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1. 

Mechanisms have been traditionally designed on the basis of the assumption that all
members in the mechanism are rigid bodies. However, when simulating a mechanism that
is running at high speed, a perturbative motion can be observed when rigid-body
assumption is used. There will be some problems in the mechanism when the amplitudes
of vibration are greater than the allowable limit. To obtain a more accurate prediction of
the motion of a slider-crank mechanism, a dynamic analysis of the elastic connecting rod
is necessary.

The dynamic analysis of a slider-crank mechanism has been studied extensively over the
past 30 years, with much of the research going beyond the current paper to include a totally
flexible mechanism. A survey can be found in the series of review articles provided by
Erdman and Sander [1], Lowen and Jandrassits [2], Lowen and Chassapis [3], Thompson
and Sung [4], and Erdman [5].

A constant angular velocity of the crank was assumed in all the above references, and
both ends of the connecting rod were assumed to be simply supported, i.e., the moment
and displacement were assumed to vanish at both ends. However, the realistic operating
condition is that the crank is driven by an input torque, and one end of the connecting
rod moves reciprocally with the slider along the horizontal guide.

The new aspect of the present paper is that the right-hand end of the rod, which is point
B in Figure 1, is pinned with the slider and moves along the X-axis. The geometric
constraint condition, describing the end point B moving along the X-axis, is introduced
into Hamilton’s principle to formulate the governing equations of the four separate models
of the connecting rod. The rigid-body motion and flexible vibration are coupled in these
formulations.

2.     

Four separate models for the in-plane motion of the slider-crank mechanism are used.
They are the Timoshenko beam model, Euler beam model, simple-flexure model and
rigid-body model. Hamilton’s principle is employed to generate the governing equations
of motion. The slider-crank mechanism is shown in Figure 1(a), and it consists of the rigid
crank OA of length r; the flexible prismatic rod AB of length l; and the piston of mass
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M4. Other symbols in this figure are as follows: N, normal force perpendicular to its
direction of motion; F, external force acting on the piston; u, crank angle; f, angle between
the X-axis and the undeformed axis of the connecting rod, and the external torque. A list
of nomenclature is given in the Appendix.

2.1. Geometric constraint
The displacement field of the deformed beam is shown in Figure 1(b). [i, j] are the unit

vectors of the fixed co-ordinate system (OXY), and [er, eu ] and [ei, ej] are the unit vectors
of the moving co-ordinates with origins at O and A respectively.

The displacement field of the Timoshenko beam is

u1(x, y, t)= u(x, t)− yc(x, t), u2(x, y, t)= v(x, t); (1a, b)

where u and v represent the axial and transverse displacements of any point on the
connecting rod, and c is the slope of the deflection curve due to bending deformation
alone. The position vector of one arbitrary point P on the connecting rod is

R(x, y, t)= rer + (x+ u1)ei +(y+ u2)ej

=[r cos u+(x+ y) cos f+(y+ v) sin f]i+[r sin u−(x+ u) sin f

+(y+ v) cos f]j.

Figure 1. Slider-crank mechanism with a flexible connecting rod; (a) undeformed configuration; (b) deformed
configuration.
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Figure 2. At end point B, the displacement relationship between Db , u(l, t) and v(l, t).

Since the slider moves along the X-axis, point B, where the connecting rod is pinned
to the slider, also moves along the X-axis. Thus, the constraint condition of point B is

0=R(l, 0, t) · j= r sin u−[l+ u(l, t)] sin f+ v(l, t) cos f,

which means the displacement is always zero in the Y direction. Substituting the geometric
relation

r sin u= l sin f (2)

into the above equation, one has

v(l, t)= u(l, t) tan f. (3)

The above displacement relationship at point B can also be obtained from the geometric
plot shown in Figure 2.

It is seen that u(l, t)= v(l, t)=0 for the assumption of a simply supported end (Chu
and Pan [6]; Tadjbakhsh and Younis [7]) and this possibility is also included in equation
(3). If the axial displacement u(x, t) is negligible (i.e. only the transverse displacement
v(x, t) is considered), the constraint condition at point B becomes v(l, t)=0, and it
becomes a simply supported end. In the present work, the axial and transverse
displacements are considered simultaneously, so u(l, t) and v(l, t) are not independent and
are related by equation (3). Taking the variation of equation (3), one has

dv(l, t)= du(l, t) tan f+ u(l, t) sec2 fdf. (4)

Substituting (4) into dR(x, y, t), and taking x= l, one has

dR(l, 0, t)= du(l, t)ei + dv(l, t)ej = du(l, t) sec fi.

Differentiating R(x, y, t) with respect to time, one gets the absolute velocity of the
arbitrary point P on the connecting rod as

Rt(x, y, t)= ruteu +(ut − yct)ei + vtej −ftek ×[(x+ u− yc)ei +(y+ v)ej ]

= [−rut sin (u+f)+ ut − yct +ft(y+ v)]ei +[rut cos (u+f)

+ vt −ft(x+ u− yc)]ej . (5)

Because the slider moves in the X direction and the component of the acceleration of
the connecting rod in the Y direction is zero, the acceleration of point B can be written
as

Rtt(l, 0, t)= ax(l, t) sec fi,
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where

ax(l, t)=Rtt(l, 0, t) · ei =−rutt sin (u+f)− ru2
t cos (u+f)

+ utt +2vtft + vftt −(l+ u)f2
t . (6)

The kinetic energy of the connecting rod can be expressed as

T3 =
1
2 gV

rRt(x, y, t) · Rt(x, y, t) dV=g
l

0

T* dx, (7)

where

T*= (rA/2){[−rut sin (u+f)+ ut + vft ]2 + [rut cos (u+f)+ vt −ft(x+ u)]2}

+(rI/2)[(ft −ct)2 +f2
t c

2]. (8)

The Lagrangian strains are

exx = ux − ycx + 1
2v

2
x , eyy =0, exy 1 1

2(vx −c), (9a–c)

where the higher order terms uxc, yccx are neglected in exy . The strain energy of the
connecting rod can be expressed as

U3 =
1
2 gV

sijeij dV=g
l

0

U* dx, (10)

where

U*= 1
2[EA(ux + 1

2v
2
x)2 +KGA(vx −c)2 +EIc2

x ]. (11)

The kinetic energy of the crank with mass M2 and mass momentum of inertia J2c is

T2 = 1
8M2r2u2

t + 1
2J2cu

2
t . (12)

The kinetic energy of the slider is

T4 = 1
2M4Rt(l, 0, t) · Rt(l, 0, t) (13)

and the virtual work done by the driving force F, and the friction force mN acting on the
slider, and the external torque t applied on the crank is

dW=[(F− mN)i+Nj]dR(l, 0, t)+ tdu. (14)

2.2. Hamilton’s principle

By using Hamilton’s principle, one can write

0=g
t2

t1
6g

l

0

dL ds+ dT2 + dT4 + dW7 dt, (15)

where L(u, ut , f, ft , u, ut , ux , v, vt , vx , c, ct , cx)=T*−U* is the Lagrangian density of
the slider-crank mechanism.

The point (x, y)= (0, 0) is the common revoluting joint point of the rigid crank and the
flexible connecting rod, and the values u(0, t)=0 and v(0, t) are specified, thus one has
du(0, t)=0, and dv(0, t)=0. The slope angles c at the end points x=0, l of the
connecting rod are free and therefore dc(0, t)$ 0, and dc(l, t)$ 0.
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Substituting equations (7, 10, 13, 14) into equation (15), using the constraint condition
(4) at x= l and introducing the damping terms Cx , Cy and Cc , which are proportional to
the relative velocities ut , vt and ct , one obtains the governing equations of the system

g
l

0

−rAr{rutt +[utt − vftt +2vtft +(x+ u)f2
t ] sin (u+f)

+ [utt −ftt(x+ u)−f2
t u] cos (u+f)} dx+M4r{rutt +[utt − vftt

+2utft +(x+ u)f2
t ] sin (u+f)+ [utt −ftt(x+ u)−f2

t u] cos (u+f)}

−((M2/4)r2 + J2c)utt + t=0, (16a)

g
l

0

− rA[−rutt sin (u+f)− ru2
t cos (u+f)+ utt +2vtft + vftt ]v+2utvt

+2rutut cos (u+f)− (x+ u)[rutt cos (u+f)− ru2
t sin (u+f)+ vtt

−(x+ u)ftt ]+ rI(ftt −ctt +fttc
2 +2ftctc)} dx

−M4{[−rutt sin (u+f)− ru2
t cos (u+f)+ utt +2vtft + vftt ]v

+2utvt +2rutut cos (u+f)− (x+ u)[rutt cos (u+f)− ru2
t sin (u+f)

+ vtt −(x+ u)ftt ]}+ {EAvx(vx + 1
2v

2
x)+KGA(vx −c)+M4[−rutt cos (u+f)

+ ru2
t sin (u+f)+2ftut + vf2

t − vtt +(x+ u)ftt ]}u(l, t) sec2 f=0, (16b)

rA[ru2
t cos (u+f)−2ftvt +(x+ u)f2

t + rutt sin (u+f)− utt − vftt ]

−Cxut +EA(1/1x)(ux + 1
2v

2
x)=0, (16c)

rA[−rutt cos (u+f)+ ru2
t sin (u+f)+2ftut + vf2

t − vtt +(x+ u)ftt ]

−Cyvt +EA[vx (1/1x)(ux + 1
2v

2
x)+ vxx(ux + 1

2v
2
x)]+KGA(vxx −cx)=0,

rI(f2
t c+ftt −ctt)−Ccct −KGA(c− vx)+ (1/1x)(EIcx)=0; (16e)

and the boundary conditions

u(0, t)=0, v(0, t)=0, cx(0, t)=0, cx(l, t)=0, (17a–d)

[(F− mN) sec f−M4ax(l, t) sec2 f]−KGA[vx(l, t)−c(l, t)] tan f

−EA[ux(l, t)+ 1
2v

2
x(l, t)](1+ vx(l, t) tan f)=0. (17e)

The non-linear partial differential equations (16a–e) include the second-order spatial
derivatives of all the variables u, v and c. The five boundary conditions (17a–e) and one
constraint condition (3) are satisfied to solve those three equations. Equations (16a, b)
describe the rigid-body motions of the crank and connecting rod respectively, while
equations (16c–e) describe the flexural vibration of the connecting rod which is modelled
by Timoshenko beam theory. It is seen that the rigid-body motion and flexural vibration
are coupled. Even though the input torque is absent, the coupling still exists. Boundary
condition (17d) states that there is zero moment at revoluting joint B, while equation (17e)
describes the dynamic behavior of the slider in the X direction.
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2.3. Euler beam theory
If the slenderness of the beam is very small, the Euler beam theory can be used to

describe bending of the connecting rod by setting c= vx and neglecting the rotating inertia
effect of rI(f2

t c+ftt −ctt), one then obtains the following governing equations of u, f,
u and v respectively,

g
l

0

− rAr{rutt +[utt − vftt +2vtft +(x+ u)f2
t ] sin (u+f)+ [utt −ftt(x+ u)

−f2
t u] cos (u+f)} dx+M4r{rutt +[utt − vftt +2utft +(x+ u)f2

t ] sin (u+f)

+ [utt −ftt(x+ u)−f2
t u] cos (u+f)}−(M2/4)r2 + J2c)utt + t=0, (18a)

g
l

0

− rA{[−rutt sin (u+f)+2vtft − ru2
t cos (u+f)+ utt + vftt ]v+2utvt

+2rutut cos (u+f)− (x+ u)[rutt cos (u+f)− ru2
t sin (u+f)+ vtt

−(x+ u)ftt ]

+ rI[ftt − vxtt +fttv2
x +2ftvxtvx ]} dx−M4{[−rutt sin (u+f)− ru2

t cos (u+f)

+ utt +2vtft + vftt ]v+2utvt +2rutut cos (u+f)− (x+ u)

× [rutt cos (u+f)− ru2
t sin (u+f)+ vtt −(x+ u)ftt ]}+ {EAvx(vx + 1

2v
2
x)

+KGA(vx −c)+M4[−rutt cos (u+f)+ ru2
t sin (u+f)+2f1ut

+ vf2
t − vtt +(x+ u)ftt ]}u(l, t) sec2 f=0, (18b)

rA[ru2
t cos (u+f)−2ftvt +(x+ u)f2

t + rutt sin (u+f)− utt − vftt ]

−Cxut +EA[(1/1x)(ux + 1
2v

2
x)]=0, (18c)

rA[ru2
t sin (u+f)− rutt cos (u+f)+2ftut + vf2

t − vtt +(x+ u)ftt ]

−Cyvt +EA[vx(1/1x)(ux + 1
2v

2
x)+ vxx(ux + 1

2v
2
x)]−EIvxxxx =0; (18d)

and the boundary conditions at x=0, l, respectively,

u(0, t)=0, v(0, t)=0, vxx(0, t)=0, vxx(l, t)=0, (19a–d)

[(F− mN) sec f−M4ax(l, t) sec2 f]−EA[ux(l, t)+ 1
2v

2
x(l, t)](1+ vx(l, t) tan f)=0.

(19e)

The same differential equations (18c, d) of longitudinal and transverse vibrations were
derived by Chu and Pan [6], by using the equilibrium of forces and moments acting on
the differential element at x. Also, the rigid-body motion and flexural vibration are
coupled.
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2.4. Simple flexure model
For simplicity, neglecting the axial displacement u(x, t) and the rotating inertia effect,

one can obtain the governing equations of u, f and v respectively, and the boundary
conditions as

g
l

0

− rAr{(rutt − vftt +2vtft + xf2
t ) sin (u+f)− xftt cos (u+f)} dx

+M4r{rutt +[−vftt + xf2
t ] sin (u+f)− xftt cos (u+f)}

−((M2/4)r2 + J2c)utt + t=0, (20a)

g
l

0

− rA{[−rutt sin (u+f)− ru2
t cos (u+f)+2vtft + vftt ]v− x[rutt cos (u+f)

− ru2
t sin (u+f)+ vtt − xftt ]}+ rI[ftt −ctt +fttc

2 +2ftctc} dx

−M4{[−rutt sin (u+f)− ru2
t cos (u+f)+2vtft + vftt ]v

− x[rutt cos (u+f)− ru2
t sin (u+f)+ vtt − xftt ]}=0, (20b)

rA[ru2
t sin (u+f)− rutt cos (u+f)+ vf2

t − vtt + xftt ]

−Cyvt + 3
2EAv2

xvxx −EIvxxxx =0, (20c)

v(0, t)=0, vxx(0, t)=0, v(l, t)=0, vxx(l, t)=0, (21a–d)

[(F− mN) sec f−M4āx(l, t) sec2 f]− 1
2EAv2

x(l, t)(1+ vx(l, t) tan f)=0, (22)

where

āx(l, t)=−rutt sin (u+f)− ru2
t cos (u+2f)+2vtft + vftt − lf2

t .

Since all the effects of longitudinal displacement u(x, t) are neglected, the geometric
constraint (3) is reduced to the trivial transverse displacement condition (21c), which is in
the nature of a simply supported condition. With four boundary conditions (21a–d), the
fourth-order equation (20c) can be solved.

The additional equation (22) is the dynamic equilibrium equation for the slider, which
includes the elastic force, the normal force N, the external loading F, and the inertia force
of the slider. In order to bring the effect of equation (22) into governing equation (20c),
one lets

p(x, t)= 1
2EAv2

x(x, t), (23)

and rewrites equation (20) as

rA[ru2
t sin (u+f)− rutt cos (u+f)+ vf2

t − vtt + xftt ]

−Cyvt +3p(x, t)vxx −EIvxxxx=0. (24)

The value of p(x, t) in equation (24), instead of boundary condition (22) at x= l,
can be obtained by the integration of (1/1x)p(x, t) from x to l. Then, utilizing the
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value of p(l, t) from equation (23) by taking x= l, and the expression of equation (22), one
has

p(x, t)= p(l, t)−g
l

x

1

1x
p(x, t) dx

=
1

1+ vx(l, t) tan f
[(F− mN) sec f−M4āx(l, t) sec2 f]−g

l

x

EAvxvxx dx.

Badlani and Midha [8] studied the dynamic behavior of a slider-crank mechanism with
an initially curved connecting rod. Only the transverse deflection was considered, and this
was measured from the initially curved axis of the unstressed connecting rod. Hsieh and
Shaw [9] studied the dynamic stability and non-linear resonance of equation (24) with the
assumption that the crank was operated at constant angular velocity and the connecting
rod was made of a viscoelastic Kelvin-Voigt material.

2.5. Rigid-body model
When neglecting all flexibility, one obtains the rigid body motion of the slider-crank

mechanism. Assuming the crank and the connecting rod have uniform cross-sectional area,
and integrating equations (20a, b), one obtains the governing equations for u and f,
respectively, as

M3r{rutt +(l/2)f2
t sin (u+f)− (l/2)(ftt cos (u+f)}+M4r{rutt + lf2

t sin (u+f)

− lftt cos (u+f)}−((M2/3)r2)utt + t=0, (25a)

M3{(rl/2)utt cos (u+f)− (rl/2)u2
t sin (u+f)− (l2/3)ftt}+M4{rlutt cos (u+f)

− rlu2
t sin (u+f)− l2ftt}=0 (25b)

where M3 = rAl is the mass of the uniform connecting rod. Also, equations (25a, b) can
be obtained directly by using the Lagrange equation

1Tr/1u−(d/dt)(1Tr/1ut)= t, 1Tr/1f−(d/dt)(1Tr/1ft)=0,

where

Tr =(M1r2/6)u2
t +(M2l2/24)f2

t +(M2/2)(r2 sin2 (u)ut +(l2/4)f2
t

+ rl sin (u) sin (f)utft)+ 1
2M3(r2 sin2 (u)u2

t + l2 sin2 (f)f2
t

+2rl sin (u) sin (f)utft)

is the kinetic energy of the rigid body motion of the slider-crank mechanism. The
constraint equation (2) and governing equations (25a, b) for a constrained mechanical
system are a mixed set of algebraic and differential equations. Several numerical methods
have been used to solve such a system of equations (Wehage and Haug, [10]; Orlandea
et al. [11]). An in-depth discussion of these methods is not within the scope of this paper.
The main purpose here is to formulate the model of the slider-crank mechanism with
external torque.

3. 

From the physical meaning, it is valid to have zero moment (16a) at the revoluting joint
B. However, the boundary condition (16b) and the constraint condition (3) obtained in
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the present paper are different from those of Jasinski et al. [12] and Badlani and Kleinhenz
[5], who assumed zero displacement, v(l, t)=0, and utilized Newton’s second law to
balance the axial load, shear load and piston inertia force at x= l. Other investigators
(Badlani and Midha [8], Zhu and Chen [13], Tadjbakhsh and Younis [7]) assumed that
the axial displacement is small compared to the transverse displacement, and neglected the
contribution of the axial displacement to the inertia forces. Therefore, the right end of the
connecting rod was assumed to be simply supported.

When assuming zero transverse displacement at the end point B, v(l, t)=0, one then
has u(l, t)=0 from equation (3). Since u(l, t)= v(l, t)=0, there is no deformation at the
end point B, and the piston position from the elastic assumption of the connecting rod
will be the same as that from the rigid body assumption. However, in the present work
the end point B of the connecting rod moves freely and the displacements are related by
equation (3). Therefore, the piston position due to the elastic deformation could be
predicted. With the help of Figure 2, it is convenient to define the horizontal displacement
at point B as

Db = u(l, t)/cos f. (26)

Using the displacement relationship shown in Figure 2, one has v(l, t)= u(l, t) tan f,
given earlier as equation (3). The transient transverse amplitude, v(l, t), is then obtained
from equation (26) and the transient horizontal displacement Db at the end point B along
the X-axis is obtained.

A slider-crank mechanism with the usual proportions (connecting rod longer than crank)
has two limiting positions, both occurring when the crank and the connecting rod are
collinear, i.e., f=0. At the limiting positions, one has zero transverse displacement,
v(l, t)=0 from equation (3), and the horizontal displacement equals the axial
deformation, Db = u(l, t) from equation (26).

4. 

This paper provides four dynamic models of the flexible connecting rod. The geometric
constraint condition, describing the end point B as it moves along the X-axis, is introduced
into Hamilton’s principle to formulate the governing equations of the connecting rod. The
conclusions of the present work are

(1) From the non-linear dynamic modelling, it is seen that the crank is driven by an
input torque, and the energy is transferred to the connecting rod, so that the rigid-body
motion and flexural vibration are coupled.

(2) A motion-induced-vibration problem will arise in the slider-crank mechanism. Even
though the input torque is absent, the rigid-body motion and flexural vibration are also
coupled.

(3) A new definition of a revised boundary condition at the joint between the connecting
rod and slider is offered. The boundary condition of the connecting rod moving with the
slider is a time-dependent boundary support, and not a pure simple support.

(4) Stated in other words, the boundary constraint at end point B is released and is
instead v(l, t)= u(l, t)tan f.
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: 

XOY co-ordinate system
xAy moving co-ordinate system
A cross-sectional area of the connecting rod (m2)
Cx , Cy , Cc coefficients for viscous damping (Ns/m)
ei, ej unit vectors in the x and y directions, respectively
er, eu unit vectors of the rotation co-ordinates originating at O
E Young’s modulus (N/m2)
F external force acting on the slider
G shear modulus of elasticity (N/m2)
i, j unit vectors in the X and Y directions, respectively
I area moment of inertia about neutral axis (m4)
l length of connecting rod (m)
M2, M4 mass of crank and slider, respectively
N normal force acting on the slider
r length of the crank (m)
R position vector related to XOY coordinate system
t time (s)
u, v longitudinal and transverse displacements of the rod, respectively
u crank angle
m the coefficient of sliding friction
r mass density of connecting rod
f angle between X-axis and the undeformed axis of the connecting rod
c the rotation of the cross-section due to bending


