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A simplified analytical structural acoustics model of a propeller aircraft is developed to
study the potential of mechanical vibration absorbers for reducing interior noise. The
results show that globally detuning the absorbers to minimize an interior acoustic cost
function gives attenuations of the order of 6–10 dB of the blade passage frequency interior
noise when properly configured. The analysis also predicts that globally detuned absorbers
consistently outperform tuned absorbers in which the base motion is directly minimized.
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1. INTRODUCTION

The reduction of interior noise in aircraft still remains a challenge to aircraft designers and
in recent years several advanced techniques have been considered. Tuned mechanical
vibration absorbers designed to reduce the vibration of the aircraft fuselage, and hence
its interior noise, have been developed and tested by a number of companies [1–3]. Sound
reductions of the order of 8 to 10 dB in the fundamental blade passage frequency at cruise
conditions with a weight penalty of about 25 kg have been reported. While this technique
is fully passive and thus does not require any control energy, it suffers from a loss in
performance when the absorbers are off-resonance, i.e., the propeller rotational speeds
vary from the design point. A suggested solution to this problem would be to use absorbers
whose properties could be adapted in order to track and remain tuned to the varying
disturbance frequency.

Fully active solutions have also been considered. Recent flight tests have demonstrated
the potential of an active control system termed Active Noise Control (ANC), which uses
an array of acoustic control sources and error microphones distributed throughout the
cabin space [4, 5]. Emerging commercial systems have been installed in aircraft such as the
SAAB 340 or SAAB 2000 and typically comprise of 24–36 optimally located loudspeakers
in conjunction with 48–72 error microphones. The total weight is around 70 kg for a 10 dB
attenuation in the propeller fundamental frequency. Each speaker has a maximum power
consumption of 25 Watts and approximately 1 km of wire is required in the SAAB 2000.
The total power consumption of the system is approximately 300 Watts. The active
noise control approach generally requires many control transducers. In addition, the
performance tends to roll off at the higher harmonics of the propeller noise. An alternative,
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fully active approach is to use fuselage mounted vibration actuators in conjunction with
interior microphones [6, 7]. This technique, termed Active Structural Acoustic Control
(ASAC), is not as well developed or tested as ANC but shows potential to significantly
reduce the number of required control transducers. Calculations estimate that a 12
actuator/24 sensor system would provide around 25 dB of attenuation with a weight of
18 kg (using inertial shakers) and consume approximately 150 Watts of electrical power.
However, important disadvantages compared to ANC are a requirement for a larger
control authority (or force/stroke output of the control actuator) and a possible increase
in the fuselage vibration.

In this paper an analytical investigation of the potential of a system is outlined which
is configured to combine some of the advantages of the above approaches. The system
consists of multiple vibration absorbers whose properties can be electronically adjusted (an
adaptive absorber) attached to an elastic cylindrical structure representative of an aircraft
fuselage. The adaptive absorbers are configured to have resonances on or very near the
disturbance frequency and thus can exert significant reactive force with a low system mass
and a very low power consumption. Perfectly tuning the individual absorbers to the
disturbance frequency would result in a large attenuation of the cylinder motion at the
absorber attachment point. Previous studies on ASAC applied to aircraft fuselages have
shown that minimizing the fuselage vibration often does not perform as well as directly
minimizing the coupled interior acoustic field for low frequency disturbances. This
observation suggests the concept of the system to be investigated in this paper; the
properties of the absorbers are globally adapted in order to minimize a cost function based
upon interior acoustic levels. In effect the absorbers are globally detuned so as to minimize
selected cylinder structural modes in a distributed sense as opposed to minimizing the
vibration under their mount points. These selected cylinder modes are well coupled to the
interior acoustic field and thus reduction of the sound field throughout the interior space
is ensured.

The analysis begins with a brief review of mechanical absorbers and approximate design
formula. The analytical model of a representative aircraft fuselage with attached adaptive
absorbers and the coupled interior acoustic field is outlined. The optimization technique
for globally detuning the absorbers is summarized. Results are then presented for optimally
tuned and globally detuned absorbers and compared for performance advantages. Finally,
conclusions of the work are presented.

2. ANALYSIS

In this section the analytical model used to evaluate globally detuned absorbers for
reduction of interior noise is outlined. Before the fuselage model is developed it is useful
to review tuned mechanical absorbers.

2.1.   — 

Consider a mass mounted on a moving base through a spring/dash-pot mechanism as
shown in Figure 1. The connecting system is considered infinitely rigid in all but one
direction, normal to the axis of the main surface whose motion is to be suppressed. The
mechanical impedance of such a system, Za , is given by

Za =Mjavr $ 1+ ja/Q
1− a2 + ja/Q%, (1)
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Figure 1. Mechanical vibration absorber schematic.

where M is the mass of the absorber, vr is the natural frequency of the absorber given
by vr =zK/M and a is the ratio between the disturbance frequency and the natural
frequency of the absorber, a=v/vr . The quality factor Q of the absorber is related to
the damping and thus the sharpness of the absorber response peak at resonance and is
defined as

Q=Mvr /C, (2)

where C is the damping constant of the dash-pot. Note that with no damping (C=0),
the system’s tuned impedance (a=1) becomes infinite and purely imaginary. In this case,
the absorber will theoretically suppress the vibrations of anything it is attached to by
exerting an infinitely large reactive force on the structure. Generally then, vibration
absorbers with high MQ do not primarily ‘‘absorb’’ energy and the name is a misnomer.
The expression of equation (1) can be approximated near resonance and for high-Q
systems by

Za 1Mjavr /(1− a2 + ja/Q). (3)

It can be seen from equation (3) that the mechanical impedance of the absorber at
resonance is Za 1MvrQ. Thus, operated at resonance, the dynamic impedance of the

Figure 2. Normalized absorber impedance, Za /vr , as a function of M and Q.
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absorber is Q times that resulting from a same mass rigidly mounted to the base. Figure 2
shows the magnitude and phase of the normalized absorber impedance, Za /vr , with unit
of mass as a function of normalized frequency, v/vr , for various values of M and Q. Note
that the mechanical impedance of an absorber at resonance is a strictly increasing function
of its MQ product (mass times quality factor). At resonance, the dynamic amplification
factor of Q is a convenient low-mass method for gaining mechanical impedance (of the
absorber). Off-resonance, unfortunately, there is no substitute for mass since the absorber
impedance is strictly proportional to its mass. Given two absorbers which achieve the same
dynamic impedance at resonance, the one utilizing a lower Q and a higher mass will
therefore be more effective off-resonance (i.e., when it is detuned). Note, however, that even
for low values of Q (e.g., Q=5), the impedance of the absorber (and thus its effectiveness)
drops rapidly off resonance. For example in the aircraft fuselage application with an
absorber tuned for the propeller blade passage frequency (BPF), at twice this frequency
(2 BPF), the impedance is reduced by nearly a factor of 10.

It is also useful to derive the expression for the attenuation of the vibration of the base
due to the absorber. The base structure is characterized by a free velocity with no absorber
attached, vfree, and a mechanical input impedance at the attachment point, Zb , which is
a complex frequency dependent quantity which relates velocity and force (for example due
to some disturbance) by Z=force/velocity. If one now attaches an absorber, the total
force applied to the base is the sum of the force resulting from the disturbance (which
causes vfree) and the force exerted by the absorber back onto the base. Using the relationship
for impedance one can express this equality as

Zbvbase =Zbvfree −Zavbase. (4)

Hence the ratio of the base motion with the absorber to that without it can be written
as

vbase/vfree =Zb /(Za +Zb ). (5)

This ratio must be minimized at the disturbance frequency to obtain the largest possible
tonal attenuation. The denominator is constituted by the sum of two complex numbers,
the modulus of which increases: (1) when the modulus of Za increases, (2) when the phase
of Za better matches that of Zb (then the moduli simply add). Referring to Figure 2, one
clearly sees that the absorber’s impedance modulus is maximized at resonance. The phase
of the impedance is then 0°. Bringing the absorber’s phase closer to that of the base requires
operating off-resonance and thus at a smaller dynamic impedance. Very little is gained by
detuning the absorber to try to match the phase: an absorber with a Q of 15 delivers, at
best, 10% better performance (1 dB) when the base has either a mass of a spring like
impedance (phase of 290°) and when Za and Zb have comparable moduli. The tuned
attenuation is, in that case, 3 dB. Should the base behave like a dash-pot, the attenuation
would be 6 dB, since the phase of the base impedance is 0°. From this analysis, one
concludes that a single absorber should be tuned to the disturbance frequency and that
it should have a dynamic impedance large compared to the base impedance to be effective
in attenuating base vibrations. The dynamic impedance at resonance is the product of the
moving mass (which should be kept low for aircraft applications) and the quality factor:
absorbers for aircraft applications should therefore be made with the highest possible
quality factors. However, this also implies a rapid drop in performance if the disturbance
frequency changes, thus suggesting the use of an adaptive tuned absorber whose resonance
can track the disturbance.
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Figure 3. Co-ordinate system of the fuselage model.

2.2.       

In this analysis the aircraft fuselage dynamics and its acoustic behavior is modelled as
a simply supported cylinder of length L, radius a, and thickness h as shown in Figure 3.
The analysis is based upon a previous model developed by Silcox and Lester [8]. The
cylinder is assumed to have rigid shear-diaphragm end caps. The input disturbance to the
cylinder is represented by a harmonic, narrowband external pressure loading pd (x, u) ejvt

acting on the exterior of the cylinder. N vibration absorbers are mounted on the cylinder
in order to alter the primary structural response due to the external pressure field. They
can be modelled by a set of radially acting point forces, Fi (i=1, 2, . . . , N). The amplitude
Fi of the force exerted by the absorber on the structure is a function of the mechanical
compliance of the ith absorber and the shell displacement at the mount location, (xi , ui ):

Fi =−Zd
i v(xi , ui ). (6)

In the above equation Zd
i relates the displacement of the ith absorber’s base to the force

acting back onto the base. It is defined as Zd
i =jvZa , where Za is the mechanical impedance

given in equation (1). The contribution of the N absorbers is expressed as a pressure input
distribution of the form.

f a(x, u)= s
N

i=1

Fid(x− xi )
d(u− ui )

a
, (7)

where d represents the Dirac delta function. The above distribution can be seen as the
secondary ‘‘control’’ source while the external sound pressure field represents the primary
‘‘disturbance’’ source. Note that the secondary source is coupled to the cylinder
displacement through the absorbers impedance Zd

i (i=1, 2, . . . , N).
Using standard thin shell theory [9] the normal displacement of the cylinder can be

written as

v(x, u, t)=6 s
a

m=1

s
a

n=0

Wc
mn sin (gmx) cos (nu)+ s

a

m=1

s
a

m=1

Ws
mn sin (gmx) sin (nu)7 ejvt, (8)

where the complex coefficients, Wc
mn and Ws

mn , give the amplitude of the response of the
cylinder in the (m, n)th vibration mode and gm =mp/L. Here m and n correspond to the
modal order in the axial and circumferential direction, respectively.
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In order to find the response of the system, it is convenient to expand pd (x, u) and
f a(x, u) into series with the form of equation (8). Thus pd (x, u) can be written as
(omitting ejvt)

pd (x, u)= s
a

m=1

s
a

n=0

Pd,c
mn sin (gmx) cos (nu)+ s

a

m=1

s
a

n=1

Pd,s
mn sin (gmx) sin (nu). (9)

A similar expression is applied to the force input distribution of the absorbers:

f a(x, u)= s
a

m=1

s
a

n=0

Fc
mn sin (gmx) cos (nu)+ s

a

m=1

s
a

n=1

Fs
mn sin (gmx) sin (nu). (10)

In both of the above equations, the modal force amplitudes, Pd,c
mn , Pd,s

mn , Fc
mn , and Fs

mn , can
easily be obtained by utilizing orthogonality of the shell mode shape functions [8]. For
instance the absorber modal forces are found to be

Fc/s
mn =

2
Lenpa

s
N

i=1

Fi sin (gmxi ){cos/sin}(nui ), (11)

where en =2 if n=0 and en =1 otherwise.
The complex amplitude coefficients for the coupled response are then expressed as

Wc/s
mn =Hc/s

mn (v)Fc/s
mn =Hc/s

mn (v)(Pc/s
mn +Fc/s

mn ) (12)

for both the sine and cosine circumferential distribution. The modal frequency response
function is defined as

Hmn (v)= g[(L11L22 −L12L21)/det (L)]. (13)

For the Donnell–Mushtari shell theory the Lij coefficients of matrix L are defined as
follows:

L11 =V2 − j2
m −[(1− n)/2]n2, L12 =L12 = [(1+ n)/2]njm , L13 =L31 = njm ,

(14a–c)

L22 =V2 − n2 − [(1− n)/2]j2
m, L23 =L32 =−n, L33 =V2 −1− b2(j2

m + n2)2,

(14d–f)

where jm = gma. In equation (14), V is the non-dimensional disturbance frequency defined
by V=va/cL , the parameters g and b are defined by g=−(1− n2)a2/Eh and b2 = h2/12a2.
The longitudinal phase speed of the shell material is given by cL =zE/rs (1− n2), where
E, rs and n are the elastic modulus, density, and Poisson ratio of the shell material,
respectively. Structural damping is included by adding a small imaginary part to the
material’s elastic modulus, Ed =E(1+ jhs ), where hs represents the structural damping
factor which is valid for harmonic response.

In practice, fuselages are constructed from a skin, longerons and frames which are
usually modelled using a smeared approach. However, this approach leads to a dynamic
model which is overly soft and significantly alters the response of the system to forces due
to disturbances such as actuators and absorbers. In this analysis an approach similar to
that of Nelson et al. [10] is used to incorporate the bending and torsional stiffness due to
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longerons and frames by adding correction terms to the Donnell–Mushtari equations. The
L33 entry given in equation (14) is modified as follows:

L33 =V2 −1− b2(maj
4
m + mhn4 +2mtj

2
mn2), (15)

where the correction factors, mt , ma , and mh are given in Table 1. Including the density
correction factor, mm , the longitudinal phase speed also becomes

cL =zEd /rmm (1− n2). (16)

A matrix notation is now introduced to solve for the coupled response of the system
with absorbers. The infinite summations in the previous equations are approximated by
finite summations including the first Ncirc circumferential modes and Nlong longitudinal
modes. Taking into account both sine and cosine circumferential modes, the total number
of modes is Nmode =2NcircNlong. Let q represent the column vector of modal displacement
amplitudes, Wc

mn and Ws
mn , f the column vector of absorber modal forces, Fc

mn and Fs
mn , and

f a the column vector of forces in the absorbers, Fi . Equation (6) can be written as

f a =−ZFaq, (17)

where Z is a N×N diagonal matrix containing the compliance terms Zd
i (i=1, 2, . . . , N),

and Fa is a N×Nmode matrix relating the modal amplitudes Wc
mn and Ws

mn to the radial
displacements at the absorber locations, w(xi , ui ). Now the absorber forces, Fi , are
expanded in terms of the cylinder mode shapes (equation (11)) to yield the absorber modal
forces, Fc

mn and Fs
mn . This is written in matrix notation as

f=Caf a, (18)

where Ca is a Nmode ×N matrix. Let H be the diagonal matrix containing the modal transfer
functions Hmn (v). Using equation (17) and equation (18), equation (12) is rewritten as

q=Hp−HCaZFaq, (19)

where p is the column vector of external pressure modal components, Pd,c
mn and Pd,s

mn . The
displacement modal amplitudes of the coupled shell-absorber system are solutions of the
linear system.

q=A−1Hp, (20)

where

A= I+HCaZFa. (21)

It should be mentioned that the matrix A is not diagonal, i.e., the presence of the absorbers
yields a coupling between the cylinder structural modes. With no absorbers, the cylinder

T 1

Density and stiffness correction factors

Term Expression

Density mm =1+AF /hSF +AL /hSL

Torsion mt = hD3
L /(h3SL /3)

Axial bending ma =1+(1/LS SL ) (IL +(D2
L /4) [hSL AL /(hSL +AL )])

Hoop bending mh =1+(1/IS SF ) (IF +(D2
F /4) [hSF AF /(hSF +AF )])

where: AF , AL =frame and longeron cross-section area, DF , DL =frame and longeron height, SF , SL =frame
and longeron spacing, IF , IL =frame and longeron area moment of inertia about neutral axis, respectively and
IS =skin area moment of inertia per unit length about neutral axis
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displacement modal amplitudes are simply obtained by setting the absorber compliance
matrix to zero.

As described by Silcox and Lester [8], the interior acoustic pressure can be obtained by
a mode matching technique. The interior acoustic response can be written (omitting ejvt)
as

p(x, r, u)=6 s
a

m=0

s
a

n=0

Pc
mnJn (krr) cos (gmx) cos (nu)

+ s
a

m=0

s
a

n=1

Ps
mnJn (krr) cos (gmx) sin (nu)7, (22)

where k2
r = k2 − g2

m . The acoustic wavenumber k is given by k=v/c, where c is the speed
of sound. Damping is introduced in the acoustic cavity by adding a small imaginary part
to c, cd = c(1+ jh), where h is the acoustic damping factor. In order to find the amplitudes
Pc

mn and Ps
mn , it is necessary to apply the media interface boundary conditions of continuity

of normal particle displacement at the shell wall. As described by Silcox and Lester [8],
this is most easily achieved by expanding the shell radial displacement in terms of the
acoustic modes and then directly matching the new shell expansion coefficients and
acoustic mode amplitudes. Using this procedure the interior pressure amplitudes are
specified by

Pc/s
mn =[rv2/krJ'n (kra)]W
 c/s

mn , (23)

which is valid for both the cos (nu) and sin (nu) circumferential distributions. In equation
(23) the factor W
 c/s

mn is specified by

W
 c/s
mn = s

a

m'=1

C
 m'mWc/s
m'n , (24)

where the coefficients C
 m'm are defined as follows:

C
 m'm =6D(−)
m'm +D(+)

m'm ,
0,

if m'$m;
otherwise;

D(2)
m'm =

1
pem $1−cos (m'2m)p

m'2m %.

2.3.          

As discussed in section 2.1., the absorbers can be detuned by selecting a natural
frequency different from the disturbance frequency. Let ai be the detuning factor of the
ith absorber defined in section 2.1. The absorber is tuned when ai =1 and detuned
otherwise. Practically, tuning or detuning is usually achieved by varying the stiffness of
the absorber. In this section, the numerical procedure used to find the optimal detuning
factors is presented. The optimization goal is to minimize some cost function related to
the interior acoustic potential energy.

Two types of cost function were investigated. The first cost function is defined as the
total kinetic energy associated with the normal vibrational field of the cylinder. It is defined
in terms of the vector of modal amplitudes q, as

Jstruct = 1
2rshav2qHq, (25)
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where qH represents the Hermitian transpose of q. The second cost function is an estimate
of the total acoustic potential energy inside the shell. It is defined as

Jacous =
1

4rc2 gV

=p(x, r, u)=2 dV1 1
4rc2

2pL
NxNuNr

s
Nx

ix =1

s
Nu

iu =1

s
Nr

ir =1

rl =p(rl , xl , ul ) =2. (26)

As seen in equation (1), the absorber impedance is a non-linear function of the detuning
factor ai which requires implementing a non-linear parametric optimization procedure. The
search for a minimum is constrained by setting upper and lower bounds on the detuning
factors. The optimization algorithm used in the calculations is based on Sequential
Quadratic Programming (SQP) techniques, also referred to as constrained quasi-Newton
methods. An overview of SQP is found in references [11] and [12]. The constrained
quasi-Newton method assumes the cost function has a unique minimum. In cases where
several minima can be found within the constraints, the optimized solution is not
guaranteed to yield the global minimum of the cost function. For the current system,
plotting both structural and acoustic cost functions versus the tuning factors, ai , reveals
several local minima. In other words, the following results do not necessarily present the
very best possible detuning configuration. To reduce the computational load involved in
the optimization, an analytical expression was derived for the gradient of both cost
functions with respect to the detuning factors, thus avoiding the need for finite difference
approximations.

3. RESULTS AND DISCUSSION

3.1.      

For the following simulations we choose to model the fuselage structure of a BAe 748
propeller aircraft that was previously modelled by Thomas et al. [13, 14]. As discussed in
section 2.2. of this paper, the fuselage is modelled as a simply supported, homogeneous
cylinder of finite length with rigid end caps which is identical to that used by Thomas et
al. However, for the present model the additional effects of the hoop and axial bending
stiffness introduced by the stringers and frames as outlined previously are also included.

Thus, in addition to the mass of the stringers and frames being accounted for by
‘‘smearing’’ of their mass distribution, their stiffness is also included. Consequently, while
most of the cylinder properties given in Table 2 are identical to those used by Thomas
et al., the cylinder has a hoop and axial stiffness which is significantly different. A

T 2

Parameters of the cylinder fuselage model

Parameter Magnitude Parameter Magnitude

Cylinder length, L (m) 16 Frame:
Cylinder radius, a (m) 1·3 Spacing SF (m) 0·40
Cylinder thickness, h (m) 1·2×10−3 Height, DF (m) 0·09
Material density, rs (kg/m3) 2700 Area, AF (m2) 1·8×10−4

Young’s modulus, E (N/m2) 7·1×1010 Area moment of inertia, IF (m4) 8·7×10−7

Poisson’s ratio; n 0·31 Longeron:
Speed of sound c (m/s) 343 Spacing, SL (m) 0·40
Density of air, r (kg/m2) 1·21 Height, DL (m2) 0·015
Structural damping, hs 0·1 Area, AL (m2) 0·7×10−4

Acoustic damping, h 0·1 Area moment of inertia, IL (m4) 2·7×10−9
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calculation of the input compliance of the cylinder gives values of the order of 0.2 mm/N
at around 100 Hz, which is comparable to values reported in reference [1] for the
SAAB 340 whose fuselage dynamic characteristics are similar to those of the BAe 748.
When the value of stiffness assumed by Thomas et al. is used, the mobility obtained is
of the order of 5 mm/N which is significantly higher. As discussed later, the decreased
stiffness of the cylinder as in Thomas’s model results in a higher modal density at the BPF
and localized structural dimpling in response to a point force which has important
implications on the use of tuned absorbers as compared to globally detuned absorbers.
Also note that a damping factor of magnitude 0·1 was found to yield better correlation
between the SAAB measurements and the present model compared to the 0·3 factor used
by Thomas et al. Finally, the model includes 7 modes in the circumferential direction and
15 modes in the longitudinal direction (Ncirc =7, Nlong =15). Convergence tests showed the
above modal truncation was sufficiently accurate at the frequencies of interest.

3.2.       

The disturbance pressure field discussed in section 2.2. is also based upon that generated
by the right propeller of the BAe 748, as outlined by Thomas et al. [13]. In the axial
direction the pressure amplitude decays exponentially in both directions from its peak in
the propeller plane with a decay constant of 2 (i.e., the pressure is 1% of the maximum,
2·3 m away from the propeller plane). In the circumferential direction the pressure
decreases linearly with angle from the maximum point and meets the fuselage at u=0°
and u=150°. The pressure peak is observed to occur at an axial distance of x=3·5 m
(defining the propeller plane), u=85° (which is the point of closest approach of the
propeller) and has a maximum value of 150 Pa or 134·5 dB which is a representative
pressure load for turboprop aircraft. Two discrete frequencies are considered; 88 Hz
corresponding to the cruise blade passage frequency (BPF) of the BAe 748 and 176 Hz at
twice the BPF. The calculated averaged sound pressure level in the fuselage with the
previous cylinder parameters was 79·5 dBA at 88 Hz, which compares well with actual
measured values in comparable ‘‘green’’ aircraft [1].

Although a realistic propeller acoustic footprint will have a varying phase in the
circumferential direction due to the propeller trace velocity effects, the fuselage modal
response in real aircraft is a standing wave pattern due to structural discontinuities such
as the internal floor, etc. Therefore, to induce a standing wave pattern in the shell a uniform
phase distribution was selected for the propeller footprint.

3.3.         

For the following analysis, four absorbers were considered, positioned in the propeller
plane as suggested by the results of references [1–3]. For most of the calculations the mass
of each absorber was chosen to be 12·5 kg, giving a total absorber moving weight of 50 kg
(relative to a cylinder weight of 645 kg), while the Q of the absorbers was chosen to be
15. The MQ of the system is thus 750 kg. The stiffness of the absorbers was set (in the
case of tuned absorbers) or adapted (for detuned absorbers) by varying the value of the
resonant frequency of each absorber. A preliminary analysis of the interior pressure field
and the shell response without absorbers (see later) revealed that at 88 Hz the acoustic and
shell vibration was dominated by circumferential modes of order n=1 and 2 rotated by
−10·66° from the u origin (see Figure 3). Thus the angular position of the four absorbers
was chosen to be −10·66°, +79·33°, +169·33°, and +259·33°, corresponding to the
anti-nodes of the rotated n=2 mode. Note that the maximum in cylinder displacement
does not correspond to the maximum in the pressure forcing function (which was at
u=85°) due to the slight angular asymmetry in the propeller pressure forcing function.



6

0

Mode (m,n)

M
od

al
 d

is
pl

ac
em

en
t 

(m
 ×

 1
0–6

)

2

(1
, 0

)
(2

, 0
)

(3
, 0

)
(4

, 0
)

(5
, 0

)
(1

, 1
)

(2
, 1

)
(3

, 1
)

(4
, 1

)
(5

, 1
)

(1
, 2

)
(2

, 2
)

(3
, 2

)
(4

, 2
)

(5
, 2

)
(1

, 3
)

(2
, 3

)
(3

, 3
)

(4
, 3

)
(5

, 3
)

(1
, 4

)
(2

, 4
)

(3
, 4

)
(4

, 4
)

(5
, 4

)

4

   755

Two different types of cost function were considered as the basis for the optimization
scheme for the adaptive absorbers considered in section 2.3. The first cost function as
defined in equation (25) represents tht total kinetic energy associated with the shell’s
normal vibration. The second cost function given in equation (26) is an estimate of the
total acoustic potential energy radiated inside the shell. It is constructed by summing the
squared modulus of the interior pressure evaluated over a grid of equally distributed points
inside the shell and weighted by each point’s radius. This cost function’s estimate is based
on 500 points distributed throughout the cylinder interior (Nx =10, Nu =10, Nr =5). Note
that 2040 points were used to compute the potential acoustic energy before and after
optimization (Nx =20, Nu =17, Nr =6). Reduction of the acoustic cost function thus
implies a global reduction of the interior sound levels. The upper and lower limits imposed
on the detuning factors, ai (see section 2.3.), were set to 0·56 and 5, respectively. With these
values, the absorber optimized natural frequencies are constrained to stay between 0·2v
and 1·8v, where v is the disturbance frequency.

3.4.   f=88  ()
For the first results the disturbance frequency was set to f=88 Hz, corresponding to

the propeller blade passage frequency of the BAe 748 system. Figure 4 and later
figures show the amplitudes of the shell response for the three cases of uncontrolled, tuned,
and detuned represented in bar diagram form from left to right, respectively, for each mode
(m, n). The shell response consists of both a cos (nu) and sin (nu) component as shown
in equation (8). The values plotted in Figure 4 are obtained from the square root of the
sum of the squares of the amplitudes and thus represent the amplitude of a cos (nu) rotated
to the position of maximum displacement. The results show that the shell response is
dominated by n=1 and 2 circumferential modal orders with a rotated origin at
u=−10·66°. The corresponding interior pressure decomposition of Figure 5 shows that
the pressure is dominated also by the n=1 and n=2 modes but at differing relative
strengths due to the value of the cylinder structural acoustic coupling. The interior pressure

Figure 4. Structural response at 88 Hz: Q, uncontrolled; q, tuned; ;, detuned, Jstruc ; <, detuned, Jacous.
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amplitudes are decomposed at the shell wall (where it is maximum) and each (m, n)th
component includes contributions from the higher order radial modal orders.

For the first test we use tuned absorbers with v set to 88 Hz. Figures 4 and 5 show the
corresponding shell and interior pressure field decompositions and all modes are seen to
be reduced to some degree. To evaluate the performance of the tuned absorbers the kinetic
energy of the shell system and the acoustic potential energy of the interior is calculated
as outlined above. Note that a finer mesh of 2040 points was used to evaluate the change
in acoustic potential energy. For the tuned absorbers the shell kinetic energy was reduced
by 6·4 dB while the interior acoustic potential energy was reduced by 4·3 dB. The vibration
reductions under each absorber were 19·3, 18·4, 17·5, and 32·1 dB corresponding,
respectively, to the angular positions stated in section 3.3.

One now turns to the use of adaptive absorbers whose individual stiffness properties are
globally adapted (in effect one detunes the absorbers) to reduce a chosen cost function.
The first cost function chosen is the kinetic energy of the shell normal vibrations. The
absorbers are detuned, to reduce the cost function, as described in section 2.3. The
corresponding modal amplitudes are given in Figures 4 and 5. The results of the shell
decomposition show that while the n=1 and n=2 modes have been reduced, in contrast
to the tuned absorber, the n=3 amplitudes have increased. However, Figure 5 shows that
the corresponding modal pressure amplitudes have all been reduced. For this case the
reduction in shell kinetic energy is 8·4 dB and acoustic potential energy is 5·0 dB. Thus,
the use of globally detuned absorbers has led to an slightly increased interior sound
reduction over the tuned absorbers. The mechanism of reduction is very similar to the
phenomenon of ‘‘modal restructuring’’ first discussed in reference [15] for planar elastic
radiators. The sound field due to the increased n=3 modes combines destructively with
n=1 and n=2 modes to lead to a further drop in sound levels. More explicitly, the
increased n=3 shell vibration levels lead to an overall shell response which is not as well
coupled to the interior acoustic field as in the case of tuned absorbers. The ratio of the
disturbance frequency to the detuned natural frequencies of the absorbers, ai =v/vi

r , is

Figure 5. Interior acoustic response at 88 Hz: Q, uncontrolled; q, tuned; ;, detuned, Jstruc ; <, detuned, Jacous.
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0·95, 0·92, 0·95, and 5 for the respective absorber angular positions listed above. These
values can be translated into a change of absorber stiffness using the relationship K=Mv2.
Note that one of the above detuning factors has reached the upper limit set in the
constrained optimization. Interestingly, a closer examination of this situation reveals that
one of the optimally detuned absorbers is tending to zero stiffness (i.e., the absorbers are
not present). Thus as well as optimizing the ‘‘active ’’ component of the absorber, the
approach of this paper also could be considered as simultaneously optimizing the
‘‘passive’’ component or mass distribution for example.

In the next case an interior acoustic potential energy is used as a cost function (a choice
which seems the most logical since the objective is to globally reduce the interior sound
levels). The shell and interior pressure modal amplitudes for this case are shown in
Figures 4 and 5 along with the previous results. A similar trend is observed in the
shell modal amplitudes as above. The n=1 and n=2 modes are reduced, however
the n=3 modal amplitudes are further increased over the results obtained with the
cost function based on kinetic energy. The interior pressure modal amplitudes are all
again reduced and to a further degree than when kinetic energy is used as a cost function.
The reductions in the shell kinetic energy and the interior acoustic potential energy are
4·2 dB and 9·9 dB, respectively, when the acoustic potential energy is used as a cost
function. The frequency detuning factors on the absorbers for this case are 0·74, 0·75, 1·06,
and 0·62.

The results are summarized in Table 3. It is apparent that, at the BPF, globally detuning
the absorbers leads to a significant improvement in reduction of the contained interior
acoustic field over using individually tuned absorbers. This is an encouraging result
especially for this ‘‘stiff’’ model where the shell modal density is lower at the BPF than
previous fuselage studies of ASAC [13, 15]. Generally, better performance is achieved in
ASAC when the modal density is higher.

3.5.   f=176  (2 )
One now considers an identical set of simulation tests at twice the blade passing

frequency or at the first harmonic of the propeller noise. Figures 6 and 7 show the modal
amplitudes of the shell and interior pressure response at this higher frequency in the same
format as previously. Also shown are the amplitudes with tuned absorbers and when
globally detuned absorbers are used in conjunction with an interior acoustic potential
energy cost function. The reductions in the acoustic potential energy for the test cases are
summarized in Table 4. At this higher frequency the reduction in sound is not nearly as
high as at f=88 Hz. However, the globally detuned absorbers with both structural and
acoustic based cost functions still perform better than tuned absorbers. Note that the two
cost functions result in the same level of reductions. This suggests that vibration
suppression rather than modal restructuring is the main mechanism of control at this
frequency.

T 3

Attenuation of shell kinetic energy and interior acoustic potential energy f=88 Hz,
MQ=750 kg

D Shell K.E. (dB) D Acoustic P.E. (dB)

Tuned 6·4 4·3
Detuned (Jstruct) 8·4 5·0
Detuned (Jacous) 4·2 9·9
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Figure 6. Structural response at 176 Hz using acoustic P.E. cost function: Q, uncontrolled; q, tuned; ;,
detuned, Jacous.

If one examines the results of Figures 6 and and 7 one sees that while the shell response
is significant in the n=1, 2, 3 and 4 modes, the interior acoustic field is dominated by the
n=3 circumferential mode positioned with a primary anti-node at u=−21·9°. Thus in
order to reduce the coupled interior sound field, the dynamic absorbers should significantly
reduce the n=3 shell modal amplitude. Figure 6 reveals that the n=3 shell modal
amplitudes are only slightly reduced and thus the acoustic reduction is small. This behavior

Figure 7. Interior acoustic response at 176 Hz using acoustic P.E. cost function: Q, uncontrolled; q, tuned;
;, detuned, Jacous.
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T 4

Attenuation of shell kinetic energy and interior acoustic potential energy f=176 Hz,
MQ=750 kg

D Shell K.E. (dB) D Acoustic P.E. (dB)

Tuned 1·3 −0·2
Detuned (Jstruct) 3·6 2·2
Detuned (Jacous) 3·6 2·2

is most likely due to the fact that, in the present configuration, the absorbers are poorly
positioned so as to couple into the n=3 mode. Two of the absorbers are located within
10° of an anti-node of the rotated n=3 modal distribution and are thus unlikely to
globally modify its vibration to any significant degree. In general, the number of absorbers
needs to be at least twice the modal order of the motion to be controlled (Nyquist theory)
and this would imply the use of six, appropriately positioned absorbers. Thus to control
the higher BPF components, a system would most likely be composed of many absorbers
with lighter masses. In this case, on the basis of the discussion in section 2.1., it would
be necessary to keep the absorber Q as high as possible. The detuning factors in these cases
were 0·78, 0·94, 1·23, and 0·91 for the structural cost function and 0·88, 1·24, 0·96, and
0·74 for the acoustic cost function.

3.6.     =480, f=88  ()
For the next test the mass of each individual absorber is reduced from 12·5 kg to 8 kg

giving a system MQ of 480 kg. The attenuations in the acoustic field are then evaluated
using tuned absorbers and globally detuned absorbers in conjunction with an acoustic
potential energy cost function. The results are summarized in Table 5 and demonstrate
that even for this absorber system with lighter masses, the globally detuned system still
provides reasonable attenuations of the interior field (8·3 dB) and outperforms the tuned
absorbers by over 4 dB. However, as expected from the discussion of section 2·1., the
lighter absorber system gives reduced attenuation than the heavier system considered
previously. The detuning factors in these cases were 0·56, 0·88, 1·05, and 0·63 for the
structural cost function and 0·83, 0·85, 1·11, and 0.79 for the acoustic cost function.

3.7.   f=88 2 5% ( )
In this last test, a brief study of the robustness of both the tuned and globally detuned

absorber system to a change in disturbance or operating condition was conducted. Here
the absorbers are optimized using an interior acoustic potential energy cost function at
the cruise BPF. The characteristics of the absorbers are fixed, the frequency of the
disturbance is then varied by +5% (to 92·4 Hz) and −5% (to 83·6 Hz) and the reductions

T 5

Attenuation of shell kinetic energy and interior acoustic potential energy f=88 Hz,
MQ=480 kg

D Shell K.E. (dB) D Acoustic P.E. (dB)

Tuned 6·3 4·2
Detuned (Jstruct) 6·3 7·0
Detuned (Jacous) 4·5 8·3
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T 6

Attenuation of shell kinetic energy and interior acoustic potential energy, f=88 Hz2 5%,
MQ=750 kg

D Shell K.E. (dB) D Acoustic P.E. (dB)

Tuned (+5%) 6·5 (6·4) 4·4 (4·3)
Detuned (Jacous) (+5%) 6·5 (4·2) 8·5 (9·9)
Tuned (−5%) 9·4 (6·4) 4·8 (4·3)
Detuned (Jacous) (−5%) 0·9 (4·2) 2·8 (9·9)

in the cost functions are evaluated. Results are shown in Table 6 where the reduction levels
in parenthesis correspond to the 88 Hz disturbance frequency case (see Table 3). For the
upper frequency (92·4 Hz), the reduction in the acoustic potential energy at f=92·4 Hz
with the tuned absorbers is 4·4 dB (as compared to 4·3 dB at the cruise BPF) and 8·5 dB
for the globally detuned absorbers (as compared to 9·9 dB for the cruise BPF). This last
result is in contrast with the lower frequency (83·6 Hz) case where the reduction in acoustic
potential energy for the globally detuned absorbers drops down to 2·8 dB. This reduction
level is now lower than that obtained with the tuned absorbers (4.8 dB). The tuned
absorbers appear less sensitive to small changes in the disturbance freuquency. However
it should be noted that this robustness studies on tuned vibration absorber is in effect
detuning them from the disturbance frequency. Future work will further investigate the
shape of the cost function in order to study the system’s robustness. However, in practice
the absorbers would most likely be made adaptive in order to track the disturbance

4. CONCLUSIONS

An analytical model of the structural acoustic behavior of a propeller aircraft including
vibration absorbers attached to the fuselage has been developed. The model was then used
to study the potential of vibration absorbers for reducing interior noise. The results
demonstrate that when the tuned absorbers are correctly configured, attenuation of
6–10 dB in the total interior acoustic potential energy possible. The model also
demonstrated that globally detuning the absorbers to minimize an interior acoustic cost
function gives improved attenuation over tuned absorbers. Further analysis indicated that
the attenuations are relatively insensitive to small changes in the disturbance frequency at
the blade passage frequency. The importance of the positioning of the absorbers was also
shown.
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