
the standard deviation for a different purpose. Cusumano and Lin [18] calculated the
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covariance matrices for the Lyapunov vectors of a non-linear system in order to determine
modal interaction. We adopt a similar approach here by examining the covariance of the
Lyapunov exponents as an indicator of wave conversion [19, 20].

This work is a follow-up to reference [16], which the interested reader may consult for
background on the theory of Lyapunov exponents or for more detailed discussion of the
two example systems revisited here. In the present study, we examine the statistics of the
Lyapunov exponents for these example systems, and we draw conclusions regarding the
use of a Lyapunov exponent analysis.

2.  

The algorithm of Wolf et al. [15] for computing the first (largest) Lyapunov exponent,
g1, which is the localization factor of a mono-coupled system, is as follows:

g1 1
1
N

s
N

i=1

ln BWi
vi−1

>vi−1>B, (1)

where > · > is the Euclidean norm, Wi is the wave transfer matrix for the ith substructure,
and vi−1 is the wave amplitude vector at the junction of substructures i−1 and i. Note
that the final Lyapunov exponent is simply the average of N iterate values. The result of
this algorithm converges to the exact first Lyapunov exponent as N becomes large.

A similar algorithm may be used to find the other Lyapunov exponents for a
multi-coupled system. There exists one non-negative Lyapunov exponent for each coupling
type in a nearly periodic system. Accordingly, in the following examples, one Lyapunov
exponent is considered for the mono-coupled case, and two are considered for the
bi-coupled case.

As an example of a mono-coupled system, we consider a chain of one-degree-of-freedom
oscillators coupled by linear springs, as shown in Figure 1(a). Each oscillator has mass
m and structural damping factor d, and each coupling spring has stiffness kc . An arbitrary
ith oscillator is considered to have a random stiffness, ki = k(1+ fi), where k is the nominal

Figure 1. (a) An example of a mono-coupled system: a chain of oscillators coupled by linear springs. Each
oscillator is considered to have a one-degree-of-freedom tip deflection. (b) An example of a bi-coupled system:
a multi-span beam pinned to elastic supports. Each support is modelled by a linear spring.
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Figure 2. The Lyapunov exponents for the multi-span beam with K� =50. Ordered case: · · · , g1 = g2; ——,
g1; - - - -, g2. Disordered case, S=0·01, N=50 000 iterations: e, g1; +, g2.

stiffness, and fi is the disorder taken from a uniformly distributed random variable with
mean zero and standard deviation S. For the ordered case, of course, fi 0 0. We define
the coupling strength, R, and the dimensionless frequency, v̄, as

R0 kc/k, v̄0v/zk/m , (2)

where v is the frequency. This mono-coupled system is discussed in detail in reference [21].
As an example of a multi-coupled system, we present the structure shown in Figure 1(b).

This is an undamped multi-span beam undergoing transverse bending motion, pinned at
flexible supports that are modelled by linear springs of stiffness K. Since the beam has a
vertical displacement and a rotation at each support, the substructures are coupled through
two coupling co-ordinates, so this is a bi-coupled structure.

Each span has length L for the ordered case. Disorder is introduced by allowing the
length of span i to be Li =L(1+ fi), where fi is a value taken from a uniformly distributed
random variable with mean 0 and standard deviation S. The beam is modelled by
Bernoulli–Euler theory; it has Young’s modulus E, cross-sectional inertia I, and mass per
unit length m. We use the dimensionless parameters

K� 0KL3/2EI, P0zv/zEI/mL4, (3)

where K� is the dimensionless support stiffness, and P is a dimensionless frequency
parameter. We refer the interested reader to reference [22], where this system is considered
in detail.

Let us now consider the Lyapunov exponents of an ordered multi-span beam with
K� =50. The first (g1) and second (g2) Lyapunov exponents, which are shown versus the
frequency parameter P in Figure 2, indicate four distinct frequency regions. For PQ 3·027,
g1 = g2 $ 0, so the waves are in a complexband. For 3·027QPQ 3·056, g1 = g2 =0, so both
wave types are in a passband (double passband). For 3·056QPQ p, wave type I lies in
a stopband while the wave type II belongs still to a passband (stopband–passband). For
Pq p, both wave types are in stopbands (double stopband).

In the case of an ordered system, g1 (g2) is the exact spatial amplitude decay rate of wave
type I (II). For a disordered system, in which the wave transfer matrix for each substructure
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is random, the Lyapunov exponents indicate wave decay which may be due to attenuation
and/or localization.

In Figure 2, the Lyapunov exponents calculated using the Wolf algorithm (50 000
iterations) for a disordered case (S=0·01) are also shown. In reference [16], the authors
examined simulations of right-travelling wave amplitudes, and concluded the following.
In frequency regions in which the Lyapunov exponents of the disordered system are close
to those of the ordered system (complexband and double stopband), the decay is due
primarily to off-resonance effects. In the double passband, the wave decay is due to
localization, and the two waves have similar decay rates. In the stopband–passband region,
the two waves have distinct decay rates, with that of type I being largely due to attenuation.
In this region (results were shown at P=3·08), the wave conversion phenomenon was
observed: wave type I vanished quickly, but leaked some of its energy to wave type II,
which propagated more readily through the system.

3.    

We now extend the work of reference [16] to include a more systematic identification
of frequency regions in which localization occurs. In addition, we suggest a statistical
measure for predicting wave conversion.

In Figure 3, we consider the multi-span beam with S=0·01. The averages and the
standard deviations of the Lyapunov exponents found at each iteration of the Wolf
algorithm are shown. The standard deviation for the second Lyapunov exponent has a
peak around P= p, which is the passband edge for wave type II in the ordered system.
This is due to a numerical singularity at this frequency. If we ignore this, we see that the
standard deviations are greatest in the frequency region around the double passband. This
indicates that localization plays a prominent role in the decay here, as was concluded from
a more costly analysis in reference [16]. Note that as P increases, the standard deviations
suddenly drop. Thus, we might consider the frequency at which this drop occurs to be an
upper bound for the frequency range featuring localization.

We now examine the mono-coupled example in order to consider the use of the standard
deviation to separate damping and disorder effects. The average of the first Lyapunov
exponent (the localization factor), as well as its standard deviation, are shown in Figure

Figure 3. Lyapunov exponent statistics for the disordered multi-span beam, K� =50, S=0·01, N=50 000
iterations: ——, mean of g1; - - - -, mean of g2; e, standard deviation of g1; +, standard deviation of g2.
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Figure 4. The statistics of the first Lyapunov exponent: ——, mean of g1; e, standard deviation of g1. (a)
The undamped, disordered mono-coupled system: R=0·1, S=0·01, N=10 000 iterations. (b) The damped,
disordered mono-coupled system: R=0·1, S=0·01, d=0·01, N=500 iterations.

4(a) for the undamped, disordered system with a small disorder-to-coupling ratio. Again,
we see peaks in the standard deviation at the passband edges due to numerical singularities.
Otherwise, the standard deviation is greatest inside the passband region, and decreases
outside (note the logarithmic scale). This decrease does not seem especially dramatic, unless
we compare the standard deviation to the mean value. Inside the passband region, the
standard deviation is more than an order of magnitude larger than the mean, while in the
stopband regions the mean is more than an order of magnitude larger than the standard
deviation. We quickly conclude that localization is confined to the passband region, which
supports the observations from the detailed investigation of reference [21].

In Figure 4(b), we include structural damping in the same mono-coupled system. Now
we see that the standard deviation decreases inside the passband. Outside the passband,
where off-resonance effects are most significant, the standard deviation is similar to that
of the undamped case. For all frequencies (ignoring the peaks at the passband edges), the
mean is an order of magnitude greater than the standard deviation. This supports the
conclusion of reference [21] that damping effects (versus disorder effects) dominate the
decay rate for the small disorder-to-coupling ratio case.

We now turn our attention to the multi-span beam and the wave conversion
phenomenon. We have seen that in the region of greatest localization, there was a mixing
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Figure 5. Lyapunov exponent statistics for the disordered beam with K� =50, S=0·01, N=200 000 iterations:
——, variance of g1; - - - -, variance of g2; · · · , covariance.

of the wave types [16]. Outside this region, we observed wave conversion, whereby one
wave died quickly, but leaked energy to the other wave. We propose here that the
covariance of the Lyapunov exponents may provide a statistical measure which is capable
of predicting wave conversion. The covariance measures the statistical dependence of two
random variables. If the covariance is zero, then these random variables are independent.
Therefore, it seems that the covariance of two Lyapunov exponents would be greatest in
regions of wave conversion, since here the decay rates are directly related, and that
relationship is governed by the disorder effects.

In Figure 5, we show the covariance of the first and second Lyapunov exponents for
the disordered multi-span beam. The frequencies at which we might predict wave
conversion based on the covariance include P=3·08, where we previously observed the
wave conversion phenomenon [16].

In general, we see that the non-trivial values of the covariance occur outside the
frequency region in which the variances are greatest. This indicates that in different
frequency regions, disorder has very different effects on the waves. In the frequency band
in which the variances are highest, disorder causes a mixing of waves, but confines the
energy of each. Outside this band, disorder allows a leakage of energy from the wave which
decays most quickly due to off-resonance—the wave conversion phenomenon. In this case,
by leaking energy to the wave that decays least, disorder allows a greater transmission of
energy.

4. 

Lyapunov exponents (or localization factors) provide a measure of the spatial decay of
the wave (or vibration) amplitudes in nearly periodic structures. It is of interest to identify
the frequency regions in which the Lyapunov exponents indicate decay due to localization,
as opposed to decay due to off-resonance or damping. This is because localization is a
confinement of vibration energy that can lead to a drastic and undesirable increase in
maximum response amplitudes.

Since numerical Lyapunov exponents and localization factors are averaged values
computed from many iterations of an algorithm, more information can be obtained from
other statistics besides the mean. It was found that the standard deviations of the



    157

Lyapunov exponents determine frequency bands in which localization occurs. It was also
suggested that the covariance of two Lyapunov exponents may predict the wave conversion
phenomenon in specific frequency ranges. The Lyapunov exponent averages can then be
used to compare the expected strength of localization at different frequencies. The
systematic identification of critical frequency regions may be the most useful aspect of a
Lyapunov exponent analysis.
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