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This paper is a sequel to reference [1]. In that paper, the dynamics of the steelpan notes
were developed as systems of non-linear mode-localized oscillators. The present paper
examines the coupled note-note and note-skirt systems on the steelpan modelled as a plexus
of non-linear oscillators interconnected by linear mechanical filters. The tonal qualities of
a note depend on the degree of coupling and the closeness in frequency of the excited modes
on the interacting subsystems. Modes above the fundamental (the partials) are produced
by internal and combination resonances.

7 1997 Academic Press Limited

1. INTRODUCTION

In an earlier paper [1] (hereafter referred to as Part I), the first author described the physical
structure of the steelpan and examined the response of the notes to impacts produced by
striking the notes with the stick (mallet). Each note was modelled as a non-linear system
for which the governing equations for note vibrations contained only linear and quadratic
terms. The vibrations on these notes are confined to an elliptically shaped area of the note
[2]. The exchange of energy between resonances on a note produces amplitude as well as
frequency modulations.

Situations always arise on the steelpan where the mechanical coupling between
subsystems (notes and skirt) is important. When the pan is being tuned for example, some
notes may, by chance, have almost the same fundamental frequency as the desired
frequency of the note to be tuned. The coupling of these notes makes it extremely difficult
for the panmaker to tune the note. Coupling between note and skirt produces a similar
difficulty. In the latter case the coupling remains after tuning is completed and this
degrades the tonal quality.

For a fuller discussion on the steelpan and non-linearities found on other instruments
the reader should consult Part I and the reference contained therein.

2. THEORETICAL DEVELOPMENT

2.1.        

Consider the system of N-connected domains V1, V2, . . . , VN (see Figure 1). All of these
domains, except one (on the steelpan, the cylindrical skirt), are of similar geometry
(describing the shallow cap-like notes) but they differ in geometrical details (size, rise etc.)
and in elastic properties. The domains are connected by means of elastic elements (defined
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Figure 1. (a) the N+1 domains of the system; (b) a section of a typical tenor steelpan.

in this paper as internotes, for panmakers have not yet found a term for these pan elements)
represented by the panface exclusive of the notes. The connection of internotes form the
domain V0. All notes are considered to be non-linear systems while the physically largest
element, the skirt, is modelled linearly.

The transmission conditions which describe processes in V0, as influenced by the N
domains, are assumed to produce linear paths connecting the N domains. On the steelpan,
this condition of linearity is made possible by the process of hammering the internotes
to produce a stiffened plate with resonant frequencies higher than those of the notes. In
this way, the internotes are made to function as linear mechanical filters at the note
frequencies. Electronically, the steelpan can be modelled as a plexus of non-linear
oscillators interconnected by R-C filters.

2.2.     

In considering the vibrations of the sub-systems of the steelpan, the work of Part I is
extended to include the two most frequently encountered cases of domain interaction on
the properly constructed pan: (1) two-domain note–note interaction and (2) two-domain
note–skirt interaction. At any time, in any one of these interactions, one domain may be
regarded as the receiver and the other as the source. The roles of source and receiver are
interchangeable.

As in Part I, only quadratic non-linearities are considered and they appear, in the system
of equations, to the first order in the gauge parameter o. A cubic term (if mid-surface
stretching is included) would be to second order in o.

There are two sets of quadratic terms to consider. The first of these contain products
describing interactions between components of the same domain (the a-terms) and those
describing the non-linear interaction between the source and receiver domains (the
b-terms). There will also be terms describing linear interactions between the two domains
(the G-terms). The spatial separation of the two domains requires the introduction of
complex coupling coefficients b= b eib and G=G eid to account for the phase shifts
produced on transmission across the connecting domain V0.

On a 3-D system such as the steelpan there is, in general, the possibility of multiple paths
between source and receiver, with each path producing its own amplitude- and
phase-modified signal at the receiving domain. These multiple paths would be of particular
importance during and immediately following the initial transient produced by the stick
impact. Since however, the typical dimension (L) of any substructure (domain) on the pan
satisfies the condition L�c/ f (where c is the sound velocity in steel and f is the signal
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frequency), while the note is sounding, a single pair of phase and amplitude values may
be used to describe the resultant signal for each frequency component arriving at the
receiver domain.

The notes on a steelpan are excited by stick (hammer) impact which produces a short
duration impact phase followed by a longer duration free vibration phase [1]. As in Part
I, the transverse vibration displacement fields on domain d can be expressed in a form
separable in space and time as

Wd (r, t)= s
a

n=1

und (t)Vnd (r),

where Vnd (r) are appropriate spatial functions (mode shapes) satisfying the boundary
conditions of the domain, n is the mode number, and und (t) are unknown functions of time
only. Solutions are sought for the component und (t) on the coupled system using a version
of equation (2) of Part I modified to include domain–domain coupling. The governing
equations are

ünd +v2
ndund + o$2mndu̇nd − s

a

j=1

s
a

k=1

a{d}
jkn ujdukd − s

a

j=1

s
a

k=1

s
2

p=1

b{nd)
jp,kp̄ujpukp̄

− s
a

j=1

G{nd}
jd� ujd� − fd (t)%=0, (1)

where d defines the source domain and d� the receiver domain (d�=1(2) when d=2(1));
p̄=1(2) when p=2(1); und are the displacements; the dots refer to differentiation with
respect to time t; vnd are the natural frequencies of the linearized subsystems with
v1dQv2d , . . . ,Qvad ; mnd are the damping coefficients; a{d}

jkn are constants with a{d}
jkn = a{d}

kjn ; fd (t)
is a short duration external impulse which is set to zero after impact for the free system.

In the multi-time scale procedure [3, 4], one defines t0 = t, t1 = ot, where the main
oscillatory behaviour occurring at frequencies vn are associated with the fast time scale
t0, while amplitude and phase modulations due to damping and non-linearities take place
on the slow time scale t1. Also, the time derivative is d/dt=D0 + oD1 where Dn = 1/1tn .
The procedure allows the independent variable un to be expanded in the form
und = un0d (t0, t1)+ oun1d (t0, t1)+O(o2). By substituting this equation into equation (1),
transforming time derivatives and equating coefficients of like powers of o, one obtains the
following set of equations for the coupled note-note or note-skirt system during the free
vibration phase:

order o0,

D2
0un0d +v2

ndun0d =0; (2)

order o1,

D2
0un1d +v2

nun1d =−2D0(D1 + mnd )un0d + s
a
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jd� uj0d�. (3)
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The general solution of equation (2) takes the form un0d =And (t1) eivnd t0 +CC where
And = 1

2and eifnd with and and fnd being functions of the slow time t1 and representing the
amplitude and phase of the nth Fourier component of the displacement, respectively.

2.2.1. Case 1: note–note interaction

The interacting pair of notes of importance on the steelpan is the combination of an
outer note and an inner note tuned to the upper octave (refer to Figure 1(b) where the
pairs {B4; B5} and {F(

4 ; F(
5 }, for example, can be identified). These neighbouring notes are

usually tuned to operate in ‘‘sympathetic’’ vibration, with the upper octave acting as the
‘‘second harmonic’’ when the lower octave is played. On some steelpans, note pairs of this
type can be found that are almost entirely dependent on note–note coupling for tonal
quality and structure. In the system of equations governing the coupled pair of notes, the
note of lower frequency (domain 1) is described as a 3-DOF system, and the higher note
(domain 2) as a 2-DOF system. This is a sufficient description, as the third mode on the
higher note and the fourth mode on the lower note have been observed on most steelpans
to be very low in amplitude and will therefore produce relatively weak interaction products
in combination resonances.

The resonances studied here, correspond in domain 1 to an internal resonance with
v21 1 2v11, a combination resonance with v31 1v11 +v21, and in domain 2 to internal
resonances with v12 1 2v11 and v22 1 2v12. The closeness of these resonances are described
by the detuning parameters s1, s2, s3 and s4, where

v21 =2v11 + os1, v31 =v11 +v21 + os2,

v12 =2v11 + os3, v22 =2v12 + os4. (4)

The solvability conditions are obtained from equations (2) to (4) by the procedure
outlined in Part I. The separation of real and imaginary parts convert these solvability
equations to

a'11 =−m11a11 +
a{1}*

121

4v11
a11a21 sin g1 +

a{1}*
231
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where the prime denotes d/dt1; ub and dG represent the phase angles corresponding to the
b and G coefficients in each term; a{d}*

jkn = a{d}
jkn + a{d}

kjn ; and

g1 =f21 −2f11 + s1t1, g2 =f31 −f21 −f11 + s2t1, g3 =f12 −f21 + (s3 − s1)t1,

g4 =f22 −2f12 + s4t1, g5 = g1 − g2 +2g3 + g4. (6a–e)

Varying the values in the parameter set (v, m, s, a, b, G) allows the full range of
modulation features to be observed on the coupled note–note system to be modelled
mathematically.

2.2.2. Case 2: note-skirt interactions
A case often encountered on the pan is the interaction between the note being played

and the skirt. When this occurs, it is usually the case that a single excited mode on the
skirt will interact with the note. Overcoupling however can have undesirable effects as the
tonal quality of the note is lost.

The skirt when left at its full un-cut length for the lower frequency pans (the bass
instruments), is a cylindrical shell with two circumferential ridges (see Figure 2). These
ridges serve as stiffeners on the original steel drum. As if by design, these stiffened
cylindrical shells were ‘‘made to order’’ for this instrument. Because of the stiffeners, high
frequencies will excite ‘‘local’’ modes in which vibration occurs predominantly in a small
section of the stiffened cylinder. This tends to reduce note-skirt coupling in many cases.

Two resonances, corresponding to the second and third non-linear modes, are
considered for the note (domain 1, modelled as a 3-DOF system). At the levels of excitation
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Figure 2. Sketch of a typical bass pan. Skirt length=88 cm, diameter=57 cm.

attained on the pan while being played, no non-linear effects have been detected
experimentally on the skirt. A single, linear mode, is therefore considered for the skirt
(domain 2, modelled as a 1-DOF system). To express quantitatively the nearness of these
resonances one defines the detuning parameters s1, s2 and s3 according to

v21 =2v11 + os1, v31 =v11 +v21 + os2, v12 =v1 + os3. (7a–c)

Applying these conditions to the system equations yields the following solvability
equations:
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where

g1 =f21 −2f11 + s1t1, g2 =f31 −f21 −f11 + s2t1, g3 =f12 −f11 + s3t1. (9a–c)

3. EXPERIMENTAL AND COMPUTATIONAL METHODS

The methods for data acquisition and note excitation are the same as those described
in Part I. Two velocity transducers were used, however, to simultaneously monitor each
of the two interacting regions. Two sets of data were acquired for each note-note pair by
exciting each note, in turn, by stick impacts. For the note-skirt interaction, impacts were
applied only to the note. The velocity data were analyzed using the Short-Time Fourier
Transform (STFT) with the Gaussian window set as in Part I and the corresponding
displacement amplitudes and phases deduced from the transformed velocity data. The nth
Fourier component in domain d is represented by Snd . As shown in Part I, the multi-time
analysis can be compared with the experimental data through the ‘‘equivalence’’ and 0 =Snd =
and fnd 0 arg (Snd ).

Equations (5a–j) and (8a–h) were integrated numerically using a fourth order
Runge–Kutta routine to produce discretized values for and and fnd at time steps of 0·1.

4. RESULTS AND DISCUSSION

4.1.    

Following the procedure in Part I, the stick impacts were tabulated in the musical
manner from ‘‘very soft’’ ( pianissimo) to ‘‘loud’’ (forte) as judged from the acoustical level
of the tone.

All numerical computations on the equation system (5a–j) and (8a–h) were done with
parameter values chosen to closely (but not necessarily exactly) model the tones produced
on the pan.

4.2.   3 - 

Tone structures are shown for the D3 (146·8 Hz) note on a bass pan played at the forte
level in Figure 3 and at the piano level in Figure 5. In both cases there are note-skirt
interactions between the fundamental mode on the note and a mode of frequency 179 Hz
which was found to be confined mainly to the lower third portion of the skirt between
the lower stiffener and the bottom rim. To excite this mode on the skirt by striking the
note on the panface, there had to be sufficiently strong coupling of this note to this
subsection of the skirt.

4.2.1. Forte level

On a normal level of amplitude resolution (Figure 3(a)) there appears nothing unusual
about the tone structure of this note. The non-linear interaction between the fundamental
resonance corresponding to {nd}= {11} and the internal resonance {nd}= {21} show up
as slow but pronounced modulations of the amplitudes S11 and S21 as the two modes
constantly exchange energy. On the frequency plot (Figure 3(c)) one observes the
corresponding low frequency modulations discussed in Part I.

Under higher resolution (Figure 3(b)), a faster low-level modulation is observed on the
amplitude profile S11. On the frequency plot Figure 3(c), the corresponding frequency
modulation is quite significant. The frequency modulation on the fundamental mode
is seen to grow steadily as the tone decays. The depth of frequency modulation
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Figure 3. Experimental results for the bass D3 note played forte with skirt coupling: (a) displacement STFT,
(b) STFT at higher resolution, (c) frequency modulation on f11 (=146·9+f'/2p Hz), (d) frequency modulation
on f21 (=294·0+f'/2p Hz).

increases to as much as 2·5 Hz, representing a 1·7% change in frequency of the tone. While
this surely represents significant changes in intonation, it occurs when the intensity of the
tone has fallen to low levels. Nevertheless, this modulation was clearly audible as a warble,
whenever the note was played. This warble could be stopped by clamping the lower rim
of the skirt, clearly indicating that the effect was due to note-skirt coupling. There are no
corresponding modulations of any significance on the higher modes.

The velocity STFT’s were maximized at f11 =146·9 Hz (mode 1) and f21 =294 Hz
(mode 2).

This note-skirt system was modelled numerically and the results shown along with the
frequency diagram in Figures 4(a–d). Modelling parameters were:

a211 = a121 =0·0125, a112 =0·025, a123 = a213 =0·015, a132 = a312 =0·005, a231 = a321 =0·01,
all b=0·001, G{11}

12 =0·003, G{12}
11 =0·004, m11 = m21 = m31 =0·0006, m12 =0·0004

s1 =−0·002, s2 =−0·01, s3 =−0·045. Initial amplitudes where, forte level,
a11 =1, a21 = a31 =0, a12 =0·08.

Observe the strong similarities in the details of the frequency diagrams obtained
theoretically (Figure 4(a, c, d)) and experimentally (Figure 3(a, b, c)). The frequency
modulation characteristics are properly reproduced in the mathematical synthesis. The
non-linear domain-to-domain coupling constants b{nd}

jp,kp̄ are quite small (b=0·001) resulting
in an essentially linear note-skirt interaction.

The modulation which appears on the amplitude profile a11 (the theoretical equivalent
to S11) is described by the term (G{11}

12 /2v11)a12 sin (g3 + dG ) which appears in the expression
for a'11 (equation (8a)). The angle g3 contains a term (v12 −v11)t1/U which shows that the
modulation is the result of a ‘‘beat’’ effect between the modes {nd}=11 and {nd}= {12}
on a time-scale t1 with angular frequency = (v12 −v11)/U =.

The steady growth in the level of frequency modulation as the tone decays can be
explained with the term −(G{11}

12 /2v11)(a12/a11) cos (g3 + dG ) which appears in the
expression for the frequency f'11 (equation (8d)). Because of the long persistence of the skirt
vibrations and the faster decay of the note vibrations (as an example, see Figure 7(a, c)),
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Figure 4. Analytical results for the simulated D3 note played forte with skirt coupling: (a) amplitudes of note
components, (b) amplitude of skirt component, (c) note components under higher resolution, (d) frequency
modulation on v11 (=1+f'11).

the amplitude ratio a12/a11 actually increases as the tone decays, increasing the level of the
frequency modulation. The cosine factor accounts for the periodicity.

4.2.2. Piano level
The experimental results for the D3 note excited at the piano level is shown in Figure 5,

while in Figure 6 the numerically modelled note is shown for the same modelling

Figure 5. Experimental results for the bass D3 note played piano with skirt coupling: (a) displacement STFT,
(b) STFT at higher resolution, (c) frequency modulation on f11 (=146·9+f'/2p Hz), (d) frequency modulation
on f21 (=294·0+f'/2p Hz).
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Figure 6. Analytical results for the simulated D3 note played piano with skirt coupling: (a) amplitudes of note
components, (b) amplitude of skirt component, (c) note components under higher resolution, (d) frequency
modulation on v11 (=1+f'11).

parameters used at the forte level but with initial amplitudes: a11 =0·5, a21 =0, a31 =0,
a12 =0·04. Comparing Figures 5(a–c) with Figures 6(a, c, d), one finds that all
the amplitude modulation and frequency modulation features for this note can be
accounted for in the theory. One also observes that towards the end of the tone, the
depth of frequency modulation on the fundamental mode ({nd}= {11}), produced by
the note-skirt coupling, is greater when the note is played at the piano level than when
it is played at the forte level. This is a direct result of the greater amplitude ratio
a12/a11 (or its equivalent S12/S11) expected in the dying stages of the tone in the former
case.

In Part I it was shown that the tonal structure of the steelpan note is very dependent
on the intensity of the impact, with a greater percentage of the energy going into the higher
modes (the partials) when the note is played louder. With linear coupling between note
and skirt it is now observed that the frequency modulation features produced by this
coupling becomes more significant as the note is played softer.

4.3.   (
3    - 

The ‘‘double-second’’ instrument consists of a pair of steelpans with notes of frequencies
in the musical range F(

3 (185·0 Hz) to A5 (880·0 Hz). The double-second tested, carried a
skirt of length 25 cm, diameter 57 cm and sheet thickness 0·085 cm.

Figure 7 shows the time-histories and frequency spectra for the F(
3 note and for the

skirt on this instrument. Excitation was done using the stick and striking, in turn, the
note and then the skirt. Figures 7(b) and 7(d) represent spectra for the velocity data so
they show a high frequency emphasis (proportional to frequency) over the corresponding
spectra for the displacements. The relative amplitudes of the components on the
skirt spectra depend on time as well as the location of the transducer monitoring the
motions of the skirt. Of immediate importance here is the much longer duration of the
skirt excitation over that of the note and the near coincidence of the 186·0 Hz
(fundamental) f11 component on the note and the 183·0 Hz (dominant) f12 component on
the skirt.
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Figure 7. Experimental time histories and spectra for the F(
3 note and the skirt on the double-second pan:

(a) note time-history, (b) note spectrum, (c) skirt time-history, (d) skirt spectrum.

For the note played forte, Figure 8 shows the displacement amplitudes for three note
components (S11, S21, and S31) and for the 183 Hz component (S12) of the skirt. The velocity
data from which these results were computed were obtained by monitoring the note and
the skirt simultaneously. There are some important features in these results which represent
a case of strong note-skirt coupling.

In Figure 8(b), the skirt first responds to the impulse imparted directly to the note by
the stick, with an initial rapid rise in displacement amplitude. This is followed at first by
a short duration decay, then the motion is fed by the energy transferred from the note to
the skirt. This transfer is accompanied by a rapid decay of the motion on the note (see
Figure 8(a) where S11 decays rapidly). The decay on the note is halted somewhat as energy
is transferred from the skirt back to the note, but decay continues until the amplitude of
the first mode drops to almost zero after 0·6 s. Thereafter the motion of the note is
controlled by energy transfers from the skirt.

Accompanying these amplitude modulation features are the changes in the frequency
f11 of the fundamental mode on the note. Figure 8(d) shows the frequency (obtained from
the time derivative of the phase f11) as it changes from a value varying around 186 Hz
for the first 0·6 s to a value varying around 183 Hz (the value for the skirt component)
for the remainder of the duration of the tone. This shows that the pumping action of the
skirt on the note dominates the note dynamics after 0·6 s.

Of direct importance are the very low levels observed for both the internal resonance
(v21 1 2v11) and the combination resonance (v31 1v11 +v21). Since these are the
resonances that produce the partials on the steelpan, this note produces a rather dull tone.
The fact that these resonances are observed at such low levels signify the absence of strong
mode confinement—a result of the strong note-skirt coupling. Mode confinement,
necessary on the steelpan for the tonal quality of the instrument, can therefore be destroyed
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Figure 8. Experimental results for the double-second F(
3 note played forte with skirt coupling: (a) note

displacement STFT, (· · · · · , S31), (b) STFT of the skirt component (c) phase-time response of the first mode on
the note, (d) frequency modulation on f11 (=185·0+f'/2p Hz).

when it is possible to simultaneously excite dominant modes of nearly similar frequencies
on the skirt that couple strongly to modes on the note.

The velocity STFT’s were maximized at f11 =186 Hz (mode 1) and f21 =374 Hz
(mode 2).

Figure 9. Analytical results for the simulated double-second F(
3 note played forte with skirt coupling: (a)

amplitudes of note components, (b) amplitude of skirt component (c) phase-time response of the first mode on
the note, (d) frequency modulation on v11 (=1+f'11).
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This note-skirt system was modelled numerically and the results shown along with the
frequency diagram in Figures 9(a–d). Modelling parameters were:

a211 = a12 =0·001, a112 =0·005, a123 = a213 =0·001, a132 = a312 =0·001, a231 = a321 =0·001,
all b=0·0, G{11}

12 =0·0016, G{12}
11 =0·0033, m11 = m21 = m31 =0·001, m12 =0·0003 s1 =−0·01,

s2 =−0·003, s3 =−0·01. Initial amplitudes were, forte level: a11 =1, a21 = a31 =0,
a12 =0·0.

The good agreement between Figure 8 and Figure 9 confirms the applicability of the
present theory to the coupled note-skirt system on the steelpan. The strength of the
note-skirt coupling is determined by the values for G{nd}

jd� . While the values used here for
these coupling coefficients (0·0016 and 0·0033) are somewhat smaller than those for the
D3 note-skirt coupling on the bass (0.003 and 0·004, respectively) it should be noted that
the coupled modes in the present example are closer in frequency (186 Hz and 183 Hz) than
the coupled modes are on the bass (147 Hz and 179 Hz). The partials remained strong on
the D3 bass note while the partials were almost insignificant on the F(

3 double-second note.

4.4.    4  5  

On the tenor steelpan tested, the A4 (440·0 Hz) note which is an outer note was tuned
by the panmaker to couple strongly to the A5 (880·0 Hz) inner note. The two notes act
as a lower-octave-upper-octave sympathetic pair. The tone structures for the A4 note
played mezzo forte (moderately loud) are shown in Figure 10(a) (the velocity time-history)
and in Figure 10(c) (the STFT amplitude profile). Figure 10(c) shows an initially rapidly

Figure 10. Comparison of experimental results for the coupled A4 and A5 notes on the tenor pan when A4

is played forte: (a) A4 velocity time-history, (b) A5 velocity time-history, (c) STFT of A4 components, (· · · · · , S31),
(d) STFT of A5 component, (e) modulation of f11 (=440·0+f'/2p Hz), (f) modulation on f12

(=881·0+f'/2p Hz).
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decaying amplitude profile followed by a period of almost constant amplitude, then by a
period of slow decay. The frequency modulation accompanying these amplitude changes
is shown in Figure 10(e). Notice the initial fall and rise in frequency immediately after
impact.

The corresponding structures for the A5 note as it responds to the impact on the A4 note
(Figures 10(b), 10(d) and 10(f)), show a strongly modulated 880 Hz component. These
strong modulations are often observed for sympathetic pairs. STFT’s were maximized at
f11 =440 Hz and f12 =881 Hz.

The interaction process can be understood from the numerically modelled system, the
results for which are shown in Figure 11. The numerical model reproduces the main
amplitude and frequency modulations observed on the real system (compare Figures 10
and 11). The amplitude modulations clearly show the continuous exchange of energy
between the two notes. The main channel for energy transfer from A4 to A5 is through the
term −(b{12}

11,11/4v12)a2
11 sin (g1 + g3 + ub ) in equation (5g). This represents a non-linear

(quadratic) coupling of the fundamental on the A4 note to the fundamental on the A5 note.
The reverse coupling of these two modes is through the term +(b{11}

12,11/
4v11)a12a11 sin (g1 + g3 + ub ). The periodicity of these two non-linear terms depend on the
detuning parameter s3. The frequency modulations on these two modes are similarly
accounted for by the terms containing b{11}

12,11 and b{12}
11,11 in equations (5d) and (5i), respectively.

The frequency modulations are more pronounced on the model (Figures 11(c) and 11(d))
than they are on the real note (Figures 10(e) and 10(f)). Modelling parameters were, for
the A4 note (domain 1):

a211 = a121 =0·065, a112 =0·03, a123 = a213 =0·06, a132 = a312 =0·001, a231 = a321 =0·03,
m11 =0·0008, m21 =0·005, m31 =0·002, s1 = s2 =0·003 b{11}

12,11 =0·02, all other b=0·001,
G{21}

12 =0·012. Initial amplitudes were a11 =0·65, a21 = a31 =0.
For the A5 note (domain 2), the parameters were:

a211 = a121 =0·001, a112 =0·001, m12 =0·0008, m22 =0·0008, s3 =0·03, s4 =0·001,
b{12}

11,11 =0·12, all other b=0·001, G{12}
21 =0·06; initial amplitudes were a12 =0·02, a22 =0.

Figure 11. Comparison of analytical results for the coupled A4 and A5 notes on the simulated tenor pan when
A4 is played forte: (a) amplitudes of A4 components, (— —, a21; · · · · ·, a31), (d) amplitude of A5 component, (e)
modulation on v11 (=1+f'11), (f) modulation on v12 (=2+f'12).
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5. CONCLUSION

The motion of the coupled note-note or note-skirt system retains some of the
characteristics of the single note dynamical system, as expected, when the coupling
coefficients are small or when the mode frequencies are not closely related harmonically.
The modulation characteristics of the moderately or strongly coupled systems are quite
different from those of the uncoupled system. Unique tonal qualities are obtained on note
pairs in sympathetic vibration with the upper octave often showing deep amplitude and
frequency modulations.
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