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1. INTRODUCTION

The present study deals with the determination of the fundamental frequency of vibration
of simply supported and clamped plates of regular polygonal shape with a free, concentric
circular perforation; see Figure 1. It is assumed that the thickness varies in a discontinuous
fashion in the circular annular subdomain enclosing the hole. This portion may be made
of a dissimilar material. Two independent approaches are followed in order to determine
the fundamental eigenvalues:

(1) By conformally transforming the given configuration in the z-plane onto circular,
concentric regions in the ¢-plane and making use of the Rayleigh-Ritz method to obtain
the frequency equation [1, 2]. The methodology is applicable in the case of configurations
with several axes of symmetry with a concentric cut-out.

(2) By the finite element algorithmic procedure using a well known finite element code

3.

2. APPROXIMATE ANALYTICAL SOLUTION

If one makes use of the classical theory of vibrating plates, the normal modes of
transverse vibration of the system shown in Figure 1 are governed by the functional [4].
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Figure 1. Plates of regular polygonal shape with a free, concentric circular edge: (a) square plate, (b) hexagonal
plate.
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where W is the displacement amplitude, Dy = Eh3/12(1 — p?), D, = Eh}/12(1 — u?), Py is
the regular polygon of apothem a,, P, is the circle of radius R, and P, is the annular region
of outer radius R, and inner radius R;; see Figure 1. Clearly if the annular region P; is
made of a different material characterized by E;, u; and p, one simply takes this into
account in the corresponding expressions appearing in equation (1).

In the case where the outer boundary is simply supported the boundary conditions at
the outer edge are

W(X,y))z Mn(XJ’):Oa (23, b)

where M, is the bending moment normal to the edge. On the other hand, when the outer
edge is clamped one has

Wi(x,y)=(@W/on)(x,y)=0 (3a,b)

at the outer edge.

Since complying with the natural boundary conditions at the free circular edge will be
extremely complicated, use will be made of polynomial coordinate functions which satisfy
only the essential boundary conditions at the outer edge.t
A regular polygonal shape in the z-plane is transformed onto a unit circle in the é-plane
by means of [2]

z=aqd, )y (—Dal"*, <=re “)
k=0

+ This is also the case with condition (2b) at the outer edge.
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Figure 2. Approximate conformal mapping of the configurations under study: (a) square plate, (b) hexagonal
plate. On the left are the z-plane configurations, on the right are the ¢-plane shapes.

where s is the degree of the polygon, A, 1is the coefficient [2], and
ar = ap-1[(k — Dk 4+ 1][(k — 1)s + 2]/[ks(ks + 1)], and a, = 1. Expression (4) transforms
also, approximately, the circular subdomain of radius R, if Ry«<a,.

The corresponding approximate radius in the &-plane is [1], see Figure 2,

ro =~ RO/A.\'apa (Sa)
since r<« 1. Similarly,
1~ R /Aa,. (5b)

The following coordinate functions have been used in the present investigation:
simply supported outer edge,

W(r) = Ai(1 —r?) + A:(1 — )t + As(1 — r*)rt (6)
clamped outer edge,
W(r) = Ai(1 — ) + A,(1 — r*)r* + A;(1 — rH)4e. @)

These approximations are substituted in the governing functional (1) once transformation
is performed into the ¢-plane. The evaluation of the integrals is performed by means of
MATHEMATICA. Minimizing the functional with respect to the 4;s one finally sets up
a frequency determinant whose lowest root is the fundamental frequency coefficient
Q= \/phO/DO wa*, where a is the side of the polygon.

3. FINITE ELEMENT DETERMINATIONS

The numerical results have been obtained using the SAMCEF finite element code using
hybrid elements of triangular and rectangular shape (elements type 55 and 56 of the
SAMCEF Library). The number of elements varied in accordance with the plate
configuration; for instance in the case of hexagonal plates one sixth of the domain was
subdivided into 588 elements with 2659 degrees of freedom.



LETTERS TO THE EDITOR 355
4. NUMERICAL RESULTS

All calculations were performed for p = 0-30. Table 1 depicts fundamental frequency
coefficients for simply supported and clamped square plates for several values of R, /a, and
Ry/a,. The finite element results (presumably of considerable higher accuracy) are lower
than the approximate analytical results.

The agreement is closer in the case of a clamped outer edge due to the satisfaction of
the governing essential boundary conditions at the outer edge. It is important to point out
that present analytical results are in good agreement with those obtained in reference [5].

Table 2 shows fundamental eigenvalues for simply supported and clamped hexagonal
plates. The agreement between finite element values and the approximate, analytical results
is now better than in the case of Table 1. This is due to the fact that the approximations
involved when transforming the circular boundaries of the discontinuity and of the hole

TABLE 1
Comparison of fundamental frequency coefficients in the case of a square plate: A, simply
supported case; B, clamped case

Values of Q, = a)laz\/pho/Dg
Thickness variation (h/h = o)
A

r A
Rl = Rl/a/, R() = R()/a/, 1 0-90 0-80 1-10 1-20
A 0-05 0-1 @)) 19-90 19-88 19-87 19-93 19-97
2 19-67 19-63 19-59 19-71 19-75
0-2 €)) - 19-81 19-75 20-03 20-18
2 - 19-54 19-39 19-78 19-86
0-3 @) - 19-69 19-53 20-17 20-46
2 - 19-41 19-13 19-87 20-04
0-1 0-2 @) 19-89 19-91 19-86 20-09 20-23
2 19-53 19-39 19-26 19-66 19-77
0-3 1 - 19-78 19-63 20-24 20-52
)] - 19-26 19-00 19-75 19-94
0-2 0-3 @) 20-30 20-16 20-06 20-50 20-73

2) 19-28 19-08 18-93 19-48 19-70

0-4 1 19-98 19-74 20-69 21-13

2) - 18-95 18-67 19-60 19-93

0-3 0-4 (1 20-84 20-64 20-50 21-12 21-46

2) 19-48 19-30 19-17 19-70 19-95

B 0-05 0-1 (1 36-37 36-35 36-34 36-42 36-48

2) 3579 3572 35-64 35-85 3591

02 (1) 36-24 36-18 3655 3677
) - 35.57 35-37 3591 36-02

03 (1) - 36-11 35-95 3670 3707

) - 35-42 3513 35-99 3621

01 02 (1) 36-70 36-59 36-54 36-85 3706

2) 35-67 35-48 35-31 35-84 36-00
0-3 (1 - 36-45 36-31 37-02 37-39
2) - 35-35 35-11 3590 36-14
0-2 0-3 1 38-:06 3791 37-82 38:31 38-62
2) 36-30 36-17 36-11 36-48 3669
0-4 1 - 37-83 37-80 38-45 38-94
2) - 36-14 36-15 36-50 36-78
0-3 0-4 (1 40-90 40-90 41-04 41-04 41-30
2) 39-14 39-23 39-42 39-15 39-23

(1) Analytical solution. (2) Numerical solution (finite element method).
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TABLE 2
Comparison of fundamental frequency coefficients in the case of a hexagonal plate: A, simply
supported case; B, clamped case

Values of Q, = wlaz\/pho/Do

Thickness variation (o)
A

R, R 1 0-90 0-80 1-10 1-20
0-05 01 (1) 7-173 7-166 7-162 7-184 7-198
) 7-114 7097 7-080 7-128 7-141

02 (1) - 7137 7-114 7221 7-279

Q) - 7061 7-001 7156 7-189

03 (1) - 7-090 7-029 7272 7381

Q) - 7011 7-902 7200 7-270

01 02 (1) 7-206 7-176 7-157 7247 7297
©) 7057 7003 6-950 7-107 7-151

03 (1) - 7127 7-070 7-302 7-409

) - 6:956 6-854 7-149 7227

02 03 (1) 7-332 7276 7238 7-406 7-495
©) 6-968 6-896 6-836 7049 7-132

04 (1) - 7-208 7-116 7481 7-646

Q) - 6-846 6742 7099 7-230

03 04 (1) 7-549 7-469 7-418 7-654 7-784
) 7-069 7003 6-959 7-153 7250

0-05 01 (1) 12-836 12-826 12-822 12-852 12-876
Q) 12-749 12:721 12:692 12773 12:793

02 (1) - 12-787 12-761 12:904 12-986

Q) - 12:674 12-594 12-809 12:854

03 (1) - 12-736 12:674 12-959 13-094

Q) - 12:627 12:515 12:857 12:950

01 02 (1) 12:956 12:915 12-895 13-017 13-093
Q) 12710 12:639 12:575 12780 12-843

03 (1) - 12-862 12-809 13-078 13-216

Q) - 12:600 12:510 12:818 12:919

02 03 (1) 13-467 13-409 13-389 13-558 13-677
Q) 12:979 12:933 12:916 13-047 13-129

04 (1) - 13-386 13-378 13-606 13-789

Q) - 12:931 12:940 13-064 13-174

03 04 (1) 14-551 14-562 14-623 14-591 14-678
Q) 14-120 14-162 14-246 14-117 14-146

(1) Analytical solution- (2) Numerical solution (finite element method).

are now closer than in the case of the square plate since equation (4) converges faster for
r«1.

In general the approximation yields accurate eigenvalues, from an engineering
viewpoint, for Ry/a, < 0-5.

From the analysis of Tables 1 and 2 one concludes that a dynamic stiffening effect takes
place for all the configurations.
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