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An analytical method is presented for computing the vibrational response and the net
transmitted power of bending wave fields in system consisting of coupled finite beams. The
method is based on a wave approach that utilizes the reflection and transmission coefficients
of the different beam joints to couple the elements. These reflection and transmission
coefficients are those derived by considering the coupling between the corresponding
semi-infinite elements. The predicted results are in almost perfect agreement with exact
calculations of the detailed response and net transmitted power. The results are valid for
frequencies above which the influence of the reflected near fields for each of the beam
elements is negligible. The method is demonstrated on different configurations of beams
coupled in extension of each other.
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1. INTRODUCTION

Determination of the theoretical response of fundamental simple elements such as
uncoupled beams or thin plates can normally be achieved without too much difficulty.
However, the analysis of a combined system, that is, one built up by joining several
elements together, will generally prove to be quite a challenge as the complexity escalates
rapidly with the number of elements involved. Because of practical difficulties, some sort
of simplification of the problem will usually be required. This can either be done by
employing a numerical method for calculation of the exact response, for example,
the Finite Element Method (FEM), or an analytical method which seeks only to
determine the approximate response of the structure given as coarse levels. Among
the latter can be mentioned Statistical Energy Analysis (SEA) [1], the Mean Value
Method (MVM) [2] and Power Flow Analysis (PFA) [3]. A frequent difficulty with
the establishment of such models is to include an adequate description of the
coupling between elements. For example, in SEA the coupling is described by the
so-called coupling loss factors. The frequently employed expressions for these coupling
loss factors are based on a travelling wave approach and require a relative high modal
overlap [4]. In order to further advance the development of analytical methods, it would
be beneficial to have a better understanding of the complex coupling between simple
elements.

The effect of coupling various elements can be analyzed by studying the expressions for
power transmissions which result from applying one of the well known methods such as
the use of receptances [5], transmission matrices [6], the impedance coupling method [7]
or the series solutions of the uncoupled elements [8]. Some of the simpler structures that
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can be considered are networks: that is, systems consisting of beams subject to bending
and/or longitudinal waves [9–11]. However, the results obtained are specific, and it is rather
difficult to reduce the information when the goal is to obtain relative simple general
statements concerning the power transmission between elements.

In this paper an alternative method is described for calculating the response and
transmitted power of bending waves in structures consisting of beams coupled in extension
of each other. The method is less straightforward in its approach and less applicable in
its scope than, for example, the dynamic stiffness method [12]. However, its purpose is to
describe the response and power transmission in a way that gives a better physical insight.
The resulting equations will therefore be easier to reduce to relatively simple parameters
for how elements influence each mutually. Possible applications can be mentioned:
extension of SEA to use in the medium frequency range characterized by few modes [13]
and further development of MVM to handle coupling between elements. Because the
description given should be as simple as possible and the main frequency ranges of interest
are the medium and high frequency ranges, it is assumed that the influence of the near
fields for each beam element is negligible.

In reference [6] (chapter III,3) the response of a single uncoupled beam has been deduced
from the behaviour of an infinite one. This technique, which also can be termed ray tracing,
is here extended further to deal with a structure consisting of beams coupled in extension
of each other. The approach utilizes the fact that the response of a beam can be written
as the sum of a propagating wave and an infinite number of reflected waves. The coupling
between each beam is described by the reflection and transmission coefficients which are
found by considering the coupling between semi-infinite elements [6, 14, 15]. The sums of
reflected/transmitted waves can be written as geometric series, and reduced to the so-called
generalized reflection and transmission coefficients [16] which also have been employed to
study disorder in one-dimensional systems [17, 18] and the behaviour of finite systems [15].
Here, this apparently somewhat cumbersome ray tracing approach is shown to reduce to
a simple recursive routine that permits determination of the response and net transmitted
power in each beam element. The first part of this paper serves as an introduction to the
ray-tracing technique and shows how it can be employed to predict the response of
uncoupled and coupled beams. In the second part this procedure is extended to a recursive
algorithm which permits an easy determination of the response and net transmitted power
of each beam of a large beam structure. The last part is concerned with further extension
of the method to more general one-dimensional structures.

2. OUTLINE OF THE THEORY

The wave summation approach [2, 6] permits the introduction of reflection and
transmission coefficients in the description of finite systems. The reflection and
transmission coefficients which are used in the following are those related to wave
amplitudes [22]. The time factor ejvt is implicitly included in the expressions for
displacement and force, and distributed damping is taken into account in the analysis. This
implies a complex wavenumber

k1 4zm'/Bzv(1− jh/4), (1)

where h is the loss factor, m' is the mass per unit length, B is the flexural rigidity and v

is the angular velocity. The introduction of a complex wavenumber k in the terms
exp(−jkx) and exp(−kx) causes the propagating wave to decay exponential and the
evanescent fields to propagate in the direction opposite to the direction of the decay [6,
see pp. 200–201].
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The first step is to derive the response normalized with respect of the force (the mobility)
in physical terms; that is, expressed by the reflection coefficients at the boundaries.
Consider the uncoupled element being the end driven beam depicted in Figure 1.

The beam has length l and is excited at x=0 with an harmonic point force F0. The
reflection coefficients at the ends are r0 and r1 and the corresponding near field coefficients
are rj0 and rj1. The forced response of the beam can be expressed as the sum of the
propagating wave and an infinite number of its reflections. Starting at x=0 with the
propagating wave, the displacement response w(x) of the beam can be written as

w(x)2w0{e−jkx +e−kx + r1 e−jk(2l− x) + rj1 e−jkl e−k(l− x)}

+w0{r0r1 e−jk(2l+ x) + r1rj0 e−jk2l e−kx + r0r2
1 e−jk(4l− x) + r0r1rj1 e−jk3l e−k(l− x)}

+· · · . (2)

Consider the first line of the right side of equation (2). The term e−jkx corresponds to
a wave propagating from x=0 towards the right, and e−kx to a near field wave also
propagating from x=0 towards the right. The terms r1 e−jk(2l− x) and rj1 e−jkl e−k(l− x) are
caused by the incident wave e−jkx and correspond to a reflected wave and near field wave
both propagating towards the left. The second line of the right side of equation (2)
corresponds to the reflections caused by the term r1 e−jk(2l− x), etc. Equation (2) is not exact,
because the contributions resulting from the reflections of the near fields at the ends have
been omitted. The near fields will in principle extend from one end to the other where they
will be reflected partly as a near field and partly as a bending wave. Of course, pure near
fields will normally not contribute to the energy transfer; however, they will in the case
in which the field consists of mixed evanescent and propagating waves [20, 21]. To omit
the contribution originating from the reflected near fields is a permissible approximation
for larger values of the Helmholtz number kl, because of the exponential decay of the near
fields.

The response expressed as equation (2) can further be approximated by rewriting it as

w(x)2w0$ s
a

n=0

(r0r1 e−jk2l)n%{e−jkx +A e−kx + r1 e−jk(2l− x) + rj1 e−jkl e−k(l− x)}. (3)

The transition from equation (2) to equation (3) is incorrect with regard to the near field
at x=0; the amplitude of this near field is therefore temporarily assigned the value A.
For higher values of the wavenumber k, the influence of the near field A e−kx will be
negligible on the response for positions near the end x= l. Thus, with the exception of
the lowest frequencies, equation (3) is seen to satisfy the boundary conditions at x= l
because the reflection and the near field reflection coefficients were determined to satisfy
equation (3) with A=0. The values of A and ‘‘w0 times the infinite sum’’ can be found

Figure 1. A beam of length l shown with reflection coefficient r and near field reflection coefficients rj for
the incident bending wave. The subscripts 0 and 1 refer to position. The beam is driven at the end x=0 by a
harmonic point force F0.
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by using the boundary conditions at x=0. Because there is no external moment excitation,
this gives

12w(x)/1x2=x=0 =0c A2 1+ r1 e−jk2l for e−kl 1 0. (4)

The transverse force equilibrium gives

F0 =B
13w(x)

1x3 bx=0

c F0 2w0k3
BB$ s

a

n=0

(r0r1 e−jk2l)n%{j−1− r1(1+ j) e−jk2l}. (5)

The mobility Y(x, 0) can then be obtained simply by forming the ratio of equations (3)
and (5), thereby eliminating the infinite sum, and by multiplying the result by jv; that is,

Y(x, 0)=
jvw(x)

F0
2 j

m'cB

e−jkx +(1+ r1 e−jk2l) e−kx + r1 e−jk(2l− x) + rj1 e−jkl e−k(l− x)

j−1− r1(1+ j) e−jk2l , (6)

where cB is the phase velocity. Thus, the mobility can very instructively be interpreted as
consisting of two main factors represented by the numerator and denominator respectively
of the second fraction on the right side of equation (6). First, the numerator represents
one propagating wave, one reflected wave from the x= l end and the near fields at the
ends. Second, the denominator represents the infinite number of reflections that build up
resonances when wavefronts return in phase, a phenomenon referred to as wave-train
closure [6]. Of course, the resonances build up at frequencies for which the denominator
assumes its minimum values. Throughout the derivation of equation (6), it has been
assumed that e−kl 1 0, and equation (6) is thus an approximation valid for, e.g., klq p.

In order to illustrate the previous results, consider the beam to be free at x= l; the
reflection coefficients are then r1 =−j and rj1 = 1− j. Substituting these coefficients in
equation (6) yields an approximate expression for a force driven free–free beam in a form
similar to that derived in reference [2]. Results computed from the approximate expression
are shown in Figure 2 together with exact analytical results.

The approximations made in the derivation of equation (6) neglect the coupling between
the near fields’ which occurs at low frequencies. As a consequence of these approximations
it is noted that a non-existing ‘‘phantom’’ frequency appears. However, above the first
natural frequency of the system the approximate solution and the exact solution are seen
to coincide as the errors are of order exp(−kl).

3. SYSTEM CONSISTING OF TWO COUPLED BEAMS

The beam considered in the previous subsection is now connected to a second beam to
form a coupled system, as shown in Figure 3.

The response of the first beam span of this system can be determined from the mobility
expression, equation (6), simply by replacing the reflection coefficients r1 and rj1 with an
appropriate set of reflection properties, say, R1 and Rj1. These quantities, that also have
been employed in [16], will here be called ‘‘net reflection’’ and ‘‘net near field reflection’’
because they correspond to the net influence that this second beam has on the first beam.

The definitions of R1 and Rj1 as well as of the associated ‘‘net transmission’’ T1 and ‘‘net
near field transmission’’ Tj1 are indicated in Figure 4(a), which shows that the original beam
for this purpose is temporarily assumed to be semi-infinite. Whereas the ordinary reflection
coefficients r12, r21 and transmission coefficients t12, t21 specify the coupling between two
semi-infinite systems (see Figure 4(b)), the net reflection R1 and transmission T1 describe
the coupling between a semi-infinite system and a finite system.
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Figure 2. The point (x/l=0·0) (a) and transfer (x/l=0·3) (b) mobility of a free–free beam driven at the x=0
end, normalized with the characteristic mobility Yc . ——, Exact solution; - - - - -, approximate solution
accordingly to equation (6).

In order to determine the net reflection R1, consider in Figure 4(a) a wave of unit
amplitude coming from −a. At the intersection, a part of this wave will be reflected,
whereas another part will be transmitted to the finite beam. The transmitted part will then
gradually be transmitted back to the semi-infinite beam. As seen from the ‘‘far field’’, the
net reflection R1 can be found as the sum of these waves reflected back to −a, i.e.,

R1 = r12 + t12 e−jk22l2r2t21 + t12 e−jk22l2r2r21 e−jk22l2r2t21 + · · · . (7)

It is seen that R1 is related to the classical reflection and transmission coefficients. Equation

Figure 3. A system of two coupled beams. Subscripts 1 and 2 refer to the first and second beam, respectively.
The boundary conditions of the second beam at x2 = l2 are given by the reflection coefficient r2 and near field
reflection coefficient rj2.
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Figure 4. (a) A system for determination of the total reflection R1 and total transmission T1. (b) Reflection
and transmission coefficients between two semi-infinite elements. The subscripts of, for example, t12 indicate
transmission from 1 to 2 and those of r12 reflection of a wave in 1 impinging at the junction on 2.

(7) can also be expressed as

R1 = r12 + t12t21r2 e−jk22l2 s
a

n=0

(r2r21 e−jk22l2)n, (8)

and because =r21=Q 1 the infinite sum in equation (8) can be rewritten, yielding the following
expression for the net reflection:

R1 = r12 +
t12t21r2

ejk22l2 − r21r2
, 6=R1==1 for h=0g=r2==1

=R1=Q 1 for hq 0 7. (9)

The net near field reflection Rj1 can be found by an expression analogous to equation
(7), as

Rj1 = rj12 + t12tj21r2/(ejk22l2 − r2r21). (10)

As previously mentioned, the response of the first beam can be obtained by replacing
the reflection and near field reflection coefficients in equation (6) with the net reflection
and the net near field reflection. This gives the mobility of the end driven beam as

Y1(x1, 0)2 j
m'1cB1

e−jk1x1 + (1+R1 e−jk12l1) e−k1x1 +R1 e− jk1(2l1 − x1) +Rj1 e−jk1l1 e−k1(l1 − x1)

j−1−R1(1+ j) e−jk12l1
.

(11)

The response of the second beam in Figure 4(a) must be of the general form

w2(x2)=A2 e−jk2x2 +B2 e−k2x2 +C2 e−jk2(l2 − x2) +D2 e−k2(l2 − x2), (12)

which is the solution of the differential equation for bending waves. The quantities A2, B2,
C2 and D2 are now determined under two conditions: first, that the incident wave is of unit
amplitude and, second, that the reflections of the near fields are neglected. The quantity
A2, which is the amplitude of the bending wave field propagating in the positive x2

direction, will be termed the net transmission T1 when these two conditions are satisfied.
The net transmission T1 can be determined as the sum of waves propagating in the positive
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Figure 5. Two beams connected via a simple support. The beams have identical wavenumbers k1 = k2 and are
free at the ends. The first beam is driven by an harmonic point force at x1 =0.

x2 direction resulting from an incident wave of unit amplitude; that is,

T1 = t12 + t12r2r21 e−jk22l2 + t12r2r21 e−jk22l2r2r21 e−jk22l2 + · · · , (13)

which yields

T1 = t12 s
a

n=0

(r2r21 e−jk22l2)n =
t12

1− r2r21 e−jk22l2
. (14)

The quantity B2 will under the same two conditions correspond to what is termed the
net near field transmission Tj1. The net near field Tj1 transmission can be determined from

Figure 6. A comparison between the exact and present method solutions illustrated by (a) a point (x1 =0)
and (b) a transfer (x2 = l2) mobility of the system shown in Figure 5. ——, Exact solution; - - - - -, approximate
solution according to equations (11) and (18).
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Figure 7. A system of N beams coupled in extension of each other. The coupling between the beams are given
by the reflection and transmission coefficients at each joint. Note that p= q−1.

an expression similar to equation (13) as

Tj1 = tj12 + t12r2rj21/(ejk22l2 − r2r21). (15)

The procedure for determining the remaining two amplitudes C2 and D2 is much the same
and is hence omitted. The response of the second beam can finally be found as

w2(x2)1T1 e−jk2x2 +Tj1 e−k2x2 +T1r2 e−jk2(2l2 − x2) +T1rj2 e−jk2l2 e−k2(l2 − x2). (16)

For the finite system in Figure 3, the incident wave will not be of unit amplitude but
will consist of an infinite sum of waves as given by the first part of equation (3). This infinite
sum of incident waves normalized with the force can be identified from equation (11) as

jvw0

F0 $ s
a

n=0

(r0R1 e−jk12l1)n%1 j
m'1cB1

e−jk1l1

j−1−R1(1+ j) e−jk12l1
, (17)

where x1 = l1 has been substituted in the nominator to obtain the correct phase.
Multiplying equation (16) with equation (17) gives the mobility of the second beam as

Y(x2, 0)2 j e−jk1l1

m'1cB1

T1 e−jk2x2 +Tj1 e−k2x2 +T1r2 e−jk2(2l2 − x2) +T1rj2 e−jk2l2 e−k2(l2 − x2)

j−1−R1(1+ j) e−jk12l1
.

(18)

In order to arrive at equation (18) is has been assumed that k2l2 is sufficiently large (e.g.,
k2l2 q p), so that it is permissible to neglect the influence of the reflections from the near
fields.

3.1.  

In Figure 5 is shown an example of two beams connected via a simple support. The
system consists of two uniform beams with identical wavenumbers, k1 = k2, connected at
x1 = l1 by a simple support. The first beam is driven at x1 =0 by a harmonic point force
F0 ejvt. In the present case the reflection and transmission coefficients can be found as

r12 = r21 =−(1+ j)/2, t12 = t21 = (1− j)/2. (19a, b)

The beams are assumed to have rectangular cross sections of thickness 0·01 m, width of
0·04 m and lengths of l1 =0.3 m and l2 =0·25 m. The structural damping corresponds to
a loss factor of h=0·01 and the material is brass. In Figure 6 is shown a comparison
between results computed from equations (11) and (18) and exact analytical results.
Despite the neglect of the influence of the near fields in the derivations, the results are seen
to coincide with the exact solution for higher values of the Helmholtz numbers.

If the response is needed only in the far field, the near field terms can be omitted without
disturbing the good agreement. This is particularly interesting, because the near field and
far field terms given by this method are determined independently of each other, which
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is in contrast to the classical method that consists of solving a number of equations: in
this case eight equations with eight unknowns. Thus, for estimations in of the response
in the far field the terms to be omitted are Rj1 in equation (11) and Tj1 and rj2 in equation
(18).

4. POWER TRANSMISSION

The power transmitted in a system of beams can be estimated from the wave amplitudes
in the far fields [23]. If v+(x) and v−(x) denote the complex velocity amplitudes of waves
propagating in the positive and negative directions in the qth beam span, the time-averaged
net power can be estimated by

Pnet,q(xq)= (Bqk3
q/v){=vq+(xq)=2 − =vq−(xq)=2}. (20)

The wave amplitudes, which depend on damping, can be extracted from equations (11)
and (18). This gives the respective powers in the beams of a two-span system as

Pnet,1(x1)2
=F0=2
m'1cB1

=e−jk1x1=2 − =R1 e−jk1(2l1 − x1)=2
=j−1−R1(1+ j) e−jk12l1=2, (21)

Pnet,2(x2)2
B2k3

2=F0 e−jk1l1=2
v[m'1cB1]2

=T1 e−jk2x2=2 − =T1r2 e−jk2(2l2 − x2)=2
=j−1−R1(1+ j) e−jk12l1=2 . (22)

Equations (21) and (22) give an almost perfect estimation of the net power for kqlq q p,
and this condition is often satisfied for frequencies above the lowest natural frequencies
of the system. This will be demonstrated in the following for a more complicated system.

4.1.    

A generalization of the previous results will allow for the prediction of the response and
the net transmitted power in each of the beams, which as a whole form a multiple beam
system. To understand how this is done, it seems appropriate first to present the equations
and then to explain how they are employed. The reader will then realize that this method
is a simple extension of the previous results for the two-beam system.

Consider a system consisting of a number of beams (N) coupled in extension of each
other, as depicted in Figure 7. The left-hand beam is free at its left end, at which it is also
driven by an harmonic point force. The beam at the outmost right end has a boundary
condition at its right end represented by the reflection coefficient rN , which equals the net
reflection RN . The prediction of the response and power transmission in the complete
system requires that the net reflections and net transmission are known for each of the
joints. These are determined by employing a recursive procedure. Consider, for example,
span q, for which the net reflection is Rq . From this the net reflection Rp and transmission

Figure 8. A system of five beams with identical wavenumbers kq coupled via simple supports. The first beam
is free and is driven by an harmonic point force at the end, which the fifth beam is supported by a damped spring
at the end.
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Figure 9. A comparison of net power calculations for a system consisting of five beams with identical
wavenumbers, coupled via simple supports as shown in Figure 8. ——, Exact; - - - - -, approximate result obtained
with the present method. (a) Beam 1, x1 = l1/2; (b) beam 3, x3 = l3/2.

Tp coefficients can be determined, respectively, as

Rp = rpq + tpqtqpRq/(ejkq2lq − rqpRq), Tp = tpq/(1−e−jkq2lqrqpRq). (23a, b)

The transfer mobility to the far field of beam q is given by

Y(xq , 0)1 j
m'1cB

Kq
e−jkqxq +Rq e−jkq(2lq − xq)

j−1−R1(1+ j) e−jk12l1
, (24)

where

Kq =g
F

f

1

t
q−1

n=1

(e−jknlnTn)

for q=1

for qq 1
h
J

j
. (25)

From this, the power in span q can be estimated as

Pq(xq)1
Bqk3

q =F=2
v[m'1cB1]2

=Kq =2
=e−jkqxq=2 − =Rq e−jkq(2lq − xq=2
=j−1−R1(1+ j) e−jk12l1=2. (26)

As an example, the net power for beam 3 becomes

Pnet,3(x3)2
B3k3

3=FT1T2 e−jk1l1 e−jk2l2=2
v[m'1cB1]

2

=e−jk3x3=2 − =R3 e−jk3(2l3 − x3)=2
=j−1−R1(1+ j) e−jk12l1=2. (27)
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To illustrate the use of equations (23)–(26), consider the five-beam system shown in
Figure 8. The wavenumber kq is identical for all five beams, and they are coupled via simple
supports. The method for determining the net reflections Rq and the net transmission Tq

for each of the joints is of the sequential type. A ‘‘backward’’ determination is applied for
determination of Rq and a ‘‘forward’’ determination is used for Tq .

Starting at the right-hand end of the system, the end boundary condition of the fifth
beam is given by the reflection coefficient r5, which equals the net reflection R5. Equation
(23a) is then used to calculate the net reflection R4, which corresponds to the influence of
the fifth beam on the rest of the system. R4 is then used in equation (23a) to calculate R3,
which corresponds to the influence of the fifth and fourth beams on the rest of the system.
R2 and R1 are determined in the same manner.

The mobility and power of the first span can then be calculated from R1 by using
equations (24) and (26). In order to deal with the second beam and successive number of
beams, the net transmissions Tq are calculated from equation (22b) by using Rq+1.

In the Appendix is shown an example of the algorithm for calculation of the net
transmitted power in the third beam of the five-beam system shown in Figure 8. Because
the net reflection R1 appears in the denominator, it is always necessary to determine all
of the net reflections. However, as the power is only sought for the third beam, it is only
necessary to calculate the net transmissions T1 and T2.

Figure 10. A comparison of net power calculations for a system consisting of five beams with identical
wavenumbers, coupled via simple supports. The system is similar to that shown in Figure 8, but with the fifth
beam and spring replaced by a semi-infinite beam. ——, Exact; - - - - -, approximate result obtained with the
present method. (a) Beam 1, x1 = l1/2; (b) beam 3, x3 = l3/2.
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Figure 11. (a) A closed system consisting of Q=6 coupled beams. Beam 1 is driven at x0 by a harmonic point
force F0. (b) The left and right parts of driven with total reflections R0, R1, near fields Rj0, Rj1 and transmitted
unit waves in clockwise direction TCW and in anti-clockwise direction TAC .

4.2.  

The five-beam system shown in Figure 8 can be used to demonstrate the method. The
properties and dimensions of the beam are identical to those used in the previous example
(see Figure 5) and the span lengths are l1 =0·30 m, l2 =0·25 m, l3 =0·35 m, l4 =0·20 m
and l5 =0·40 m.

Two different end terminations are used. First, the end of the fifth beam is freely
supported by a damped spring with a complex stiffness of 20(1+ j0·1) N/m and, second,
the fifth beam and the spring are replaced by a semi-infinite beam: that is, l5 =a.

Typical results for the first and third spans in the two cases are shown in Figures 9 and
10, where these are compared to those of exact computations that have been performed
by solving 20 equations with 20 unknowns. Because the agreement at higher frequencies
is almost perfect the frequency axis has been chosen to be logarithmic to enable a
distinction to be made between the exact and the approximate solutions, which is
noticeable only at the low frequencies.

5. SYSTEM DRIVEN IN AN INTERIOR POSITION

The method demonstrated so far has been limited to application to systems consisting
of beams where one of beams is driven at its end. This was done in order to facilitate the
basic description of the method. The more general case, that is, in which one of beams
of the system is driven in what might be termed an ‘‘interior’’ position—that is, a position
that is not too close to any of its ends—will be considered in what follows. It will be
specified when a position can be said to be an ‘‘interior’’ position.

The system to be examined can be described as a multi-cornered frame; an example of
such a system is shown in Figure 11(a). One of the advantages of considering this type
of system is that the resulting expressions have a more general character, in that they can
be reduced to the analysis of, for example, the situation in which the force position for
the system in Figure 8 is changed to an interior position on an arbitrary beam.

5.1. - 

The system that will be considered is made up of Q beams and forms a closed
multi-cornered frame with Q corners. An example of such a system is shown in Figure 11(a)
for Q=6. The driven beam is excited by a harmonic force F0 in position x0. This beam
is numbered 1 and the other beams are numbered by incrementing in the anti-clockwise
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Figure 12. A closed system consisting of Q=6 beams. Total reflections and total transmissions for wave
propagation in (a) the clockwise (CW) direction and (b) the anti-clockwise (AC) direction.

direction. As only flexural waves must be present, each corner is thought as being fixed
in some manner, thereby preventing the generation of secondary wave types.

The first step consists of deriving expressions for the responses of, respectively, the
right-hand side and the left-hand side of the driven beam with the force in position. The
two halves of the driven beam are shown in Figure 11(b), where the influence of the other
beams is given by the net reflections (R0 and R1) and near field reflections (Rj0 and Rj1).
The procedure of writing the response as an infinite number of reflected waves is not
feasible here; in the introduction to the method, it was employed because it is informative
with regard to the approximations being made. For the present purpose it is easier to
employ the result from equation (3); that is, to write each of the responses of the two parts
of the driven beam as being the sum of a propagating wave and a reflected wave, given
by respectively R0 and R1, a reflected near field given by respectively Rj0 and Rj1, and a
near field originating at the position of the force. However, it is obvious that a part of
the wave incident on the right-hand corner of the driven beam will be transmitted through
the intermediary beams and will influence the response of the left-hand side of the driven
beam. This transmitted part is shown in Figure 11(b) as TAC , where the subscript AC
indicates an anti-clockwise direction of propagation. Similarly, the quantity TCW

corresponds to the proportion being transmitted from the left-hand side to the right-hand
side, where the subscript CW indicates a clockwise direction of propagation. Upon
choosing the reference to be the left-hand corner, i.e., x1 =0, the response of the left-hand
side of the driven beam, wl(x1), can then be written as

wl(x1)=wl{ejk1x1 +R0 e−jk1x1 +Rj0 e−k1x1}+wrTAC e−jk1x1 +Al e−k1(x0 − x1), (28)

where wl and wr are the amplitudes of the waves incident on the left- and right-hand joints
respectively and Al is the amplitude of the near field at the force position.

Figure 13. A rectangular frame with the lengths l1 =0·5 m, l4 =0·259 m, width b=40 mm, thickness
h1 = h2 = h4 =10 mm and h3 =8 mm. The material is assumed to be brass. The frame is driven at x0 =0·3 m
by an harmonic point force F0.
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Figure 14. The point (x1 =0·3 m) (a) and transfer (x3 = l3/2) (b) mobility to the third beam for the rectangular
frame subject only to bending waves. ——, Exact solution; - - - - -, approximate solution from equations (33)
and (37).

With x1 =0 still used as reference, the response for the right side wr(x1) can be written
as

wr(x)=wr{e−jk1x1 +R1 e−jk1(2l1 − x1) +Rj1 e−jk1l1 e−k1(l1 − x1) +wlTCW ejk1x1 +Ar e−k1(x1 − x0), (29)

where Ar is the amplitude of the near field at the force position.
For the system, two sets of net reflections and the net transmissions need to be

determined corresponding to propagation in the clockwise and anti-clockwise direction
respectively. This is illustrated in Figures 12(a) and 12(b). The procedure is identical to
the one demonstrated previously. For the clockwise direction (see Figure 12(a)), the
starting point is the right-hand corner of the driven beam, with the net reflection R−5 set
equal to the reflection coefficient r21. The net reflections R−4 to R0 can be calculated by
employing equation (23a) repeatedly, and once the net reflections have been determined

Figure 15. An example of a system consisting of beams coupled in extension of each other. The beams are
numbered as shown and the beam with index 1 is driven by an harmonic point force at x1 = x0.
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equation (23b) can be employed to calculate the net transmissions T0 to T−5. The net
reflections R1 to R6 and net transmissions T1 to T6 for the anti-clockwise direction, shown
in Figure 12(b), are determined similarly.

The factors TAC and TCW are determined as follows:

TAC = t
Q

n=1

Tn e−jknln, TCW = t
Q

n=1

T(n−Q) e−jknln. (30a, b)

The four unknowns wl , wr , Al and Ar can be found from the boundary conditions at the
force position, which are

wl(x0)=wr(x0), 1wl(x1)/1x1=x1 = x0 = 1wr(x1)/1x1=x1 = x0, (31a, b)

12wl(x1)/1x2
1=x1 = x0 = 12wr(x1)/1x2

1=x1 = x0,

F=B{13wr(x1)/1x3
1=x1 = x0 − 13wl(x1)/1x3

1=x1 = x0}. (31c, d)

The mobility for the left side of the driven beam, i.e., 0 Q x1 E x0, can be found as

Y(x1, x0)left 1
wl{ejk1x1 +R0 e−jk1x1}+wrTAW ejk1x0 +A e−k(x0 − x1)

4m'cB{(1−TCW)(1−TAC)−R0R1 e−jk12l1} , (32)

and, similarly, the mobility for the right side of the driven beam, x0 E x1 Q l1, is found as

Y(x1, x0)right 1
wr{e−jk1x1 +R1 e−jk1(2l1 − x1)}+wlTCW ejk1x0 +A e−k1(x1 − x0)

4m'cB{(1−TCW)(1−TAC)−R0R1 e−jk12l1} , (33)

where

wr =(1−TCW) ejk1x0 +R0 e−jk1x0, wl =(1−TAC) e−jk1x0 +R1 e−jk1(2l1 − x0) (34)

and

A=j{R0R1 e−jk12l1 − (1−TCW)(1−TAC)}. (35)

Equations (32) and (33) are valid for positions not too close to the corners. It has been
assumed that

e−kx0 1 0, e−k(l− x0) 1 0, or kx0 q p, k(l− x0)q p. (36)

The mobilities of the intermediary beams will consist of two contributions. One part will
be generated by a wave of amplitude (wl) travelling in the clockwise direction and the other
part by a wave (wr) travelling in the anti-clockwise direction. Thus the transfer mobility to
beam i in the far field can be found as

Y(xi , x0)1
wrKi,AC{e−jkixi +Ri,AC e−jki(2li − xi)}+wlKi,CW{Ri,CW e−jkixi +ejkixi}

4m'cB{(1−TCW)(1−TAC)−R0R1 e−jk12l1} , (37)

where

Ki,AC = t
i−1

n=1

e−jknlnTn , Ki,CW = t
Q

n= i

e−jknlnT(n−Q). (38a, b)

Expressions for the transmitted power can be obtained without difficulty from equations
(32), (33) and (37) as described earlier.
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5.2.  

To illustrate the previous findings, consider the rectangular frame depicted in Figure 13.
The first beam of the rectangular frame is driven at an off-centre position (x0 =0·3 m). Point
and transfer mobilities to the third beam are shown in Figure 14. The outcome of the
comparison between the exact calculations and the calculations based on the approximate
method is seen to be in accordance with what could be expected from the foregoing sections.
Thus, at lower frequencies, where the influence of the reflected near fields are important, the
approximate method is incorrect. At higher frequencies, where the influence of the near fields
is negligible, the approximate method is in almost perfect agreement with the exact
calculations.

5.3.  

For a system that is not closed, as shown in Figure 15, the response of can be found from
the previously derived equations; that is, for the driven beam from equations (32) and (33)
by substituting TAC =TCW =0. For the other beams from the response can be calculated
from equation (37) by substituting TAC =TCW =0 and using equation (38a) with Ki,CW =0
for positions to the right of the driven beam and equation (38b) with Ki,AC =0 and Q=−1
for positions to the left of the driven beam.

The method can equally well be applied to periodic systems, although the traditional
methods for analyzing such systems seems to be more advantageous. The method can, by
the use of matrix algebra, be extended to a similar structure subject to coupled bending and
longitudinal waves [24].

6. CONCLUSIONS

The method presented predicts the response and net power in a structure consisting of
beams coupled in extension of each other and subject to bending waves. The method is based
on a ‘‘ray tracing’’ approach which involves the Helmholtz number of each beam and the
reflection and transmission coefficients of the joints. The outcome is a simple recursive
algorithm which permits calculation of the response and net transmitted power in each
element for a structure consisting of beams coupled in extension of each other. This
somewhat unconventional approach has the advantage of supplying a more physical
description of how coupled elements influence each other, and thereby forms a base for a
simplified description of the complex interaction that occurs when elements are joined
together. The assumption that the influence of the near fields is negligible is valid only when
the Helmholtz number is large for all beam elements. For the cases examined here, in which
the Helmholtz numbers are relatively comparable in magnitude, the contribution of near
fields to the power transmission is seen to be unimportant at higher frequencies.
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APPENDIX: ALGORITHM FOR CALCULATION OF THE POWER

The algorithm for calculation of the net transmitted power in the third beam of the five
beam system shown in Figure 8 is as follows:

//loop start

f= f0 +Dfn // comment: n is incremented for each pass

k5 = 4zm'5/E5I5(1+ jh)z2pf; k4 = . . .

// calculation of net reflections
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R5 = r5

R4 = r45 + {t45t54R5}/{ejk52l5 − r54R5}
R3 = r34 + {t34t43R4}/{ejk42l4 − r43R4}
R2 = r23 + {t23t32R3}/{ejk32l3 − r32R3}
R1 = r12 + {t12t21R2}/{ejk22l2 − r21R2}

// calculation of net transmissions

T1 = t12/{1−R2r21 e−jk22l2}
T2 = t23/{1−R3r32 e−jk32l3}

// calculation of transmitted power

Pnet,3(x3)2
B3k3

3=FT1T2 e−jk1l1 e−jk2l2=2
v[m'1cB1]2

=e−jk3x3=2 − =R3 e−jk3(2l3 − x3)=2
=j−1−R1(1+ j) e−jk12l1=2

// loop end.

Here f is the frequency, f0 is the starting frequency, Df is the frequency step, n is an integer
which is incremented for each pass, ki is the complex wavenumber for beam i, li is the length
of beam i, Ri is the net reflection and Ti is the net transmission.


