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An alternative way of passing through the characteristic wave velocity in a waveguide
is investigated by a uniformly moving object along an elastic system with a change in
parameters such that a transition from subcritical into supercritical object motion is taking
place. To demonstrate this way of passing, a uniformly moving constant load along an
infinite elastically supported string with a sudden change in density is studied. The results
of this investigation are compared with the more usual way of passing by a fast accelerating
load along a homogeneous infinite string on the same foundation. For both cases transient
solutions for the string vibrations are derived showing the wave processes, which are a
combination of the main features of Mach radiation and transitional radiation in the
alternative case and Mach radiation and radiation due to a non-uniform load motion in
the usual case. It is shown that the alternative case provides a slightly smaller amplification
in displacements than the usual case. The alternative way can be more practical since it
is known that the faster the critical velocity is passed the smaller the dynamical
amplification will be. Evidently a sudden change in the elastic parameters is much more
simply organised than a large acceleration of the train.
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1. INTRODUCTION

When a moving object passes through the elastic wave barrier (the characteristic wave
velocity in a waveguide) the wave field generated by the object is getting very powerful.
A well known example is an aeroplane passing through the sound barrier. This
phenomenon can also play an important role at the introduction of high speed trains in
certain parts of Europe where the subsoil is soft and the critical surface wave velocity is
of the order of 42 m/s (1150 km/h) [1]. High speed trains have to pass the critical velocity
or large investments have to be made to improve the subsoil so as to enlarge the critical
velocity along the entire track. In this paper the process of passing through the critical
velocity is discussed, since in this way the investments for the track improvements may
substantially be reduced. The usual way of passing through the critical velocity is by a fast
acceleration of the moving object [2, 3]. In the present paper an alternative way of passing
is investigated: i.e., by a uniformly moving object along a system with a sudden change
in parameters such that a transition from subcritical into supercritical object motion takes
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place. This way can be more practical since it is known that the faster the critical velocity
is passed the smaller the dynamical amplification will be [2, 3].

Evidently local changes in the elastic parameters are much more simply organized than
a large acceleration of a train and the comfort of the passengers is more convenient,
because they will not feel the effect of the horizontal acceleration due to uniform motion
of the train. Further for this sudden change in the parameters, investments are much lower
than in the case of enlarging the critical velocity along the entire track, since only the
subsoil of a small part of the track has to be improved (near railway stations for
acceleration and deceleration).

To investigate the alternative way of passing a uniformly moving constant load along
an infinite elastically supported string with a sudden change in density is studied. When
the string density is chosen in a proper way the motion along the first part of the string
is subcritical and along the second part supercritical. During the transition from sub into
supercritical motion the load radiates elastic waves. The resulting radiation process is
compared with the radiation process due to the passing of a fast accelerating (abrupt
velocity change) load along a homogeneous string on the same elastic foundation.

To visualize both radiation processes transient solutions for the string vibrations are
calculated showing a combination of the main features of Mach radiation [4] and
transitional radiation [5] in the alternative case and Mach radiation and radiation due to
a non-uniform load motion [6] in the usual case. To compare the transitional processes
of both cases the parameters are chosen such that the maximum steady state displacements
before and after the transition are the same. It is shown that the alternative case then
provides a slightly smaller transient amplification in displacements than the usual case.

2. MODEL AND GENERAL TRANSIENT SOLUTIONS IN LAPLACE DOMAIN

First a general problem is considered from which the solutions for both the usual case
and the alternative case can be taken. Therefore a constant vertical load moving along an
infinite string on an elastic foundation is considered. It is supposed that at x=0 the string
mass per unit length (r) and the load velocity (v) change abruptly, see Figure 1. In
order to have a transition from sub into supercritical motion for xQ 0 the load velocity
is assumed smaller than the wave velocity in the string and for xq 0 larger than the wave
velocity.

The analysis will proceed as follows. First the expressions describing the string
displacements for tQ 0 will be derived and these expressions (for t:0) will be used as the
initial conditions for deriving the general solution in the Laplace domain for te 0. Then
the inverse Laplace transforms will be taken for the two cases which will be compared:
(1) the usual case, for which the string is homogeneous and the load velocity is changed;

Figure 1. Model, velocity jump and abrupt change in string density at x=0 and t=0.
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(2) the alternative case, for which the string is inhomogeneous (jump in r) and the load
motion is uniform.

The governing equations describing the vertical vibrations of the string for (see Figure 1)
are

U(1)
tt − r2c2

2 U(1)
xx + h2

2 r2U(1) =Pr2 d(x−v1 t) for xQ 0,

U(2)
tt − c2

2 U(2)
xx + h2

2 U(2) = 0 for xq 0,

U(1) (0, t)=U(2) (0, t), U(1)
x (0, t)=U(2)

x (0, t) (1)

where

c1, 2 =zN/r1, 2, v1 Q c1, h2
2 = k/r2, P=P	 /r2 and r2 = r2 /r1.

In equations (1) U(n) (x, t) are the vertical string displacements, N is the string tension, k

the stiffness of the elastic foundation per unit length, rn the string mass per unit length,
vn the load velocity, cn the wave velocity in the string and P	 is the constant load (the sub-
and superscripts (1) denote the string parameters for xQ 0 and the sub- and superscripts
(2) the string parameters for xq 0).

The string displacement for xQ 0 is represented as the following sum of the eigenfield
moving with the load U(1)

e (x, t) [5, 6] and a transient solution U(tr) (x, t) which originates
as the load is moving near the string inhomogenity:

U(1) (x, t)=U(1)
e (x, t)+U(tr) (x, t),

with

U(1)
e (x, t)=−

Pr

2h2zr2c2
2 − v2

1

exp 0rh2 = x− v1 t =
zr2c2

2 − v2
1 1. (2)

Substitution of equations (2) into equations (1) yields

U(tr)
tt − r2c2

2 U(tr)
xx + h2

2 r2U(tr) = 0 for xQ 0, U(2)
tt − c2

2 U(2)
xx + h2

2 U(2) = 0 for xq 0,

U(2) (0, t)−U(tr) (0, t)=
−Pr

2h2zr2c2
2 − v2

1

exp 0 rh2 v1 t
r2c2

2 − v2
11,

U(2)
x (0, t)−U(tr)

x (0, t)=
Pr2

2(r2c2
2 − v2

1 )
exp 0 rh2 v1 t

zr2c2
2 − v2

11. (3)

Seeking the solutions of the differential equations of system (3) in the form

U(2), (tr) (x, t)=A(2), (tr) (x) exp 0 rh2 v1 t

zr2c2
2 − v2

1 1
and accounting for the vanishing of the string displacements for x:2a one obtains the
following expressions:

Utr (x, t)=C(tr) exp 0rh2 v1 t+ h2 rx

zr2c2
2 − v2

1 1, (4)

U(2) (x, t)=C(2) exp 0 rh2 v1 t

zr2c2
2 − v2

1

−
h2 x
c2 X1+

r2v2
1

r2c2
2 − v2

11. (5)
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The unknown constants C(2) and C(tr) can be determined by substitution of expressions (4)
and (5) into the conditions at x=0 from equations (3). This gives the expressions for the
string displacements for tQ 0 as

U(1)(x, t)=−
Pr

2h2zr2c2
2 − v2

1

exp 0−rh2 =x− v1t =
zr2c2

2 − v2
1 1

+
Pr(zr2c2

2 + v2
1(r2−1)− rc2)

2h2zr2c2
2 − v2

1 (zr2c2
2 + v2

1 (r2 −1)+ rc2
)
exp 0rh2v1t+ h2rx

zr2c2
2 − v2

1 1, (6)

U(2)(x, t)=
−Pr2c2

h2zr2c2
2 − v2

1 (zr2c2
2 + v2

1 (r2 −1)+ rc2
)

× exp 0 rh2v1t

zr2c2
2 − v2

1

−
h2x
c2 X1+

r2v2
1

r2c2
2 − v2

11. (7)

One can now derive the transient string vibrations for te 0. Since at the end of the analysis
some expressions have to be evaluated numerically it is convenient to introduce
dimensionless variables and parameters. Introducing a time variable t= h2t, a space
variable y=(h2/c2)x and the parameters a1,2 = v1,2/c2 (ratio of load velocities and the
characteristic velocity c2) one obtains the following set of equations describing the transient
vibrations of the string for te 0:

(1/r2)U(1)
tt −U(1)

yy +U(1) = 0 for yQ 0,

U(2)
tt −U(2)

yy +U(2) =−T d( y− a2t) for yq 0,

U(1)( y, 0)=−A exp (by), U(2)( y, 0)=−A exp (−y z1+ a2
1b2),

U(1)
t ( y, 0)= a1Az1+ a2

1b2 exp (by), U(2)
t ( y, 0)=−a1Ab exp (−z1+ a2

1b2y),

U(1)(0, t)=U(2)(0, t), U(1)
y (0, t)=U(2)

y (0, t), (t$ 0). (8)

Here

v1 Q c1, v2 q c2, T=Pr2/h2c2, b= r/zr2 − a2
1 ,

A=
T

zr2 − a2
1 (zr2 + a2

1 (r2 −1)+ r)
.

The initial conditions of equations (8) are obtained by taking the limit of expressions (6)
and (7) for t:0. Applying the Laplace transform,

V(n)( y, s)=g
a

0

U(n)( y, t) exp (−st) dt,

to equations (8) results in the following set of ordinary differential equations:

V(1)
yy −(1+ s2/r2)V(1) = (A/r2)(s− a1z1+ a2

1b2) exp (by),

V(2)
yy −(1+ s2)V(2) =A(s− a1b) exp (−z1+ a2

1b2y)+ (T/a2) exp (−sy/a2),

V(1)(0, s)=V(2)(0, s), V(1)
y (0, s)=V(2)

y (0, s). (9)
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The general solutions of equations (9), accounting for the proper behaviour for y:2a,
are

V(1) =C1 exp ( yz1+ s2/r2)+D1 exp (by), (10)

V(2) =C2 exp (−yz1+ s2)+D2 exp (−yz1+ a2
1b2)+E2 exp (−sy/a2), (11)

where

D1 =−A
s− a1z1+ a2

1b2

s2 − a2
1b2 , D2 =

−A
s− a1b

, E2 =−T
a2d2

s2 + (da2)2 with d=
1

za2
2 −1

,

and provided that Re (z1+ s2)q 0 and Re (z1+ s2/r2)q 0 for Re(s)q 0. The constants
C1 and C2 can be taken from the conditions at y=0 of equations (9). This gives

C1 =A
(b+z1+ a2

1b2)(s− a1z1+ s2)

(s2 − a2
1b2)(z1+ s2 +z1+ s2/r2)

+Td 2
s− a2z1+ s2

(s2 + a2
2d2)(z1+ s2 +z1+ s2/r2)

,

(12)

C2 =A
(b+z1+ a2

1b2)(s+ a1z1+ s2/r2)

(s2 − a2
1b2)(z1+ s2 +z1+ s2/r2)

+Td 2
s+ a2z1+ s2/r2

(s2 + a2
2d2)(z1+ s2 +z1+ s2/r2)

,

(13)

3. COMPARISON OF THE TWO WAYS OF PASSING

Two ways of passing through the elastic wave barrier (the critical velocity c) by a load
moving along a string on an elastic foundation are compared: Case 1 (usual case), passing
by an accelerating (velocity jump) constant load along a homogeneous string,
r2 =1Ua1 Q 1Q a2\ r=constantUv1 Q cQ v2; Case 2 (alternative case), passing by a
uniformly moving constant load along a string with a sudden change in density
a1 = a2 = aU1Q aQ r \ v=constantUc2 Q vQ c1.

To compare the transitional processes of both cases the parameters are chosen such that
(1) the steady state displacements under the load for both cases are the same, (2) the
maximum steady state displacements after the transition for both cases are the same and
(3) a minimum dynamical amplification for both cases in steady state occurs. This gives
the following unique set of parameters: Case 1 (usual); a1 =0·972 and a2 =1.053 Case 2
(alternative); a=1·313 and r=1·35.

Now the string displacements will be derived for these parameters. By combining
equations (10)–(13) the solutions in the Laplace domain of equations (9) for both cases
can be written as follows:

Case 1,

V(1) =6 Aba1

s2 − a2
1b2 0−1+

s
a1z1+ s21−

Ta2d2

2(s2 + a2
2d2) 01−

s
a2z1+ s217

×exp ( yz1+ s2)−
A

s+ a1b
exp (by), (14)
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V(2) =6 Aba1

s2 − a2
1b2 01+

s

a1z1+ s21+
Ta2d2

2(s2 + a2
2d2) 01+

s

a2z1+ s217
×exp (−yz1+ s2)−

A
s− a1b

exp (−by)−
Ta2d2

s2 + a2
2d2 exp 0−sy

a2 1 (15)

Case 2,

V(1) =6A(b+z1+ a2b2)
s2 − a2b2 +

Td2

s2 + a2d27 (s− az1+ s2)

(z1+ s2 +z1+ s2/r2)

× exp ( yz1+ s2/r2)−A
s− az1+ a2b2

s2 − a2b2 exp (by), (16)

V(2) =6A(b+z1+ a2b2)
s2 − a2b2 +

Td2

s2 + a2d27 (s+ az1+ s2/r2)

(z1+ s2 +z1+ s2/r2)

× exp (−yz1+ s2)−
A

s− ab
exp (−z1+ a2b2y)−

Td2a

s2 + a2d2 exp 0−sy
a 1. (17)

To get the string displacements for tq 0 inverse Laplace transforms of expressions
(14)–(17) have to be determined. The last members in expressions (14) and (16) and the
last two members in expressions (15) and (17) are standard functions and can be inverted
with the help of tables of integrals (see for example reference [7]). The inverse transforms
of the other members of (14)–(17) can be found in reference [8]. Employing the above
mentioned transforms yields the solution of equations (8) for Case 1 as

U(1) =
2
p g

1

0 6sinh ( yz1− z2) cos (zt)0 Aba1

z2 + a2
1b2 −

Ta2d2

2(a2
2d2 − z2)1

+cosh ( yz) sin (tz1− z2)0 Ab
b2 − z2 −

Td2

2(d2 + z2)17H( y+ t) dz

−A exp (b( y− a1t)), (18)

U(2) =
2
p g

1

0 6sinh ( yz1− z2) cos (zt)0 Aba1

z2 + a2
1b2 −

Ta2d2

2(a2
2d2 − z2)1

+cosh ( yz) sin (tz1− z2)0 Ab
b2 − z2 −

Td2

2(d2 + z2)17H(t− y) dz

−A exp (b( y− a1t))− {exp(b( y− a1t))H(t− y)

+ exp(−b( y− a1t))H( y− a2t)}

+ {−A exp (−b( y− a1t))+Td sin (d( y− a2t))}{H( y− t)

−H( y− a2t)}, (19)



20
x

–20

U

1

100–10

2
3

      603

where a1 =0·972, a2 =1·053 and r=1. For Case 2 one similarly obtains

U(1) =−A exp (by)6cosh (abt)−
z1+ a2b2

b
sinh (abt)7H(−y− rt)

+A6 2r2

p(r2 −1) g
r

1

f11(z)
z2(z2 + a2b2)

dz

+
2
p g

1

0

f12(z)

(z2 + a2b2)(z1− z2 +z1− z2/r2}
dz7H( y+ rt)

+Td26 2r2

p(r2 −1) g
r

1

f13(z)
z2(a2d2 − z2)

dz

+
2
p g

1

0

f14(z)

(a2d2 − z2)(z1− z2 +z1− z2/r2
dz7H( y+ rt)

−
A
2 601−

z1+ a2b2

b 1 exp (−b( y+ at))

+ 01+
z1+ a2b2

b 1 exp (b( y− at))7H( y+ rt), (20)

U(2) =−A6exp (abt− yz1+ a2b2)H( y− at)+ exp(−(abt− yz1+ a2b2))H(t− y)7
+A6 2r2

p(r2 −1) g
r

1

f21(z)z1− z2/r2

z2(z2 + a2b2)
dz+

2
p g

1

0

f22(z)

(z2 + a2b2)(z1−z2+z1−z2/r2
dz7H(t− y)

Figure 2. Vibrations for the usual way of passing, case 1.
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Figure 3. Vibrations for the alternative way of passing, Case 2.

+Td26 2r2

p(r2 −1) g
r

1

f23(z)
z2(a2d2 − z2)

dz−
2
p g

1

0

f24(z)

(a2d2 − z2)(z1− z2 +z1− z2/r2
dz7H(t− y)

− {A exp (abt− yz1+ a2b2)+Td sin (d(at− y))}{H(at− y)−H(t− y))}, (21)

where a= a1, 2 =1·313 and r=1·35. The functions fij (z) in equations (20) and (21) are
given in the Appendix.

In Figures 2 and 3, the string vibrations for the usual and the alternative case are
depicted respectively. The displacements are shown for three specific moments: (1) before
the transition, when the eigenfield is moving stationary with the load and no waves are
being radiated; (2) during the transition, when radiation is taking place due to a
non-uniformly moving load or transitional radiation, respectively [5, 6], (3) after the
transition, when the Mach radiation field (steady state shape of the string due to a
supercritically moving load) [4] originates. The figures show that both the transitional
radiation and the radiation due to a non-uniformly moving object is taking place during
the change of the load eigenfield into the Mach field. It is also seen that the transient
vibrations are powerful: i.e., maximum transient displacements are larger than the steady
state displacements.

Figure 4. Maximum displacements for both the usual (– – –) and the alternative (——) cases.
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Figure 4 shows the maximum displacements as function of time for both cases. It is
evident from this figure that the maximum displacements in the alternative case are smaller
than in the usual case and that the transient vibrations are finite (even in case for
smooth acceleration of the load the displacements are finite [1, 2]). So the alternative way
of passing through the elastic wave barrier provides a somewhat smaller dynamical
amplification.

4. CONCLUSIONS

In this paper an alternative way of passing through the elastic wave barrier has been
investigated: i.e., by a uniformly moving object along an elastic system with a change in
parameters such that a transition from subcritical into supercritical object motion is taking
place. This way of passing is compared with the more usual way of passing by a fast
accelerating object along a homogeneous elastic system. For both cases the transient
vibrations are derived. It is shown that the transient vibrations are more powerful than
the steady state vibrations and are finite in both cases. By comparing the maximum
displacements for both cases it can be seen that the alternative way provides a slightly
smaller dynamical amplification than the usual way.

The results of this investigation are the first in research into an alternative way of
passing through the elastic wave barrier. The main advantages of this alternative way are
that local changes in the elastic parameters are much more simply organized than a large
acceleration of a train and that the comfort of the passengers is more convenient, because
they will not feel the effect of the horizontal acceleration due to uniform motion of the
train.
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APPENDIX

The functions fij (z) used in equations (20) and (21) are as follows:

f11(z)= sinh ( yz1− z2/r2) cos (zt){(b+z1+ a2b2)zz2 −1(azz2 −1− z)},

f12(z)= cosh ( yz1− z2/r2) sin (zt){(b+z1+ a2b2)z1− z2/r2(z− azz2 −1)},
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f13(z)= {z cosh ( yz1− z2/r2) sin (zt)

+ az1− z2 sinh ( yz1− z2/r2) cos (zt)}(b+z1+ a2b2),

f14(z)=−z cosh ( yz1− z2/r2) sin (zt)− az1− z2 sinh ( yz1− z2/r2) cos (zt),

f21(z)= sin ( yzz2 −1− zt){(b+z1+ a2b2)(azz2 −1− z)},

f22(z)= {z cosh ( yz1− z2) sin (zt)

+ az1− z2/r2 sinh ( yz1− z2) cos (zt)}(b+z1+ a2b2),

f23(z)=z1− z2/r2 sin ( yzz2 −1− zt){z− azz2 −1},

f24(z)= z cosh ( yz1− z2) sin (zt)− az1− z2/r2 sinh ( yz1− z2) cos (zt).


