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ON THE ENERGY DECAY OF TWO COUPLED
STRINGS THROUGH A JOINT DAMPER
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The stabilization of two coupled strings with fixed boundaries attached to a linear
damper at their joint of connection is studied. The transformation used in a previous
approach to convert the second order hyperbolic equations into a first order system results
in a loss of equivalence. It is shown that when the ratio of the wave speeds of the two strings
is an irrational number, the system is asymptotically but not exponentially, stable. The
method is applied to the other cases with different joint and boundary conditions.
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1. INTRODUCTION

Many engineering structures, such as power transmission lines, and aerial and suspension
cables, are commonly modelled as a chain of coupled strings. In the construction of these
systems, active and passive damping devices can often be installed at the joints of
connection to suppress the deleterious vibration. The model of coupled vibrating strings
is described by a system of partial differential equations, with associated joint and
boundary conditions. The study of vibration damping of such distributed parameter
systems is of both practical and theoretical interest.

The mechanism of energy dissipation was first studied for the simple model consisting
of two coupled strings with equal length and wave speed and a linear damper at their joint
of connection [1]. It was shown that both uniform and non-uniform rates of decay of the
energy of vibration can occur depending on the internal and boundary conditions. In some
cases in which the system is symmetric with respect to the damper, the energy of vibration
does not decay asymptotically; while in some other cases with special damping constants,
all the energy of vibration is dissipated in finite time. In the general case in which the wave
speeds of the two strings are different, an abstract approach using the frequency domain
method was developed to predict the stability of the coupled system [2]. The stability of
the system was readily inferred when the ratio of the wave speeds of the two strings, d,
is a rational number. The main difficulty was to handle the case in which d is irrational.

A flaw in the proof of Theorem 4.2 in [2] is identified first in this paper for the case in
which the two coupled strings with fixed boundaries are attached to a linear damper at
their joint of connection. It is found that the transformation used therein did not lead to
an equivalent, first order system, because the prescribed internal and boundary conditions
were replaced by their time differential forms. As a result, the transformed system admits
an extraneous zero eigenvalue that is not present in the original system. It is shown that
the energy of vibration of the system decays asymptotically when the ratio of the wave
speeds of the two strings is an irrational number. Although all of the eigenvalues remain
strictly in the left half-plane in this case, it is shown that an infinite number of them
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approach the imaginary axis. Hence the energy of vibration does not decay uniformly
exponentially. The method is applicable to the other cases considered in the previous
analyses, as illustrated in section 5.

2. EQUATIONS OF MOTION

Consider two coupled equal-length strings described, respectively, by the wave equations

m1ytt (x, t)−T1yxx (x, t)=0, x$(0, 1), tq 0,

m2ytt (x, t)−T2yxx (x, t)=0, x$(1, 2), tq 0, (1)

where mi and Ti (i=1, 2) are the mass density and tension in each string. The
corresponding wave speeds are ci =zTi /mi (i=1, 2). Without loss of generality, the
length of each string is normalized to unity. The boundary conditions at the two ends
x=0, 2 are either free or fixed, resulting in three possibilities:

y(0, t)= y(2, t)=0, y(0, t)= yx (2, t)=0, yx (0, t)= yx (2, t)=0. (2a–c)

The internal conditions at the joint x=1 are described by either

T2yx (1+, t)=T1yx (1−, t), T1y1x (1−, t)= k[y2t (1+, t)− y1t (1−, t)] (3a)

or

y(1−, t)= y(1+, t), T2yx (1+, t)−T1yx (1−, t)= kyt (1+, t), (3b)

where kq 0 is the damping constant. At the joint x=1, either the two strings are
connected end to end through a dashpot in equation (3a), or both ends of the strings are
attached to one end of a dashpot in equation (3b). The initial conditions are given by

y(x, 0)= y0(x), yt (x, 0)= y1(x). (4)

For each combination of internal and boundary conditions, the energy of vibration

E(t)= 1
2g

1

0

[m1y2
t (x, t)+T1y2

x (x, t)] dx+ 1
2g

2

1

[m2y2
t (x, t)+T2y2

x (x, t)] dx (5)

satisfies dE(t)/dtE 0 [1]. The system is dissipative and all eigenvalues have non-positive
real parts.

The conditions that ensure asymptotic and exponential rates of decay of the energy of
vibration were examined in [2], as summarized in Table 1. For cases I and VI, when
d= c1/c2 = (4p+1)/(4q2 1), where p, q$Z, a branch of eigenvalues lies on the imaginary

T 1

Stability for different combinations of internal and boundary conditions

Boundary Internal Asymptotic Exponential
Case conditions conditions stability stability

I (2a) (3a) d$ (4p+1)/(4q2 1) d$ (4p+1)/(4q2 1), d$Q
II (2b) (3a) d$ (4p+2)/(4q2 1) d$ (4p+2)/(4q2 1), d$Q
III (2c) (3a) No No
IV (2a) (3b) d$ p/q No
V (2b) (3b) d$ (4p+1)/(4q2 2) d$ (4p+1)/(4q2 2), d$Q
VI (2c) (3b) d$ (4p+1)/(4q2 1) d$ (4p+1)/(4q2 1), d$Q
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axis; the systems are not asymptotically stable. For other rational d, all of the eigenvalues
are distributed along a finite number of lines in the left half-plane parallel to the imaginary
axis; the systems are asymptotically as well as exponentially stable. For irrational d, the
systems are asymptotically, but not exponentially, stable. Similar conclusions hold for
cases II and V. The system in case III is not asymptotically stable because zero is an
eigenvalue of the system. The same prediction for case IV, however, as presented in
Theorem 4.2 in [2], is not always true. In what follows it is shown that the system is not
asymptotically stable when d is rational. For irrational d, the system is asymptotically, but
not exponentially, stable.

3. ASYMPTOTIC STABILITY

The flaw in the proof of the Theorem 4.2 in [2] is indicated first. Through the
transformation

w1(x, t)=zm1[−c1yx (x, t)+ yt (x, t)]/2,

w2(x, t)=zm2[−c2yx (2− x, t)+ yt (2− x, t)]/2,

w3(x, t)=zm1[c1yx (x, t)+ yt (x, t)]/2,

w4(x, t)=zm2[c2yx (2− x, t)+ yt (2− x, t)]/2, (6)

the system in case IV reduces in [2] to an evolution equation in the state space (L2(0, 1))4:

1w(x, t)/1t=Aw(x, t), w(x, 0)=w0(x), (7)

where

w(x, t)= [w1(x, t), w2(x, t), w3(x, t), w4 (x, t)]T, (8)

AF(x)=diag (−c1, c2, c1, −c2)
1

1x
F(x),

[F(x)= [f1(x), f2(x), f3(x), f4(x)]T$D(A), (9)

D(A)=6F(x)$(L2(0, 1))4 = f1(0)+f3(0)=f2(0)+f4(0)=0,

zm2[f1(1)+f3(1)]=zm1[f2(1)+f4(1)],

zT1[f3(1)−f1(1)]−zT2[f4(1)−f2(1)]=−
k

zm1

[f1(1)+f3(1)]7, (10)

w0(x)= 1
2(zm1[−c1y'0 (x)+ y1(x)], zm2[−c2y'0 (2− x)+ y1(2− x)],

zm1[c1y'0 (x)+ y1(x)], zm2[c2y'0 (2− x)+ y1(2− x)])T. (11)

The well-posedness of the transformed equations (7)–(11) is established in [2] through the
dissipativity of the operator A within the framework of the theory of semigroups. The
principal observation here is that, instead of prescribing the boundary conditions (2a) and
(3b)1, equation (10) imposes the corresponding velocity relations

yt (0, t)= yt (2, t)=0, yt (1−, t)= yt (1+, t). (12, 13)

While zero is not an eigenvalue of the original system in case IV, it becomes an eigenvalue
of the transformed system (7). Because all the solutions to the original system in case IV
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constitute a subset of those of the transformed one, the system in case IV is also well-posed.
The energy functional in equation (5) is equivalent to the L2-norm of w(·, t) [1]:

E(t)= >w(· , t)>2 0 s
4

i=1 g
1

0

=wi (x, t) =2 dx. (14)

Assuming a separable solution y(x, t)=f(x) elt, where l is the eigenvalue and f(x) is
the eigenfunction, and substituting it into equations (1), (2a) and (3b), yields

l2f(x)− c2
1f0(x)=0, x$(0, 1),

l2f(x)− c2
2f0(x)=0, x$(1, 2),

f(0)=f(2)=0,

f(1−)=f(1+),

T1f'(1−)−T2f'(1+)=−klf(1). (15)

The eigenvalue problem (15) leads to the characteristic equation

(a+ b+ k) e(1+ d)m +(b− a− k) em +(a− b− k) edm − a− b+ k=0, (16)

where

a=T1/c1, b=T2/c2, d= c1/c2, m=2l/c1. (17)

Equation (16) is identical to the characteristic equation for the operator A as derived in
[2]. l$ 0 is an eigenvalue of equation (15) if and only if it is also an eigenvalue of A.
Although l=0 indeed satisfies equation (16), a direct calculation shows that it is not an
eigenvalue of equation (15), because the system does not permit any rigid body motion.
However, it can be easily shown that l=0 is indeed an eigenvalue of A with the associated
eigenvector

F0 = (zT2, zT1, −zT2, −zT1). ( 18)

The fact that the transformed system (7) possesses an extraneous zero eigenvalue does
not preclude the asymptotic stability of the original system in case IV. The following
theorem establishes the necessary and sufficient condition for all of the eigenvalues in case
IV to remain strictly in the left half-plane.

Theorem 1. All of the eigenvalues of equation (15) satisfy Re lQ 0 if and only if d is
irrational.

Proof. Because Re lE 0 by equation (5), Re lQ 0 if and only if there are no eigenvalues
on the imaginary axis. Multiplying equations (15)1 and (15)2 by f�(x), where the overbar
denotes complex conjugation, integrating the resulting equations in [0, 1] and [1, 2]
respectively, adding the two expressions and using the boundary conditions in equation
(15), yields

kl =f(1) =2 +g
1

0

[T1 =f'(x) =2 +m1l
2=f(x) =2] dx+g

2

1

[T2 =f'(x) =2 +m2l
2=f(x) =2] dx=0.

(19)

If l=iv, where v is real, separating the imaginary part from equation (19) gives
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f(1)=0. Then T1f'(1−)=T2f'(1+) by (15)5. Hence, by equation (15), the eigenfunctions
are

f(x)=6A1 sin vx/c1,
A2 sin v(x−2)/c2,

x$(0, 1),
x$(1, 2).

(20)

Because f(1)=0, we have, by equation (20),

A1 sin v/c1 =0, A2 sin v/c2 =0. (21)

Neither A1 nor A2 vanish. If A1 =0, then f(x)=0 for all x$[0, 1]. Since f(x) cannot be
identically zero in x$[1, 2], A2 $ 0. By equation (21), sin v/c2 =0; hence cos v/c2 $ 0.
However, T2f'(1+)= (v/c2)T2A2 cos (v/c2)=T1f'(1−)=0 yields a contradiction; A2 =0.
Hence A1 $ 0. Similarly A2 $ 0. Then equation (21) implies that v/c1 = qp and v/c2 = pp

for some integers p and q. Therefore d= c1/c2 = p/q is rational.
Conversely, if d= c1/c2 = p/q, where p and q are co-prime positive integers, let

v= c1q= c2p. It can be easily shown that

ln =inv=ic1qnp, n=21, 22, . . . (22)

are a branch of imaginary eigenvalues of equation (15). q
For rational d= p/q with p and q co-prime, all of the eigenvalues of equation (15) can

be obtained exactly. Let z=e2l/qc1; equation (16) reduces to the following polynomial
equation of degree p+ q:

(a+ b+ k)zp+ q +(b− a− k)zq +(a− b− k)zp − a− b+ k=0. (23)

Note that z=1 is a root of equation (23). The corresponding branch of eigenvalues is
purely imaginary, as given by equation (22). The eigenvalues corresponding to the root
zk (zk $ 1) of equation (23) are

ln = qc1[ln =zk =+i(arg zk +2pn)]/2, n=0, 21, 22, . . . . (24)

Each branch of eigenvalues in equation (24) lies on a straight line parallel to the imaginary
axis and hence represents a constant rate of damping.

For the sake of mathematical rigor, in what follows we show that, for irrational d, the
system in case IV is indeed asymptotically stable. Define H in (L2(0, 1))4 orthogonal to F0:

H= {F$(L2(0, 1))4=�F, F0�=0}, (25)

where H is a Hilbert space with the same inner product as that in (L2(0, 1))4. Let

AH =A=H (26)

be the restriction of the operator A in H. Then A and AH have the same non-zero spectrum.
The main distinction between them is that l=0 is not an eigenvalue of AH. It is crucial
to impose the boundary condition (2a) on the transformed system. The velocity relation
(12) as specified in equation (10) follows from equation (2a). By a direct integration using
equations (6) and (2a), we have

�w(·, t), F0�=zT2 g
1

0

[w1(x, t)−w3(x, t)] dx+zT1 g
1

0

[w2(x, t)−w4(x, t)] dx=0.

(27)
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Hence w(x, t)$H. Instead of equation (7), we consider the new transformed system

1w(x, t)/1t=AHw(x, t), w(x, 0)=w0(x) (28)

in the state space H. The extraneous zero eigenvalue in equation (7) is eliminated in
equation (28). By Theorem 1 and Theorem 4.1 in [2], the system (28) is asymptotically
stable when d is irrational; i.e., for any initial conditions y0(x) and y1(x), the energy E(t):0
as t:a.

4. NON-EXPONENTIAL RATE OF DECAY OF ENERGY

To show that the system in case IV is not exponentially stable for irrational d, the
abstract approach in [2] by use of its Lemma 4.1 does not readily apply. A direct approach
is developed here, which shows that there exists a branch of eigenvalues arbitrarily close
to the imaginary axis. To this end, we introduce the following lemma on approximating
an irrational number by rational fractions [3].

Lemma 1. For any irrational d, there exists an infinite number of rational fractions pn /qn

with (pn , qn )=1 and n$N, which satisfy =d− pn /qn =Q 1/=q2
n =.

Through the use of the well-known Rouché’s theorem on the number of zeros inside
a closed contour [4], we prove the following theorem.

Theorem 2. For irrational dq 0, there exists an infinite number of eigenvalues ln of
equation (16), which satisfy Re ln:0 as n:a.

Proof. By Lemma 1, we write d=[d]+ pn /qn + rn /q2
n , where =rn =E 1. Let

f(m)= (a+ b+ k) e(1+ [d]+ pn /qn )m +(b− a− k) em +(a− b− k) e([d]+ pn /qn )m − a− b+ k,

(29)

g(m)= [ernm/q2
n −1][(a+ b+ k) e(1+ [d]+ pn /qn )m +(a− b− k) e([d]+ pn /qn )m]. (30)

Then equation (16) becomes f(m)+ g(m)=0. Because f(m)=0 has solutions mn =2plqn i,
where l is any positive integer, we define On around mn by m= mn + a eiu/=mn =, where
0E uE 2p. For any m on On , using the Taylor expansion we have

f(m)= (a+ b+ k) e(1+ [d]+ pn /qn )a eiu/=mn = +(b− a− k) eaeiu/=mn =

+(a− b− k) e([d]+ pn /qn )aeiu/=mn = − a− b+ k

=(a+ b+ k)(1+ [d]+ pn /qn )a eiu/=mn =+(b− a− k)a eiu/=mn =

+(a− b− k)([d]+ pn /qn )a eiu/=mn =+O(=mn =−2)

=2a eiu[b+ a([d]+ pn /qn )]/=mn =+O(=mn =−2), (31)

g(m)= [ern (mn + a eiu/=mn =)/q2
n −1][(a+ b+ k) e(1+ [d]+ pn /qn )a eiu/=mn =

+(a− b− k) e([d]+ pn /qn )a eiu/=mn =]

= [rnmn /q2
n +O(=mn =−2)][(a+ b+ k) e(1+ [d]+ pn /qn )a eiu/=mn =

+(a− b− k) e([d]+ pn /qn )a eiu/=mn =]

=−8ap2rn /mn +O(=mn =−2). (32)

Choose aq 4p2a/(b+ ad); then there exists Nq 0 such that when neN, =f(m) =q =g(m) =
for all m on On . By the theorem of Rouché, f(m)+ g(m) and g(m) have the same number
of zeros inside On for neN. Hence there exists m̂n in On such that when neN,
=m̂n − mn =Q a/=mn =. By equation (17) there exist eigenvalues ln of equation (15) with
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=ln − c1qnlpi=Qac1/4p =qn =. Because there is an infinite number of distinct qn , qn:a as
n:a. Therefore Re ln:0 as n:a. q

Note that c1qnlpi (l=1, 2, . . . ) correspond to the infinite number of eigenvalues on the
imaginary axis, as predicted by equation (22), when d is approximated by its rational
fractions pn /qn . As n:a, pn /qn:d and c1qnlpi (l=1, 2, . . . ) approach those eigenvalues
corresponding to the irrational d.

For any positive constant a, by Theorem 2, there always exists an infinite number of
eigenvalues of high modes with damping rates smaller than a/2. Under the initial
conditions that only one of these modes is excited, the energy of vibration E(t) does not
satisfy E(t)EM e−atE(0) for all tq 0, where M is any positive constant. Hence, we
conclude the following.

Corollary 1. The system in case IV is not exponentially stable.

5. OTHER COMBINATIONS OF INTERNAL AND BOUNDARY CONDITIONS

The method developed in section 4 is applicable to the other cases in Table 1 for
irrational d. To demonstrate this, we consider the case V with non-symmetrical boundary
conditions at two ends. The associated eigenvalue problem leads to the characteristic
equation

(a+ b+ k) e(1+ d)m +(a− b+ k) em +(a− b− k) edm + a+ b− k=0, (33)

where a, b and m are those defined in equation (17). We prove first the following lemma
similar to Lemma 1.

Lemma 2. For any irrational dq 0, there exists an infinite number of rational fractions
pn /qn (n$N), where pn is odd, qn is even and (pn , qn )=1, which satisfy =d− pn /qn =Q 12/q2

n .
Proof. For any irrational dq 0, 2d is also irrational. By Lemma 1, there exists an infinite

number of irreducible pairs of pn q 0 and qn q 0 such that =2d− pn /qn =Q 1/q2
n .

If pn is odd, then =d− pn /2qn =Q 2/(2qn )2. If pn is even, since (pn , qn )=1, there exist
integers fn and gn such that pnfn − qngn =1 (see, e.g., reference [3, p. 21]). If = fn =q qn , we
write = fn == unqn + vn for some integers un and vn with 0Q vn Q qn . Hence =pnvn − qnwn ==1
for some integers wn . As pn is even, wn must be odd. Noting that qn + vn E 2qn implies
1/qn E 2/(qn + vn ), we have

b2d−
pn +wn

qn + vn bE b2d−
pn

qnb+ bpn +wn

qn + vn
−

pn

qnbE 1
q2

n
+ bpnvn − qnwn

qn (qn + vn ) b
E 1

q2
n
+

1
qn (qn + vn )

E 6
(qn + vn )2. (34)

Hence

bd−
pn +wn

2(qn + vn )bE 12
[2(qn + vn )]2

.

Because = (pn +wn )vn −(qn + vn )wn ==1, (pn +wn , qn + vn )=1. Also, pn +wn is odd; hence
pn +wn and 2(qn + vn ) are irreducible. Because qn are infinite in number, so are 2(qn + vn ).
Hence, by equation (34), pn +wn are also infinite in number. q

With Lemma 2, and using the theorem of Rouché, we are in a position to prove the
following theorem.
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Theorem 3. For irrational d, there exists an infinite number of eigenvalue ln of equation
(33), which satisfy Re ln:0 as n:a.

Proof. Write d=[d]+ pn /qn + rn /q2
n , where =rn =E 12. Let

f(m)= (a+ b+ k) e(1+ [d]+ pn /qn )m +(a− b+ k) em +(a− b− k) e([d]+ pn /qn )m + a+ b− k,

(35)

g(m)= [ernm/q2
n −1][(a+ b+ k) e(1+ [d]+ pn /qn )m +(a− b− k) e([d]+ pn /qn )m]. (36)

Then equation (33) becomes f(m)+ g(m)=0. Because qn is even and pn is odd, f(m)=0
has solutions mn = qnpi. Define On around mn by m= mn + a eiu/=mn =, where 0E uE 2p. For
any m on On , using the Taylor expansion we have

f(m)=−(a+ b+ k) e(1+ [d]+ pn /qn )a eiu/=mn = +(a− b+ k) eaeiu/=mn =

−(a− b− k) e([d]+ pn /qn )aeiu/=mn = + a+ b− k

=−(a+ b+ k)(1+ [d]+ pn /qn )a eiu/=mn =+(a− b+ k)a eiu/=mn =

−(a− b− k)([d]+ pn /qn )a eiu/=mn =+O(=mn =−2)

=−2a eiu[b+ a([d]+ pn /qn )]/=mn =+O(=mn =−2), (37)

g(m)=−[ern (mn + aeiu/=mn =)/q2
n −1][(a+ b+ k) e(1+ [d]+ pn /qn )aeiu/=mn =

+(a− b− k) e([d]+ pn /qn )aeiu/=mn =]

= − [rnmn /q2
n +O(=mn =−2)][(a+ b+ k)(1+O(=mn =−1))+ (a− b− k)(1+O(=mn =−1))]

=2p2arn/=mn =+O(=mn =−2). (38)

Choose aq 12p2a/(b+ ad); there exists Nq 0 such that when neN, =f(m) =q =g(m) = for
all m on On . By Rouché’s theorem, f(m)+ g(m) has one zero m̂n inside On for neN, with
=m̂n − mn =Q a/=mn =. By equation (17), there exists an infinite number of eigenvalues ln of
equation (33) such that =ln − c1qnpi/2=E c1a/2p =qn =. Because qn:a as n:a, Re ln:0 as
n:a. q

Following the same reasoning as that in section 4, we deduce Theorem 4.4 in [2] from
Theorem 3, as follows.

Corollary 2. The system in case V is not exponentially stable for irrational d.

6. CONCLUDING REMARKS

In case IV, l=0 is not an eigenvalue, although it does satisfy the characteristic
equation. The system is asymptotically stable only when d is irrational. To show the system
is not exponentially stable, a direct approach by applying Rouché’s theorem to the
characteristic equation is presented. In instances such as those considered here, a practical
question can often arise as to how the behavior of the system for rational and irrational
d can be so different, when these numbers can be made arbitrarily close. The explanation
lies in the fact that as the rational approximation to an irrational number improves, both
the numerator and denominator become arbitrarily large. Although the behavior of the
system associated with rational and irrational d can be made arbitrarily close for any finite
number of low modes, that corresponding to the infinite number of higher modes remains
distinct, leading to differing global behavior of the distributed models.
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