
Journal of Sound and Vibration (1997) 203(1), 41–62

A GLOBAL–LOCAL INTEGRATED STUDY OF
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It has been recognized that one of the most significant noise sources in roller chain drives is from
impacts between the chain and the sprocket during their meshing process. In this paper an analysis
is presented which integrates the local meshing phenomena with the global chain/sprocket system
dynamic behavior. A coupled chain/sprocket system interacting with local impacts is modelled and
the impulse function is derived. A study is carried out to quantify the intensity of subsequent impacts.
It is found that the coupling effects between the sprockets, the chain spans, and the chain/sprocket
meshing impulses increase with decreasing sprocket inertia and chain longitudinal stiffness.
Experimental studies are also carried out to evaluate the meshing noise. It is found experimentally
that the meshing sound pressure level is closely related to the chain speed and its vibrational
characteristics, as predicted in the analytical study.
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1. INTRODUCTION

While roller chain drives are recognized to be one of the most effective forms of power
transmission in mechanical systems [1, 2], the noise and vibrations in such systems can be
a problem [3], especially since higher speed, lighter weight and higher quality are required
in today’s products.

Major noise sources in roller chain drive systems have been identified experimentally by
Uehara and Nakajima [4]. It was concluded that the most significant source is from the
impact between the chain link and the sprocket tooth during the meshing process. It was
found that the impact noise is closely related to the overall dynamic behavior of the chain
and various system parameters, such as chain tension, speed, and pitch. An experimental
study by Stone, Trethewey and Wang [5] also showed that the noise level and the impact
intensity during meshing are closely correlated. Several researchers [6–9] have studied the
impulses caused by the meshing impact when a single roller engages the driving sprocket.
These analyses assumed that the chain/sprocket relative velocity at meshing is constant and
the impulse is computed with the chain straight and stationary. The impact inertia is,
therefore, evaluated under a quasi-static condition of the chain.

Through integrating the local meshing characteristics with the response of a vibrating
axially moving chain, a recent study by Wang et al. [10] found that significant errors will
be induced in computing the impact intensity using the classical quasi-static approach, in
which the vibration of the travelling chain is neglected. While this investigation has
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provided new insights, the analysis is limited to a single chain transverse vibration model.
The direction of the relative velocity between the meshing sprocket tooth and chain link
is assumed to be perpendicular to the chain span. Also, the chain longitudinal motion is
not considered. Since the chain longitudinal vibration is important to the overall system
dynamic behavior under certain conditions [7, 11–13], the study by Wang et al. [10] needs
to be expanded: that is, both the longitudinal and transverse chain motions should be
included in quantifying the meshing impulses. Because these two motions are coupled
through the sprocket dynamics [14], an integrated chain/sprocket system model is required
to carry out the investigation.

In this paper an integrated study of a coupled chain/sprocket system under repeating
impacts from the meshing process is presented. Both analytical and experimental efforts
have been performed. This investigation provides a basic understanding and additional
insights to the roller chain meshing dynamics, which is an essential step towards the design
of quiet chain drives.

2. SYSTEM MODEL

2.1. 

A schematic of the model is illustrated in Figure 1 (a list of nomenclature is given in
Appendix D). The chain drive is modelled as two axially moving strings with their ends
fixed to two rigid sprockets. The fixed–fixed boundaries are defined at both seated rollers,
x=0 and x=L. Assumptions defining this problem are as follows.

(1) The displacement of the chain spans and the motion of the sprockets are measured
from an initial constant tension, constant speed, constant driving and driven loads, axially
moving chain configuration, and the corresponding constant speed condition of the
sprockets.

(2) The impulsive loads are applied at the meshing rollers of both chain spans with an
angle between 0 and 90 degrees from the span (Figure 1).

(3) Constant torque inputs are applied to the driving and driven shafts.
(4) Clearance and slipping between the chain and the sprocket are neglected.

Figure 1. (a) A schematic of the system model. (b) f�

.


 and f
 are the impulses with the components shown.
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(5) The initial tension difference between the tight and the slack side of the chain drive
is balanced by the torsional damping force of the sprockets and the constant driving/driven
torques under the initial constant speed condition.

(6) Out-of-plane motion of the chain is not considered.
(7) Both the longitudinal and transverse motions of the chain are included in the model.
(8) Dependent variable variations are significant only in the axial, x-direction.

The equations of motion are derived via Hamilton’s principle. The outline of the
derivation is shown in Appendix A. With the non-dimensional variables listed in Appendix
C, the linearized system equations of motion for 0 Q jQ 1, and te 0 with rigid supports
at the sprockets are

u� + d� xu� −2vu� '−Fū0=−f� x , ü+ dxu̇+2vu̇'−Fu0= fx , (1, 2)

w� + d� zw� −2vw� '−Cw̄0= f� z , ẅ + dzẇ+2vẇ'−Cw0=−fz , (3, 4)

Here, f� x and fx , defined in Appendix B, are the axial components of the impulsive forces
for the tight span and slack span, respectively. Also, f� z and fz , given in Appendix B,
represent the transverse components of the impulsive forces for the tight and slack spans,
respectively. As shown in Figure 1, the total impulsive forces applied to the chain spans
are

f� =zf� 2
x + f� 2

z , f=zf 2
x + f 2

z . (5)

The associated boundary conditions are

ū0 + u0 =0, −a(ū'0 − u'0)−
J1

2r2
1
(ü0 − ū

.

� 0)−
d1

2r2
1
(u̇0 − u� 0)=0, (6, 7)

ū1 + u1 =0, −a(ū'1 − u'1)−
J2

2r2
2
(ü1 − ū

.

� 1)−
d2

2r2
2
(u̇1 − u� 1)=0, (8, 9)

w0 = w̄0 =0, w1 = w̄1 =0, (10, 11)

where the dot and prime denote derivatives with respect to the non-dimensional time t and
space j, respectively, and u0 = u(0, t), w0 =w(0, t), u1 = u(1, t), w1 = (1, t), ū0 = ū(0, t),
w̄0 = w̄(0, t), ū1 = ū(1, t) and w̄1 = w̄(1, t).

2.2. 

Because equations (1)–(4) and (6)–(11) cannot be solved exactly, Galerkin’s method is
employed. For this system, the trial functions selected for u and ū are the eigenfunctions
of the stationary undamped system (v=0) described by equations (1), (2) and (6)–(9).
These functions are

h� n(j)= sin bnj= hn(j), n=1, 3, 5, . . . ,

h� n(j)=−
J1bn

2r2
1
sin bnj+cos bnj=−hn(j), n=0, 2, 4, . . . , (12)

where bn are the eigenvalues obtained from the characteristic equations,

sin bn =0, bn = np, n=0, 1, 2, 3, . . . (13a)
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Figure 2. The roller chain/sprocket configuration at meshing.

and

tan bn =
2bn(J2r

2
1 + J1r

2
2)

(J1J2b
2
n −4r2

1r
2
2)

, n=1, 2, 3, . . . . (13b)

w and w̄ are expanded by the comparison functions b� n(j)= bn(j)= sin (npj)
(n=1, 2, 3, . . .) which satisfy the fixed–fixed boundary conditions (10) and (11). Using
Galerkin’s method, the discretized weak form is obtained from

�ed1, h� m(j)�+ s
4

j=1

(ebj · h� bm)=0, �ed2, hm(j)�+ s
4

j=1

(ebj · hbm)=0,

�ed3, b� m(j)�=0, �ed4, bm(j)�=0,

where m=1, 2, , . . . , M are the number of Galerkin’s expression terms, and �,� represents
an unweighted inner product in the domain 0Q jQ 1. ed1, ed2, ed3 and ed4 are the residuals
from equations (1)–(4), respectively. h� bm and hbm are the values of h� m(j) and hm(j) at
boundaries j=0 and j=1 where the corresponding boundary conditions (6)–(9), ebj , are
evaluated.

2.3. DERIVATION OF THE IMPULSE FUNCTION

A schematic of the roller and sprocket configuration is shown in Figure 2. The impulse
caused by the meshing process is a function of the relative velocity between the sprocket
and the chain roller at the instant of impact. The momentum balance method, which has
been used in solving various flexible body impact problems [15, 16], is employed to derive
the impulse amplitude under the following assumptions.

(1) The inertia of the sprocket is much greater than that of the chain roller. The sprocket
angular velocity is thus not affected by the impact.

(2) The impact load is assumed to be uniformly applied on the chain between j= j1

and j= j2 on the tight span, and chain between j= j'1 and j= j'2 on the slack span. The
center of the impact roller is at j0 = (j2 + j1)/2 (corresponding to one pitch length x0) for
the tight span, and j'0 = (j'2 + j'1)/2 for the slack side.
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(3) The impact is inelastic, and the velocity of the impact roller coincides with that of
the sprocket Vst immediately after impact. The sprocket does not constrain the chain
motion before or after an impact. Here, Vst denotes the tangential speed of the sprocket
tooth at the sprocket pitch circle.

Let w(j, t)=aa
n=1bn(j)qn(t). The discretized weak form of equation (4) yields

Mwq̈(t)+ (Gw +Dw)q̇(t)+Kwq(t)=Yw s
N

k=1

Izk d(t− tk), (14)

where q(t)= [q1, q2, . . . , qn ]T is the generalized displacement vector, and q̇=dq/dt. Mw ,
Gw , Dw and Kw are the inertia, gyroscopic, damping and stiffness matrices, respectively, and
Yw is a space vector (see Appendix B). Izk are the transverse components of the impulses
on the slack side of the chain span. Integrating equation (14) over the kth impact duration
(t= t−

k to t+
k ), we have

g
t+
k

t−
k

(Mwq̈(t)+ (Gw +Dw)q̇(t)+Kwq(t)) dt=Yw g
t+
k

t−
k

s
N

k=1

Izk d(t− tk) dt. (15)

Since the configuration of the chain is assumed to be invariant during the small duration
of the impact, equation (15) becomes

Mw(q̇(t+
k )− q̇(t−

k ))=YwIzk . (16)

For the nth row of equation (16), one has

q̇n(t+
k )=M−1

w YwIzk + q̇n(t−
k ). (17)

From the previous assumptions, the transverse velocity of the meshing roller over the range
(j'1 , j'2) is approximated by the velocity at j'0 , and is assumed to be of the value Vsw (the
transverse component of the sprocket tooth velocity) immediately after impact. Thus, one
has

dw(j'0 , t+
k )

dt
= ẇ(j'0 , t+

k )+ vw'(j'0 , t+
k )=−Vsw

and

s
M

n=1

q̇n(t+
k )bn(j'0)=−Vsw − vw'(j'0 , t+

k ). (18)

Substituting equation (17) into equation (18), one can derive

M−1
w Ywbn(j'0)Izk =−Vsw− s

M

n=1

bn(j'0)q̇n(t−
k )− vw'(j'0 , t+

k ). (19)

Since the displacement field does not change during impact, i.e.,

w'(j'0 , t+
k )=w'(j'0 , t−

k ),



. .   .46

equation (19) becomes

M−1
w Ywbn(j'0)Izk =−Vsw−

dw(j'0 , t−
k )

dt
. (20)

Therefore, the kth transverse component of the impulse on the slack span is

Izk =
−Vsw −dw(j'0 , t−

k )/dt

M−1
w Ywbn(j'0)

. (21)

Carrying out similar derivations as above, one can derive the other impulse components
as follows:

I� zk =
Vsw̄ −dw̄(j0, t−

k )/dt

M−1
w̄ Yw̄b� n(j0)

, I� xk =
−(Vsū −(v−dū(j0, t−

k )/dt))
M−1

ū Yūh� n(j0)
, (22, 23)

Ixk =
Vsu −(v+du(j'0 , t−

k )/dt)
M−1

ū Yuhn(j'0)
, (24)

The resultant impulses of the slack and tight spans are, respectively,

Ik =zI2
xk + I2

zk , I� k =zI� 2xk + I� 2zk . (25, 26)

Here, I� xk and Ixk are the axial components of the impulses on the tight and slack spans
respectively, and I� zk represents the transverse impulse on the tight span. Mū , Mu and Mw̄

are mass matrices, while Yū , Yu and Yw̄ are space vectors given in Appendix B. Vsū and
Vsu denote the axial components of sprocket tooth velocities at impact points on the tight
and slack spans, respectively; meanwhile, Vsw̄ is the transverse component on the tight span
(see Appendices C and D). Note that the sprocket angular velocity is affected by the chain
longitudinal response through the boundary conditions. Thus, the sprocket velocity
components are not constant for different meshing impacts.

2.4.    

Examining equations (1)–(4), one can see that the four field variables, (i.e., w, w̄, ū and
u), are not explicitly coupled. In fact, they are implicitly coupled through the impulse
functions (21)–(24). The chain longitudinal motion affects the sprocket motion which
determines the sprocket tooth velocity. The sprocket tooth velocity affects the impact
intensities in both the longitudinal and transverse directions. The impact intensity affects
the chain span motion. Consequently, the impact dynamics, the chain transverse and
longitudinal motions, and the sprocket motion are closely coupled.

3. A SIMPLIFIED MODEL

In equations (21)–(24), the impact intensities are functions of sprocket rotational speeds
and chain span motions. The chain span motions are coupled at the chain span boundaries
through sprockets as shown in equations (6)–(9). The degree of this coupling is determined
by the non-dimensional system parameters, sprocket inertias (J1 and J2) and longitudinal
chain stiffness (a). It can be shown that when J1 and J2:a, the longitudinal chain span
response at the boundaries will be reduced to zero (ū0 = u0 =0 and ū1 = u1 =0). The
system can thus be treated as two separated axially moving chain spans with fixed–fixed
boundaries. This indicates that there is no chain span response coupled through the
sprockets at the boundaries. The sprockets are not oscillating and maintain a constant
operating speed. If the longitudinal chain stiffness (a) is also large (a:a) in this case,
the longitudinal chain response can be assumed to be quasi-static. Under this condition,
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I� xk and Ixk in equations (23) and (24) can be neglected because the relative impact velocities
are negligible. Therefore, the resultant impulses are assumed to be perpendicular to the
chain spans (i.e., Ik = Izk and I� k = I� zk), and the model is simplified to the one derived in
Wang et al. [10]. In other words, the system in equations (1)–(4) and (6)–(11) can be
reduced to two decoupled transverse chain span equations (3) and (4) with the boundary
conditions (10) and (11).

On the other hand, when J1, J2 and a are small, coupling effects of the chain spans and
sprockets on the engagement impulses could be significant. The following sections further
investigate these system parameters effects on the chain/sprocket impact dynamics in a
two-sprocket chain drive system.

4. ANALYSIS AND DISCUSSION

For the purpose of discussion, all parameters used in the following discussion are
non-dimensionalized with definitions given in Appendices C and D. The parameters used
in analyzing the system dynamics are listed in Table 1 unless stated differently. We define
an average impulse

I
 avg =

s
N

k=N0

I
 k

N−N0 +1

to be the mean intensity of the subsequent impacts, where I
 k can be any one of the
subsequent impact intensities given in equations (21)–(26). In the following studies, N0 is
selected to be sufficiently large such that I
 k is at steady state for kqN0.

4.1.          

4.1.1. Simplified model
Given an initial transverse impact with impulse I� z1, the chain’s tranverse velocity time

response dw̄(j0, t)/dt is plotted in Figure 3. It is shown that at times ta , tb , tc and td , the
velocity is negative. Therefore, if the chain/sprocket meshing period tI coincides with these
values, the next impulse I� z2 will be relatively large since the difference between Vsw̄ and
dw̄(j0, t−

2 )/dt is high (see equation (22)). Based on the same reasoning, I� z2 will be relatively

T 1

System parameters

R� = 415 N R=268 N EA=261 300 N
x0 =0·0095 m L=0·225 m m=0·7516 kg/m
J
 1 =0·034 kg m2 J
 2 =0·2397 kg m2

r1 =0·029 m r2 =0·058 m

Sprocket center to center distance=0·1905 m
Numbers of driving/driven sprocket teeth=19 and 38

Non-dimensional parameters
j0 =0·05 j'0 =0·95 j1 =0·0375
j'1 =0·9625 j2 =0·0625 j'2 =0·9375
dx = dx̄ =0 dz = dz̄ =0·02p d1 = d2 =0
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Figure 3. The time history of the chain transverse velocity at j= j0 after the initial impact.

small when the meshing period is equal to te or tf . Note here that te is the fundamental
natural period of the chain transverse vibration, t1, and tf =2te =2t1.

Examining the chain transverse dw̄(j0, t)/dt under subsequent impacts (Figure 4), we
see that when the meshing frequency is equal to the chain span fundamental natural
frequency, fI =1/te =1/t1, the impacts always take place when dw̄(j0, t−

k )/dt is positive
and close to the Vsw̄ value. For fI =1/tb , impacts always occur at points at which
dw̄(j0, t−

k )/dt is negative. To illustrate further the magnitude of subsequent impacts of a
travelling chain at different meshing frequencies, three cases are presented in Figure 5. The

Figure 4. The time history of the chain transverse velocity at j= j0 under subsequent impacts. w, Time at
which impact occurs with a chain velocity dw̄(j0, t−

k )/dt. (a) fI =1/te ; (b) fI =1/tb .
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Figure 5. Subsequent impulses for different meshing frequencies. –-–-, fI =1/tb ; ——, I
 0; ····, fI=1/te .

impulse I
 0 is derived from a quasi-static non-vibrating chain model, similar to results in
the previous study by Chew [6]. Since I
 0 is not affected by the chain response, it is constant
with respect to time. The other I� zk values in Figure 5 are computed based on equation (22).
Here, it is shown that the impulse function eventually reaches a steady state value. For
fI =1/te =1/t1, I� zk is much smaller when compared to other cases. I� zk reaches its maximum
value when fI =1/tb . These observations indicate that the quasi-static approach could
create significant errors in predicting the impact intensity, and that the results derived from
the last paragraph can be extended to quantify the meshing impulses of the chain under
subsequent impacts.

Based on the numerical results shown in Figures 3–5 and the above discussions, one can
conclude the following: (1) For t1 =mte/n=mt1/n (m and n are positive integers), the
impact roller velocity dw̄(j0, t−

k )/dt will eventually reach a steady state positive value which
is close to Vsw̄ . The velocity difference, Vsw̄ −dw̄(j0, t−

k )/dt, is thus relatively small, and
the impulse caused by the chain/sprocket meshing process will therefore be relatively small
under these conditions.

(2) For t1 = ta/n, tb/n, tc/n or td/n (n is a positive integer), the steady state dw̄(j0, t−
k )/dt

will be negative with relatively large absolute values. The impulse caused by the
chain/sprocket meshing process will therefore be relatively large under these conditions.

4.1.2. Complete model
The relationship between the chain resonant frequency, the meshing frequency and the

impact intensity in equations (21)–(24) is more complicated than that in the simplified
model. When the longitudinal impacts are present in the system, the sprocket rotational
speeds are not constant. The resultant impulses in equations (25) and (26) will depend on
the amplitude and phase of the chain span velocity as well as that of the sprocket tangential
speed at the instant of impact. Generally speaking, the chain resonant frequency and
meshing frequency effects on the transverse impulses discussed in the simplified model are
still applicable if the sprocket speed variation is small. That is, Izk or I� zk will be near its
local minimum when the meshing periods correspond to tI =mte/n=mt1/n (m and n are
positive integers), and will be near its local maximum when the meshing period corresponds
to t1 = ta/n, tb/n, tc/n or td/n (n is a positive integer), as shown in Figure 3 (here, ta , tb ,
tc , td and te are different for the tight and slack spans). However, the resultant impulse
is also dependent on the magnitude of the longitudinal impulse. In general, the transverse
fundamental natural period of the chain span can be different from the longitudinal one.
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Therefore, the local maximum or minimum of the transverse impulse will not coincide with
that of the longitudinal impulse.

For the purpose of discussion, let the longitudinal fundamental natural frequency of the
chain span equal to that of the transverse natural frequency. Given an initial longitudinal
impact with impulse I� x1 (Ixk = Izk = I� zk =0), the time history of dū(j0, t)/dt (rate of
longitudinal deformation) is plotted in Figure 6(a). It is shown that at times ta , tb , tc , td

and te , dū(j0, t)/dt is not zero. These variations will change the relative impact velocities
of the subsequent longitudinal impacts. In Figure 6(b), it is shown that the sprocket’s
tangential speed is oscillating after an initial longitudinal impact. In equation (23), the
relative impact velocity is a function of the sprocket tangential speed component in the
chain axial direction. Therefore, if the chain/sprocket meshing period t1 coincides with
these peak values (i.e., tI = ta , tb , tc , td and te) and if the phase of the sprocket tangential
speed variation is opposite to that of the chain longitudinal deformation rate at the impact
location, the next impulse I� x2 will be relatively large since the difference between Vsū and
(v−dū(j0, t−

2 )/dt) is large. With the same reasoning, I� x2 will be relatively small when the
meshing period is equal to the values in which the sprocket tangential speed variation and
the chain longitudinal deformation rate are zero.

The coupling phenomena between the tight and the slack chain spans are shown in
Figure 6(c). The travelling wave created by the initial longitudinal impact on one side of
the chain span is partially transmitted to the other side through the sprocket. The

Figure 6. (a) The time history of the chain tight span longitudinal deformation rate at j= j0 after the initial
impact with J1 = J2 =0·01 and a=1. (b) The sprocket tangential speed variation. (c) The time history of the
chain slack span longitudinal deformation rate at j= j'0 after the initial impact with J1 = J2 =0·01 and a=1.
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Figure 7. (a) The time history of the chain tight span longitudinal deformation rate at j= j0 after the initial
impact with J= J2 =1 and a=1. (b) The sprocket tangential speed variation. (c) The time history of the chain
slack span longitudinal deformation rate at j= j'0 after the initial impact with J1 = J2 =1 and a=1.

transmitted travelling wave could affect the impact dynamics on the other side of the chain
span. The amplitude of this transmitted wave will depend on the sprocket inertias (J1 and
J2) and the longitudinal chain stiffness (a).

The coupling phenomena between the chain spans and the sprocket with a larger
sprocket inertia are further shown in Figures 7(a)–(c). It is shown that the amplitude of
the sprocket tangential speed oscillation decreases as the sprocket inertia increases. The
travelling wave is reflected mostly from the chain-span’s boundary, with very little being
transmitted to the slack side of the chain span. This illustrates that the degree of the
coupling between the chain spans and the sprocket motions is affected by the sprocket
inertia.

Since both the longitudinal and transverse impacts are considered, meshing dynamics
of the complete model become very complicated. In general, one can predict that: (1) the
resultant impact intensity will have its local maximum when both the transverse and
longitudinal impulse components are at their local maxima; and (2) the resultant impact
intensity will have its local minimum when both the transverse and longitudinal impulse
components are at their local minima.

4.2.     

To illustrate further the effect of the chain span and sprocket motions on the impact
intensity, time histories of the subsequent longitudinal and transverse impacts of the tight
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span (I� xk and I� zk) are shown in Figure 8. The meshing frequency is equal to the fundamental
natural frequencies of both the longitudinal and the transverse chain motions ( fI =1/te).
In this case, the transverse impulse will have its local minimum, but the longitudinal
impulse will be relatively large. It is shown that the amplitudes of the longitudinal impacts
are oscillating. These oscillations indicate that the resultant relative impact velocities
fluctuate and, therefore, directions of the resultant impulses also fluctuate. Note that the
simplified model cannot predict these changes in the impulse directions. It is also shown
that the absolute values of the longitudinal impulses are larger than those of the transverse
impulses in this specific case. In Figure 9 the time history of the resultant impulses
computed from Figure 8 is compared with the impulses (transverse directions only) of the
simplified model. It is shown that the resultant impulses oscillate with amplitudes larger
than those of the impulses computed from the simplified model. This is because, while the
transverse impulse is near to a local minimum value, the resultant impulse can produce
a large value due to the large longitudinal impulse.

To gain further insight, an example is illustrated in Figure 10. Here, the averaged
resultant impulses of the tight span are plotted for various a. The simplified model does
not include the sprockets’ inertias, and considers the transverse impulses of the chain span
only. Therefore, its averaged impulses are constant with respect to a at a constant sprocket
rotational speed. It is shown that as a decreases, the averaged resultant impulses tend to
increase and diverge from the averaged impulses of the simplified model. This indicates
that the sprocket dynamics and chain longitudinal motions become important in predicting
impulses when a is small. On the other hand, the averaged resultant impulses fluctuate and
converge to the averaged impulses of the simplified model as a increases. From equations
(21)–(24), it is shown that the impulse functions depend on the responses of both the

Figure 8. The time history of the subsequent impacts with J1 = J2 =0·01 and a=1 at meshing frequency
fI =1/te . (a) Longitudinal impulses, I� xk ; (b) transverse impulses, I� zk .
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Figure 9. The time history of the subsequent impacts with J1 = J2 =0·01 and a=1 at meshing
frequency fI =1/te . (a) Resultant impulses I� k =zI� 2xk+I� 2zk from the complete model; (b) impulses I� zk from the
simplified model.

sprockets and the chain spans. As the system’s natural frequencies change, the responses
of the sprockets and chain spans also change. Thus, the fluctuations in these impulses are
caused by changes of the system’s natural frequencies when a changes.

To examine further the difference between the impact intensities of the two models, in
Figure 11(a) the averaged impulses (I
 avg) of the tight span over a range of sprocket
rotational speeds are compared for a small J1, J2 and a combination. As discussed earlier,
the impact intensities are frequency dependent. It can be seen that the impulses fluctuate
around their mean values, and their mean values tend to increase with the sprocket
rotational speeds. It is shown that the difference of the impulse magnitudes between two

Figure 10. A comparison of the impulses between two models under various a, sprocket r.p.m.=2500, J1 =4,
J2 =28. Q, Complete model; ——, simplified model.
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Figure 11. A comparison of the impulses between two models over a range of the sprocket rotational speeds.
(a) J1 = J2 =0·01 and a=1; (b) J1 =4, J2 =28 and a=975. –w–, Simplified model; –r–, completed model.

models is significant through the computed speed range. This again illustrates that the
coupling effects of the chain spans and sprockets on the impulses can be important when
the sprocket inertia and chain longitudinal stiffness are small.

On the other hand, when J1, J2 and a are large, the chain longitudinal motion and
sprocket effects on the impulses are reduced. In Figure 11(b) the averaged impulses (I
 avg)
of the tight span of the two models over a range of the sprocket rotational speeds are
compared for a large J1, J2 and a combination. It is shown that the difference of the impact
intensities between the two models is small. This illustrates that the simplified model will
be sufficient to predict impulses for a two-sprocket chain drive system for large J1, J2 and
a conditions.

5. EXPERIMENTAL STUDIES

5.1.  -

Experimental studies of the chain/sprocket meshing noise are performed to verify the
analytical findings discussed above. In practice, the physical quantity of impulse is difficult
to measure experimentally. However, the noise created by this impulsive force can be
experimentally detected with the proper instrumentation, as shown in Figures 12 and 13.
A direct relationship between the chain/sprocket meshing impulsive loads and the near
field sound pressure levels has been illustrated in reference [17].

The test stand consists of a two sprocket configuration with a flywheel and a brake
mounted on the driving and driven shafts, respectively. A 5 HP DC motor with an analog
controller is used to drive the flywheel shaft via a belt drive set-up. The chain’s static
tension and sprocket center-to-center distance are varied by a unislide table. The static
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Figure 12. The experimental set-up.

tension and the dynamic load of the driving shaft are measured by an instrumented pillow
block. The dynamic tensions of the chain spans are indirectly measured by a strain-gaged
sprocket. A slip ring is installed to measure the rotational information of the driving shaft.
Acoustical measurements are performed using two 1/2 inch microphones amplified by
microphone amplifiers. The microphones are placed 1/2 inch away from the chain/sprocket
engagement points. All measurements are performed inside a semi-anechoic room. A total

Figure 13. The chain testing hardware. 1, Frame; 2, hydraulic table; 3, hysteresis brake with coupler; 4, unislide
table; 5, Compaq 386/20e with DAS-20; 6, HP analyzer; 7, electronic filters; 8, microphone amplifier;
9, microphone power supply; 10, oscilloscope; 11, current source; 12, power supply; 13, TSU tension readout;
14, strain gauge amplifier.
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of 64 ensembles are averaged from the time signals to estimate the spectrum via a signal
analyzer. A more detailed discussion on the experimental set-up is presented in reference
[18].

5.2.  

In Figures 14(a) and (b) the meshing sound pressure levels measured experimentally
(using the near-field microphone at the driving sprocket) are compared with impulses (tight
span) computed from the analytical model. The operating parameters used in this
investigation are listed in Table 1. Because the impulse and the sound pressure are different
physical quantities, we will focus on examining the qualitative trend of the results.
Comparing Figures 14(a) and (b), we see many similarities. It is shown that both the
meshing sound pressure and the computed impulse are frequency dependent. Their
amplitudes fluctuate and their mean values tend to increase with the sprocket speed. Some
peak and valley locations (local maximum and minimum) of the impact noise amplitudes
(Figure 14(a)) can be clearly captured in Figure 14(b). In other words, the meshing and
resonant frequency effects predicted in the analytical models are clearly observed in the
experimental results. It is also shown in Figure 14(b) that without considering the chain
vibration and travelling speed, a classical quasi-static model cannot predict the impact
intensity fluctuation, and significant errors could be induced. This confirms the merit of
the new dynamic model over the classical approach.

Figure 14. A comparison of the experimental meshing sound pressure levels and the analytically predicted
impulses on the tight side of the chain span over a range of the sprocket rotational speeds. (a) Experimental
meshing sound pressure levels; –r–, Experimental data. (b) Analytically predicted impulses: –w–, dynamic
model; – · – · –, quasi-static model.
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6. SUMMARY AND CONCLUSIONS

(1) A comprehensive model of a chain drive system is developed. The model integrates
the sprocket and chain span motions with the local chain/sprocket meshing impacts. This
model can describe the meshing dynamics when the chain/sprocket coupling effect is
important.

(2) The relationship between the meshing frequency and the chain resonant frequency
is important in determining the impact intensity. Meshing frequencies that will cause
maximum and minimum impulses are predicted. It is concluded that the meshing impact
magnitudes are highly frequency dependent.

(3) The effects of sprocket inertia and chain longitudinal stiffness on impact intensities
have been investigated. It is found that the difference is significant between the impulses
computed from the simplified model and those from the complete model when the chain
longitudinal stiffness and sprocket inertia are small.

(4) The analytically computed impulses have been compared to the meshing sound
pressure levels measured experimentally. The results verify the prediction that the meshing
impulses and noise are frequency dependent, and confirm the merit of the dynamic model
versus the classical quasi-static approach.
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APPENDIX A: EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

The total kinetic energy, T, due to the chain span motions and sprocket motions is

T= 1
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Here, d( )/dt denotes a total derivative of time. The expression for the total potential energy
is

U=U1 +U2 = 1
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where U1 and U2 denote the strain energies of chain spans.
The virtual work consists of the conservative and the non-conservative work:

dWtotal = dWc + dWnc

=−g
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· dŵ) dx

− d
 10du1

dt
+

s
r11 · du1 − d
 20du2

dt
+

s
r21 · du2 +T
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Using Hamilton’s principle, one has

dH=g
t2

t1

(dT− dU+ dW) dt=0. (A.4)
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With the non-dimensional parameters and variables listed in Appendix C, the equations
of motion for 0Q jQ 1, and te 0 are

ū

.

� + d� xu� −2vu� '−Fū0− aw̄'w̄0=0, (A.5)

ü+ dxu̇+2vu̇'−Fu0− aw'w0=0, (A.6)

w̄

.

� + d� zw� −2vw̄
.
'−C� w̄0− a(w̄'ū0+ w̄0ū')− 3

2aw̄'2w̄0=0, (A.7)

ẅ+ dzẇ+2vẇ'−Cw0− a(w'u0+w0u')− 3
2aw'2w0=0. (A.8)

The boundary conditions are

−a0ū'0 +
w̄'20

2 1−
J1

4r2
1
(ü0 − ū

.

� 0)−
d1

4r2
1
(u̇0 − u� 0)=0, (A.9)

−a0u'0 +
w'20

2 1+
J1

4r2
1
(ü0 − ū

.

� 0)+
d1

4r2
1
(u̇0 − u� 0)=0, (A.10)

−a0ū'1 +
w̄'21

2 1−
J2

4r2
2
(ü1 − ū

.

� 1)−
d2

4r2
2
(u̇1 − u� 1)=0, (A.11)

−a0u'1 +
w'21

2 1+
J2

4r2
2
(ü1 − ū

.

� 1)+
d2

4r2
2
(u̇1 − u� 1)=0, (A.12)

w(0, t)= w̄(0, t)=0 (A.13)

and

w(1, t)= w̄(1, t)=0, (A.14)

where u0 = u(0, t) and ū1 = ū(1, t), etc.
Based on assumptions (7) and (8), we neglect the non-linear elasticity coupling and apply

the chain/sprocket impulsive loads to the equations of motion (A.5)–(A.14). The linearized
system equations of motion are listed in equations (1)–(4) and (6)–(11).

APPENDIX B: MATRIX EXPRESSIONS

The impulsive forces in equations (1)–(4) are given as

f� x = s
N

k=1

I� xk [H(j− j1)−H(j− j2] d(t− tk), (B.1)

fx = s
N

k=1

Ixk [H(j− j'1)−H(j− j'2)] d(t− tk), (B.2)

f� 2 = s
N

k=1

I� zk [H(j− j1)−H(j− j2] d(t− tk), (B.3)
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fz = s
N

k=1

Izk [H(j− j'1)−H(j− j'2)] d(t− tk), (B.4)

where I� xk and Ixk are the axial components of impulse intensities on tight and slack spans,
respectively, while I� zk and Izk denote the transverse components of impulse intensities.
H(j− j1), H(j− j2), H(j− j'1) and H(j− j'2) are unit step functions, and d is the Dirac
delta function.

In equations (1)–(4) and (6)–(11), the weighted functions are selected to be the same as
the trial functions. Carrying out Galerkin’s procedure, we have: the inertial matrices

Mū =g
1

0

h� n(j) · h� m(j) dj+
J1

4r2
1
h� n(0) · h� m(0)+

J2

4r2
2
h� n(1) · h� m(1), (B.5)

Mu =g
1

0

hn(j) · hm(j) dj+
J1

4r2
1
hn(0) · hm(0)+

J2

4r2
2
hn(1) · hm(1), (B.6)

Mw̄ =g
1

0

b� n(j) · b� m(j) dj=Mw ; (B.7)

the gyroscopic matrices

Gū =−2v g
1

0

h� 'n (j) · h� m(j) dj, Gu =2v g
1

0

h'n (j) · hm(j) dj, (B.8, B.9)

Gw̄ =−2v g
1

0

b� 'n (j) · b� m(j) dj=−Gw ; (B.10)

the damping matrices

Dū = d� x g
1

0

h� n (j) · h� m(j) dj+
d1

4
h� n(0) · h� m(0)+

d2

4
h� n(1) · h� m(1),

Du = dx g
1

0

hn (j) · hm(j) dj+
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4
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d2

4
hn(1) · hm(1),

Dw̄ = d� z g
1

0

b� n (j) · b� m(j) dj, Dw = dz g
1

0

bn(j) · bm(j) dj, (B.13, B.14)

the stiffness matrices

Kū =F g
1

0

h� 0n (j) · h� m(j) dj− ah� 'n (0) · h� m(0)+ ah� 'n (1) · h� m(1), (B.15)

Ku =F g
1

0

h0n (j) · hm(j) dj− ah'n (0) · hm(0)+ ah'n (1) · hm(1), (B.16)
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Kw̄ =C� g
1

0

b� 0n (j) · b� m(j) dj, Kw =C g
1

0

b0n (j) · bm(j) dj; (B.17, B.18)

and the space vectors

Yū =−g
1

0

h� n(j)[H(j− j1)−H(j− j2)] dj, Yu =g
1

0

hn(j)[H(j− j'1)−H(j− j'2)] dj,

(B.19, B.20)

Yw̄ =g
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b� n(j)[H(j− j1)−H(j− j2)] dj, Yw =−g
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0

bn(j)[H(j− j'1)−H(j− j'2)] dj,

(B.21, B.22)

APPENDIX C: NON-DIMENSIONAL PARAMETERS

dx = d
 xL/mc, d� x = d�

.


 xL/mc, dz = d
 zL/mc, d� z = d�

.


 zL/mc,

d1 = d
 1/(mcL2), d2 = d
 2/(mcL2), J1 = J
 1/(mL3), J2 = J
 2/(mL3),

u(j, t)= û/L, ū(j, t)= u� /L, Vsu =Vst cos f2/zR/m,

Vsū =Vst cos f1/zR/m, Vsw =Vst sin f2/zR/m, Vsw� =Vst sin f1/zR/m,

v= s/zR/m, w(j, t)= ŵ/L, w̄(j, t)=w� /L,

a=EA/R, F= a− v2, C=1− v2, C� =C+ d
 1s/(Rr2
1),

r1 = r1/L, r2 = r2/L, t= tzR/m/L,

j= x/L, j0 = x0/L, j'0 =1− j0,

j1 =0·75j0, j2 =1·25j0, j'1 =1−0·75j0, j'2 =1−1·25j0.

APPENDIX D: NOMENCLATURE

c chain wave speed
d
 x , d� 
 x longitudinal damping coefficients of the slack and tight spans
d
 z , d� 
z transverse damping coefficients of the slack and tight spans
d
 1, d
 2 rotational damping coefficients of the driving and driven sprockets
EA longitudinal elastic constant
f, f� resultant forcing functions of the slack and tight spans
fx , f� x longitudinal forcing functions of the slack and tight spans
fz , f� z transverse forcing functions of the slack and tight spans
Ik , I� k resultant impact intensities of the slack and tight spans
Ixk , I� xk longitudinal impact intensities of the slack and tight spans
Izk , I� zk transverse impact intensities of the slack and tight spans
I
 avg averaged impact intensity
J
 1, J
 2 rotational inertias of the driving and driven sprockets
L chain span length
M
 1, M
 2 masses of the driving and driven sprockets



. .   .62

m mass per length of the chain
R, R� chain initial tensions (slack and tight spans)
r1, r2 radii of the driving and driven sprockets
s chain nominal axial speed
T
 1, T
 2 torques applied on driving and driven sprockets
û, ū

.

 longitudinal displacements of the slack and tight spans

Vst tangential speed of the sprocket tooth at the sprocket pitch circle
ŵ, w� transverse displacements of the slack and tight spans
x longitudinal axis of the chain span
x0 chain link pitch
f1, f2 half-pitch angles of driving and driven sprockets
u1, u2 rotational displacements of the driving and driven sprockets


