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1. 

Exact solutions for the vibration modes of thin uniform isotropic rectangular plates exist
only when at least one pair of opposite sides is simply supported. For other support
conditions, approximate methods such as the Rayleigh-Ritz method can be used to obtain
the approximate vibratory modes in terms of shape functions which satisfy at least the
geometric boundary conditions. Several studies on the vibration of rectangular plates with
various types of boundary conditions are reported by Leissa [1, 2].

Kantorovich and Krylov [3] proposed a variational method to determine an
approximate closed form solution of a partial differential equation by reducing it to an
ordinary differential equation. In this method, the approximate vibration mode is assumed
as the product of an unknown function is one spatial variable and a known function of
both variables, and the plate partial differential equation is reduced to an ordinary
differential equation in the unknown function. Kerr [4] observed that this ordinary
differential equation is amenable to numerical solution when the approximate solution
is restricted to a separable function in the spatial variables. Jones and Milne [5] used
such an extension of the Kantorovich method alternatively in the principal directions to
obtain a convergent separable solution for the vibration mode of clamped rectangular
plates. Bhat, Singh and Mundkur [6] obtained expressions for the averaged natural
boundary conditions and used the extended Kantorovich method successively in
alternating principal directions until convergence, to obtain the natural frequencies
and sets of plate characteristic functions for rectangular plates with different
boundary conditions. In references [5, 6] an approximate natural frequency value is also
used in the algorithm for the determination of the unknown function from the known
function.

In the present study, the extended Kantorovich approach is modified to determine the
optimum separable solutions of the partial differential equation describing the plate
vibrations. In the modification, the variational method is used to reduce the partial
differential equation into two simultaneous ordinary differential equations which are
solved exactly in terms of four unknown modal parameters. Four algebraic equations
necessary for the solution of these unknown parameters are then derived from the ordinary
differential equations and their boundary conditions. The theoretical and numerical
aspects pertaining to the application of the generalized Kantorovich approach is illustrated
for the special case of clamped rectangular plates. The corresponding natural frequencies
and plate characteristic functions, which are very good approximations for the plate mode
shapes, are presented and discussed.
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2.       

The dynamic problem of plate vibration can be treated as an equivalent static problem
where the plate inertia is represented by a load intensity function, q=mv2w. Under
classical support conditions, the virtual work done by the edge forces and moments
corresponding to an arbitrary constraint-true virtual displacement vanishes. The principle
of virtual work gives the equation governing the vibration mode of the rectangular plate,
shown in Figure 1, as

d(U)=g
b

0 g
a

0

mv2wd(w) dx dy, (1)

where

d(U)= d012 D g
b

0 g
a

0

[{w,xx +w,yy}2 −2(1− n){w,xxw,yy −w2
,xy}] dx dy1. (2)

Here the subscript ,x , etc., in equation (2) denotes derivatives with respect to x, etc., and
the symbol d() indicates the variation in the variable () for constraint-true virtual
displacement d(w) of the plate mode. Repeated integration by parts reduces equation (2)
to

d(U)=g
b

0 g
a

0

D{w,xxxx +2w,xxyy +w,yyyy}d(w) dx dy+g
b

0

[D{w,xx + nw,yy}d(w,x )]x= a
x=0 dy

+g
a

0

[D{w,yy + nw,xx}d(w,y )]y= b
y=0 dx−g

b

0

[D{w,xxx +(2− n)w,xyy}d(w)]x= a
x=0 dy

−g
a

0

[D{w,yyy +(2− n)w,xxy}d(w)]y= b
y=0 dx+[[2(1− n)Dw,xyd(w)]x= a

x=0]y= a
y=0. (3)

Here, the notation [ f(x)]x= x2
x= x1

denotes f(x2)− f(x1). Substitution of equation (3) into
equation (1) yields the variational form of the plate vibration equation in non-dimensional
form as

g
b

0 g
a

0 $ 1
a2 w,xxxx +2w,xxyy + a2w,yyyy −V2w%d(w) dx̄ dȳ

Figure 1. Rectangular plate.
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+g
1

0 $6 1
a2 w,xx + nw,yy7d(w,x̄ )%

x̄=1

x̄=0

dȳ+g
1

0

[{a2w,yy + nw,xx}d(w,ȳ )]ȳ=1
ȳ=0 dx�

−g
1

0 $6 1
a2 w,xxx +(2− n)w,xyy7d(w)%

x̄=1

x̄=0

dȳ−g
1

0

[{a2w,yyy

+(2− n)w,xxy}d(w)]ȳ=1
ȳ=0 dx̄+[[2(1− n)w,xyd(w)]x̄=1

x̄=0]ȳ=1
ȳ=0 =0. (4)

In thin plate theory, the shear force expressions are modified to include the effect of edge
twisting moments. The last term in equation (4) represents additional corner force
components which also are necessary for the accurate representation of the edge twisting
moments. It is noted that this additional term vanishes for plates with a pair of supported
opposite edges.

The separation of variables method has been successfully used to obtain the exact plate
vibration modes for the special case of plates with a pair of simply supported opposite
edges. In general, the exact vibration modes of plates with classical support conditions
is not necessarily a separable function of the spatial variables. However, equation (4)
can be used to obtain the best separable solution for the plate vibration mode.
Substitution of w(x̄, ȳ)=X(x̄)Y( ȳ), d(w)=Yd(X)+Xd(Y), d(w,x̄ )=Yd(XI)+XId(Y)
and d(w,ȳ )=YId(X)+Xd(YI) into equation (4) yields

g
1

0 $ 1
a2 B(00)XIV +2{B(02) − (1− n)b(01)}XII − {V2B(00) − a2(B(04) + b(12)

− b(03))}X%d(X) dx̄+g
1

0 $a2A(00)YIV +2{A02 − (1− n)a(01)}YII

−6V2A(00) −
1
a2 (A(04) + a(12) − a(03))7Y%d(Y) dȳ

+[M�xd(XI)]x̄=1
x̄=0 + [M�yd(YI)]ȳ=1

ȳ=0 − [V�xd(X)]x̄=1
x̄=0 − [V�yd(Y)]ȳ=1

ȳ=0 =0, (5)

where

A(mn) =g
1

0

dmX
dx̄m

dnX
dx̄n dx̄, B(mn) =g

1

0

dmY
dȳm

dnY
dȳn dȳ, a(mn) =$dmX

dx̄m

dnX
dx̄n%

x̄=1

x̄=0

, (6–8)

b(mn) =$dmY
dȳm

dnY
dȳn%

ȳ=1

ȳ=0

, M�x =(1/a2)[B(00)XII + nB(02)X],

M�y = a2A(00)YII + nA(02)Y, (9–11)

V�x =(1/a2)[B(00)XIII + {(2− n)B(02) −2(1− n)b(01)}XI],

V�y = a2A(00)YIII + {(2− n)A(02) −2(1− n)a(01)}YI. (12, 13)

Here, the superscript above the functions X and Y in equations (10–13) denotes the order
of the derivative of the function with respect to its variable. Since equation (5) is valid for
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arbitrary variations d(X) and d(Y) which satisfy the plate boundary conditions, the plate
vibration equation reduces to

XIV +
2a2{B(02) − (1− n)b(01)}

B(00) XII − a26V2 −
a2(B(04) + b(12) − b(03)

B(00) 7X=0, (14a)

YIV +
2{A(02) − (1− n)a(01)}

a2A(00) YII −
1
a2 6V2 −

(A(04) + a(12) − a(03)

a2A(00) 7Y=0. (14b)

Equation (14a) is a fourth order differential equation in X with constant coefficients. The
coefficients of equation (14a) are related to the function Y through equations (7) and (9).
A similar observation can be made about equation (14b). Thus, the plate vibration
equation reduces to a pair of coupled simultaneous ordinary differential equations.

The boundary conditions for equations (14a) at x̄=0 or x̄=1 can be expressed from
equations (5), (10) and (12) as (1) clamped, X=0 and XI = 0; (2) simply supported, X=0
and M�x =0; (3) free, M�x =0 and V�x =0. Using equation (10), the boundary conditions
for the simply supported edge at x̄=0 or x̄=1 can be further simplified to X=0 and
XII = 0. While the expression for M�x in equation (10) agrees with that reported in reference
[6], the expression for V�x in equation (12) has an additional term which can be traced to
the corner forces term in equation (4). The boundary conditions for equation (14b) at ȳ=0
or ȳ=1 can be expressed in a similar manner.

In references [5, 6], an approximate V is used in addition to an assumed Y(ȳ) to
determine X(x̄) from equation (14a). Since the differential equation and its four boundary
conditions are homogeneous, the complimentary function X(x̄) with such an assumed V

cannot satisfy all four boundary conditions. In fact, X(x̄) and V corresponding to an
assumed Y( ȳ) can be computed using the method described below.

Equation (14a) can be rewritten in terms of the roots 2p2 and 2jp1 of its auxiliary
equation as

XIV − ( p2
2 − p2

1)X11 − p2
2p2

1X=0. (15)

Comparison of coefficients of equations (14a) and (15) yields

p2
2 − p2

1 =−[2a2{B(02) − (1− n)b(01)}]/B(00),

V2 = (1/a2)p2
2p2

1 + {a2(B(04) + b(12) − b(03))}/B(00). (16, 17)

Imposition of the four boundary conditions on the complimentary function of equation
(16) gives a relationship between the parameters p1 and p2 as

P( p1, p2)=0. (18)

The parameters p1 and p2 can be determined from the algebraic equations (16) and (18)
and the unknown functions which satisfy equation (14a). The boundary conditions can
also be expressed within an arbitrary constant multiple. The corresponding V can be
determined from equation (17). It must be noted that the roots of the auxiliary equation
for any other presumed V will not satisfy equation (18).

Using equation (14b) and its boundary conditions, the following equations can be
obtained in a similar manner:

q2
2 − q2

1 =−(2{A(02) − (1− n)a(01)})/a2A(00),

V2 = a2q2
2q2

1 + [(A(04) + a(12) − a(03))]/a2A(00), Q(q1, q2)=0. (19–21)
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Here 2jq1 and q2 are the roots of the auxiliary equation associated with equation (14b).
From equations (6) and (8), it can be observed that the right side of equation (19) is an
implicit function of the modal parameters p1 and p2. Further, the parameters (q1, q2)
corresponding to an assumed ( p1, p2) can be determined from equations (6), (8), (19) and
(21). Thus, the iterative numerical approach can be used to solve the four simultaneous
nonlinear algebraic equations (16), (18), (19) and (21) for the modal parameters. The
Rayleigh frequency associated with the separable vibration mode can be determined from
equations (17) and (20).

3.    

The solution of equation (14a) for clamped edge conditions is either symmetric or
antisymmetric about x̄=1/2. Imposing a zero edge displacement condition, the solutions
of equation (14a) can be expressed as

X(x̄)=6cosh (x̄−1/2)p2

cosh p2/2
−

cos (x̄−1/2)p1

cos p1/2 7, symmetric;

=6sinh (x̄−1/2)p2

sinh p2/2
−

sin (x̄−1/2)p1

sin p1/2 7, antisymmetric. (22)

Incorporating the condition XI(0)=0 in equation (22), the relationship between p1 and p2

can be expressed as

P( p1, p2)=0, (23)

where

P( p1, p2)= p2 tanh p2/2+ p1 tan p1/2, symmetric;

= (1/p2) tanh p2/2− (1/p1) tan p1/2, antisymmetric. (24)

Substitution of equation (22) into equations (6) and (8) and simplification using equations
(23, 24) gives

a(01) =0, A(02) = 1
2( p2

2 − p2
1)+A

*
, A(00) =1− [( p2

2 − p2
1)/2p2

2p2
1]A*

, (25–27)

where

A
*

=1− {1− p2 tanh p2/2}2, symmetric;

=1− {1− p2/tanh p2/2}2, antisymmetric. (28)

Equation (19) can be simplified using equations (25)–(28) as

q2
2 − q2

1 = (2/a2)A(p1, p2), (29)

where

A( p1, p2)= {A
*

+ (1/2)( p2
2 − p2

1)}/{[( p2
2 − p2

1)/2p2
2p2

1]A*
−1}. (30)

A similar analysis on the solution Y(ȳ) of equation (14b) gives results similar to equations
(23) and (29) in the form

Q(q1, q2)=0, p2
2 − p2

1 =2a2B(q1, q2). (31, 32)
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For the present case where all four edges of the plate are clamped, the following results
are valid:

Q(q1, q2)=P(q1, q2), B(q1, q2)=A(q1, q2). (33, 34)

Thus, the functions Q and B can be reconstructed from equations (23), (24), (28) and (30)
by replacing p1 and p2 with q1 and q2. The four unknowns p1, p2, q1 and q2 can be determined
from equations (23), (29), (31) and (32), and the frequency associated with the approximate
vibration mode can be calculated from equations (17) and (20).

4.  

The numerical calculations for the determination of the unknowns p1, p2, q1 and q2 can
be simplified by sub-dividing equations (23), (29), (31) and (32) into two groups of two
equations each. Equations (23) and (32) can be used to determine p1 and p2 from the
assumed values of q1 and q2. From p1 and p2 thus obtained, a better approximation for
q1 and q2 can be determined using equations (29) and (31). Thus, equations (23), (32) and
(29) and (31) can be applied alternatively to compute the unknowns to the desired accuracy
from an assumed first approximation.

Equations (24) and (30) show that if (p1, p2) is a solution of equations (23) and (32) then
(−p1, p2), ( p1, −p2) and (−p1, p2) are also solutions of these equations. Further, equation
(22) indicates that the sign of p1 or p2 does not have any influence on the expressions for
the vibration mode and the associated frequency. Thus, without loss of generality, the
solutions for the unknowns p1, p2, q1 and q2 can be assumed to be positive.

When B=0, the solutions of equations (23) and (32) satisfy the condition p1 = p2

corresponding to a beam mode in the x direction. For a small value of B, this x-beam
mode solution can be used as a first approximation in an iterative numerical scheme to
obtain the accurate solution ( p1, p2). The solution ( p1, p2) for this small value of B can
be used to obtain the solution for a larger value of B. Thus, the dependence of p1 (or p2)
on B is multi-valued with a branch corresponding to each of the x-beam modes. Similarly,
the dependence of q1 (or q2) on A is also multi-valued with a branch associated with each
y-beam mode. Thus, the mth x-beam mode parameters ( p1, p2) and the nth y-beam mode
parameters (q1, q2) can be used to generate a solution of equations (23), (29), (31) and (32)
and this solution can be labeled as the (m, n)th separable solution. From the computational
point of view, it is advantageous to use the ( p1, p2) parameters of (m+1, n)th solution
and the (q1, q2) parameters of (m, n+1)th solution as the first approximation to determine
the (m+1, n+1)th solution parameters.

Iterative schemes for the determination of ( p1, p2) from equations (23) and (32) and
(q1, q2) from equations (29) and (31) are similar. The steps for the computation of ( p1, p2)
from equations (23) and (32) are given below:

(1) Equation (23) can be considered as an implicit definition of p2 as a function of p1.
Thus, the Newton-Raphson method is used to determine p2 corresponding to an assumed
p1. The derivative (dp2/dp1) is then evaluated from −{(1P/1p1)/(1P/1p2)}.

(2) Since p2 is a known function of p1, equation (32) can be regarded as an equation
in the single variable p1. Thus, the Newton-Raphson method is used to improve the
assumed value of p1 for step (1).

(3) By repeating steps (1) and (2), (p1, p2) can be determined to the desired accuracy.
This scheme is reasonably quick and is used to obtain ( p1, p2) to six significant
figure accuracy.
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T 1

SS mode parameters, a/b=1·0

i j p1 p2 q1 q2 V

1 1 4·31207 6·52611 4·31207 6·52611 35·99896
1 3 3·63208 14·51211 10·91003 11·88584 131·90213
3 1 10·91003 11·88584 3·63208 14·51211 131·90213
3 3 10·50880 17·45161 10·50880 17·45161 220·05865
1 5 3·43522 23·22999 17·24404 17·85340 309·03784
5 1 17·24404 17·85340 3·43522 23·22999 309·03784
3 5 10·19664 25·09587 17·02905 21·91703 393·35577
5 3 17·02905 21·91703 10·19664 25·09587 393·35577
5 5 16·77691 28·34210 16·77691 28·34210 562·17816
1 7 3·34988 32·05025 23·54339 23·98423 565·45203
7 1 23·54339 23·98423 3·34988 32·05025 565·45203
3 7 10·00713 33·39119 23·41529 27·12809 648·02057
7 3 23·41529 27·12809 10·00713 33·39119 648·02057
5 7 16·57370 35·86621 23·23189 32·51634 813·74701
7 5 23·23189 32·51634 16·57370 35·86621 813·74701

A second scheme for the determination of ( p1, p2) from equations (23) and (32) can be
formulated by exchanging the roles of p1 and p2 in steps (1) and (2) of the earlier scheme.
For an assumed p2, equation (23) is satisfied by several values of p1. Thus, this second
scheme is useful only when the assumed first approximation is reasonably accurate. This
second scheme is used to refine the results obtained from the first scheme to twelve
significant figure accuracy, especially when m or n is large. The complete numerical scheme
to determine p1, p2, q1 and q2 from equations (23), (29), (31) and (32) can be summarized
in the following steps.

(1) Assume a first approximation for ( p1, p2, q1, q2). The assumed solution must satisfy
equations (23) and (31).

(2) Compute B using equations (28), (30) and (34). Solve for ( p1, p2) from equations
(23) and (32) using previously enunciated steps.

T 2

SA mode parameters, a/b=1·0

i j p1 p2 q1 q2 V

1 2 3·85829 10·30263 7·69024 9·06295 73·40536
3 2 10·71560 14·23073 7·13560 15·71577 165·02304
1 4 3·50981 18·84785 14·08521 14·83675 210·52634
3 4 10·33396 21·14452 13·79507 19·55599 296·36633
5 2 17·15200 19·47662 6·83936 23·95715 340·59042
1 6 3·38539 27·63413 20·39557 20·90734 427·35699
5 4 16·89924 24·93426 13·50673 26·57787 467·29092
3 6 10·09026 29·19721 20·23176 24·45830 510·64716
7 2 23·49144 25·20896 6·68834 32·56338 596·36670
5 6 16·66803 32·01364 20·01603 30·33620 677·74500
7 4 23·32573 29·60673 13·30234 34·50278 720·48639
1 8 3·32332 36·47358 26·68914 27·07617 723·30811
3 8 9·94113 37·64561 26·58665 29·89135 805·35010
7 6 23·14005 35·75067 19·82320 37·45086 927·70618
9 2 29·80062 31·15732 6·60015 41·29623 931·50360
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T 3

AS mode parameters, a/b=1·0

i j p1 p2 q1 q2 V

2 1 7·69024 9·06295 3·85829 10·30263 73·40535
2 3 7·13560 15·71577 10·71560 14·23073 165·02303
4 1 14·08521 14·83675 3·50981 18·84785 210·52634
4 3 13·79507 19·55599 10·33396 21·14452 296·36632
2 5 6·83936 23·95715 17·15200 19·47662 340·59043
6 1 20·39557 20·90734 3·38539 27·63413 427·35700
4 5 13·50673 26·57787 16·89924 24·93426 467·29093
6 3 20·23176 24·45830 10·09026 29·19721 510·64717
2 7 6·68834 32·56338 23·49144 25·20896 596·36670
6 5 20·01603 30·33620 16·66803 32·01364 677·74498
4 7 13·30234 34·50278 23·32573 29·60673 720·48641
8 1 26·68914 27·07617 3·32332 36·47359 723·30810
8 3 26·58664 29·89135 9·94113 37·64562 805·35007
6 7 19·82320 37·45086 23·14004 35·75067 927·70618
2 9 6·60015 41·29622 29·80063 31·15732 931·50358

(3) Compute A using equations (28) and (30). Solve for (q1, q2) from equations (29) and
(31).

(4) Repeat steps (2) and (3) until convergence.

5.   

Computation of the modal parameters corresponding to the four mode categories of
clamped rectangular plates were carried out on a VAX 6410 digital computer in quadruple
precision for two aspect ratios. Ten beam-mode parameters each in the x and y directions
were used as a first approximation to generate the plate mode parameters. The parameters
p1, p2, q1 and q2 were computed to twelve significant figure accuracy. For each of the
eight cases, the 10×10 plate modes were arranged in ascending frequency order. The

T 4

AA mode parameters, a/b=1·0

i j p1 p2 q1 q2 V

2 2 7·38664 12·00118 7·38664 12·00118 108·23591
2 4 6·96057 19·75927 13·95485 16·76274 242·66710
4 2 13·95485 16·76274 6·96057 19·75927 242·66710
4 4 13·64092 22·89778 13·64092 22·89778 371·37587
2 6 6·75266 28·23656 20·32765 22·30505 458·53113
6 2 20·32765 22·30505 6·75266 28·23656 458·53113
4 6 13·39470 30·47086 20·12394 27·18754 583·74861
6 4 20·12394 27·18754 13·39470 30·47086 583·74861
2 8 6·63903 36·91992 26·64822 28·16470 754·03538
8 2 26·64822 28·16470 6·63903 36·91992 754·03538
6 6 19·91481 33·78547 19·91481 33·78547 792·46216
8 4 26·51179 32·15353 13·22613 38·62890 877·32942
4 8 13·22613 38·62890 26·51179 32·15353 877·32942
6 8 19·74186 41·27373 26·34828 37·87819 1083·30163
8 6 26·34828 37·87819 19·74186 41·27373 1083·30163
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T 5

SS mode parameters, a/b=2·0

i j p1 p2 q1 q2 V

1 1 3·83571 10·60528 4·60406 5·18945 49·16178
3 1 10·69992 14·44429 4·07433 8·09844 89·55766
5 1 17·14487 19·60894 3·74278 12·07412 174·52268
1 3 3·37906 28·32502 10·97416 11·21198 246·49784
3 3 10·07653 29·81874 10·82729 12·82192 284·75485
7 1 23·48800 25·29246 3·57233 16·32985 301·10984
5 3 16·65426 32·53217 10·62167 15·57750 363·58347
9 1 29·79877 31·21323 3·47457 20·67663 467·97195
7 3 23·12911 36·16556 10·42863 19·00240 484·23238
1 5 3·28391 46·07195 17·27020 17·41859 601·88407
3 5 9·83761 46·98052 17·20625 18·50137 640·28348
9 3 29·53526 40·46887 10·27136 22·79871 646·50249

11 1 36·09669 37·25675 3·41223 25·06186 674·66763
5 5 16·35568 48·72444 17·09809 20·50421 717·98453
7 5 22·83003 51·19961 16·97115 23·19854 836·00797

modal parameters of the first fifteen modes in each of the eight cases are shown in Tables 1
to 8.

The present approach reduces the determination of the plate characteristic function to
the solution of four non-linear algebraic equations in four unknown parameters. In the
numerical solution, these four equations are treated as two sets of two equations and these
equation sets are solved successively using a chosen first approximation. In contrast to the
numerical schemes reported in references [5, 6], the present scheme does not assume an V

in each stage of the computation. The solutions of p1 and p2 corresponding to an assumed
V in equation (14a) need not satisfy the four homogenous boundary conditions for the
function X. Thus, the computed ( p1, p2) must be corrected to satisfy equation (23). Such
an approach is relatively cumbersome and may not converge to the desired solution.

T 6

SA mode parameters, a/b=2·0

i j p1 p2 q1 q2 V

1 2 3·49667 19·48790 7·81087 8·15039 127·96933
3 2 10·31428 21·64137 7·55343 10·24827 166·56249
5 2 16·88523 25·29339 7·26745 13·55532 247·39098
7 2 23·31698 29·86327 7·05303 17·40919 370·71005
1 4 3·31962 37·19528 14·12431 14·30710 404·45883
3 4 9·93189 38·32722 14·03109 15·60436 442·75280
5 4 16·48167 40·45787 13·88396 17·93395 520·76024
9 2 29·68145 34·98558 6·90433 21·51153 535·37883
7 4 22·96418 43·41691 13·72563 20·96665 639·73489

11 2 36·01245 40·44707 6·79977 25·73784 740·58636
9 4 29·39119 47·04384 13·58051 24·44667 800·04401
1 6 3·26011 54·95205 20·41425 20·53912 838·77830
3 6 9·77207 55·70959 20·36783 21·46674 877·28642
5 6 16·26213 57·18091 20·28585 23·21588 954·90152

13 2 42·32565 46·12478 6·72368 30·03255 985·89276
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T 7

AS mode parameters, a/b=2·0

i j p1 p2 q1 q2 V

2 1 7·36490 12·26256 4·33332 6·41160 63·66675
4 1 13·94426 16·93155 3·88015 10·02630 126·67985
6 1 20·32277 22·40947 3·64460 14·18444 232·73244
2 3 6·74154 28·89947 10·91433 11·83934 260·70688
4 3 13·38030 31·04270 10·72610 14·09011 318·97338
8 1 26·64572 28·23251 3·51744 18·49644 379·54424
6 3 19·90233 34·25081 10·52123 17·22901 418·67292
8 3 26·33888 38·24685 10·34532 20·86650 560·20152

10 1 32·94877 34·22378 3·44026 22·86600 566·35451
2 5 6·56416 46·41598 17·24532 17·83190 616·24084
4 5 13·10191 47·75433 17·15605 19·40184 674·15047

10 3 32·72116 42·80948 10·20609 24·78267 743·05843
6 5 19·59835 49·87735 17·03555 21·77898 771·90762

12 1 39·24317 40·30693 3·38894 27·26242 792·89531
8 5 26·05128 52·67801 16·90700 24·73851 910·33816

The present approach is found to be satisfactory for the determination of several
hundred vibration modes. At high frequency, the ratio of the inner-nodal distance of the
vibration mode to the plate thickness may not be large enough to ensure the validity of
the thin plate theory. Under such conditions a higher order plate theory must be used for
the vibration analysis and the thin plate results can be used as the first approximation in
the numerical calculations. Evaluation of response of plates to vibratory excitations
requires quite accurate values for natural frequency and mode shapes. Even the best of
finite element methods cannot provide accurate values for higher natural frequencies and
mode shapes and hence response evaluation using them is prone to error. The present
method is an analytical method providing quite accurate results even for higher modes and
can be used to verify the results from approximate or numerical techniques. Further, it
must be noted that the approximate separable solutions of the plate vibration equation

T 8

AA mode parameters, a/b=2·0

i j p1 p2 q1 q2 V

2 2 6·94114 20·33248 7·69950 8·98902 142·16255
4 2 13·62376 23·32185 7·40363 11·80291 201·60630
6 2 20·11282 27·49086 7·15069 15·43855 303·81229
2 4 6·63213 37·62612 14·08744 14·80601 418·74574
8 2 26·50491 32·37144 6·97190 19·43947 447·93733
4 4 13·21549 39·27838 13·96126 16·66154 476·69391
6 4 19·73078 41·84426 13·80419 19·38071 575·08446

10 2 32·84989 37·68315 6·84768 23·61362 632·94919
8 4 26·18368 45·15625 13·65064 22·66293 714·72761
2 6 6·51810 55·23803 20·39637 20·89156 853·19171

12 2 39·17067 43·26428 6·75888 27·87877 858·24524
10 4 32·58854 49·06267 13·51580 26·29999 895·64650
4 6 13·02045 56·35994 20·33033 22·24817 911·15510
6 6 19·49641 58·16360 20·23641 24·34847 1008·62498

12 4 38·95911 53·43354 13·40265 30·16293 1117·52724
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T 9

Comparison of V=vab(m/D)1/2 for square clamped plate

Modes
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

(1, 1) (1, 2)/(2, 1) (2, 2) (1, 3)/(3, 1) (2, 3)/(3, 2)

Reference [2]† 35·992 73·413 108·27 131·64 –
Reference [5] 35·999 73·405 108·236 131·902 165·023
Reference [6] 35·999 73·405 108·236 131·902 165·023
Reference [7]† 35·986 73·395 108·218 131·779 –
Present 35·999 73·405 108·236 131·902 165·023

† Beam characteristics functions used in the Rayleigh-Ritz method.
‡ Characteristic orthogonal polynomials used in the Rayleigh-Ritz method.

satisfy the exact geometric boundary conditions of the plate. A more accurate solution of
the plate vibration equation can be obtained by using these plate characteristic functions
as shape functions in the Rayleigh-Ritz method. Since these plate characteristic functions
are reasonable approximations of the plate vibration modes, they are a better choice for
the shape functions than those reported in the literature [2, 7]. Even though the zeros of
the plate characteristic functions fall along straight lines parallel to the edges, the linear
combination of these functions can produce curved nodal lines also.

A comparison of the present results with published data for the case of a clamped square
plate is given in Table 9. The present method which does not assume an V for each iteration
is more suitable for the determination of a large number of the higher vibration modes
of plates with the other combinations of the classical boundary conditions. The
Rayleigh-Ritz method involves the numerical solution of a higher order matrix eigenvalue
problem, which is prone to numerical difficulties, unless the deflection shapes are chosen
judiciously. The plate characteristic functions developed here can be conveniently used as
deflection shapes in the Rayleigh-Ritz method in order to improve the results still further.

6. 

The optimum separable solutions of the plate vibration equation are obtained by
reducing the plate vibration equation into simultaneous ordinary differential equations.
Imposition of the boundary conditions on the reduced equations results in four non-linear
algebraic equations. The numerical solution scheme for these equations is described. The
results for the plate characteristic function parameters are presented for clamped
rectangular plates. The present method yielded accurate results for the parameters of
several hundred natural frequencies and plate characteristic functions.
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: 

a Plate length in x direction
a(mn) Defined in equations (8) and (25)
A Defined in equations (28) and (30)
A(mn) Defined in equation (6)
b Plate width in y direction
b(mn) Defined in equation (9)
B Defined in equations (28), (30) and (34)
B(mn) Defined in equation (7)
D Flexural rigidity of plate
m Mass per unit area of plate
p1, p2 Mode parameters in x direction
P Defined in equations (18), (23) and (24)

q1, q2 Mode parameters in y direction
Q Defined in equations (21), (23), (24) and

(33)
U Strain energy
w Plate displacement
x, y Cartesian co-ordinates
x̄, ȳ Defined by x̄= x/a, ȳ= y/b
X, Y Functions in w1X(x̄)Y(ȳ)
a Plate aspect ratio, a= a/b
d() Variation in ()
v Plate frequency
V Defined by V=vab(m/D)1/2


