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PART I: A MULTI-SPAN BEAM
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This paper is part I of a two part paper. The model used in part I is a multi-span wide
beam in water contained by a rigid water trough. The multi-span beam is used to imitate
a typical substructure of a parallel flat plate-type structure. There exists a narrow channel
between the lower surface of the wide beam and the upper surface of the bottom plate of
the water trough. By using the small parameter expansion method, the added mass and
damping coefficients for a typical cross-section of a plate-fluid-plate system are deduced.
Moreover, by means of the added water mass and damping coefficients, the free vibration
frequencies of the simple model of a multi-span wide beam are analyzed in the first part
of the paper. In the second part of this paper, the free vibration frequencies of a complex
model of a parallel flat plate-type structure will be analyzed.
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1. INTRODUCTION

The assemblies of parallel flat plates are used in the core designs of some research and
power reactors including the Engineering Test Reactor, the Materials Testing Reactor and
Shipping Atomic Power Station [1]. The flat plates are separated by narrow channels full
of a coolant water. In these structures, the inertial and viscous coupling effect of the
coolant water, which is expressed as added mass and damping, is usually strong when the
structural components vibrate, a direct result of which is that the free vibration frequencies
of the structure decrease greatly. Hence, it is necessary to analyze the coupling effect of
the water on the frequencies of the structure in the designs of plate-type fuel elements.

The inertial coupling effect of fluid on the free vibration of a structure consisting of
circular (or hexagonal or square) cylinders has been successfully studied. For the case of
circular cylinders, Chen [2] studied the virtual mass matrix of fluid by using classical ideal
flow theory and their free vibration characteristics. Similar work was carried out in
references [3–7]. Paidoussis [8] studied the virtual masses of clusters of parallel cylinders
in liquid contained by an outer channel and their free vibration characteristics by means
of both potential flow theory and fluid finite element method. For the case of hexagonal
cylinders, Fujita [9] used the Euler equation to determine the added mass coefficient. A
similar study can be found in reference [10] which was for the case of both square and
hexagonal cylinders.

When the viscous coupling effects are considered, the analysis becomes more complex.
This situation was investigated in some work [11–13] in which both theoretical and
experimental methods were used. Using the model of a hexagonal cylinder oscillating inside
a hexagonal cavity filled with an incompressible viscous fluid, Wilson [14] gave a
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closed-form analytical expression representing added mass and damping coefficients by
means of an approximate thin gap equation derived from the Navier–Stokes equations,
which were solved by an asymptotic expansion in terms of a non-dimensional frequency
parameter. A main restrictive condition was that the frequency of the hexagonal cylinder
was lower.

Generally, it is difficult to analyze the frequencies of a complex plate-type structure in
water because there are the coupling effects between water and structure. It is the aim of
this paper to develop a simplified method for surmounting such a difficulty. The key to
analyzing the frequency of the complex plate-type structure lies in determination of added
water mass and added water damping. In part I of this paper, a simple model is used to
obtain the added mass and damping of a typical structure of plate-fluid-plate. In part II
of this paper [15], the added mass and damping are extended to form the added mass
matrix and damping matrix of a complex plate-type structure. As a simple model, the free
vibration frequencies of a multi-span wide beam in a rigid water trough, which is used to
imitate a typical substructure of a parallel flat plate-type structure, are analyzed in this
part of the paper. There is a narrow channel between the lower surface of the beam and
the upper surface of the bottom plate of the water trough. By means of the method similar
to that in reference [14], the coupling forces of water are considered when the beam simply
vibrates. Here, the two term expansion of the stream function for the fluid in the channel
is used instead of the one term expansion, which eliminates the restrictive condition of low
frequency in reference [14]. Moreover, the varying tendency between the frequencies of the
beam and the gaps is studied. The values of calculated frequency are compared with those
of measured frequency.

2. MODEL AND ITS MOTION EQUATIONS

The complex plate-type structure consists of one main plate-type beam and 2N1 pieces
of minor plate-type beams with the same geometrical and material characteristics. The
minor plate-type beams are symmetrically placed on the upper side and the lower side of
the main plate-type beam. The geometrical integrity, between these beams is maintained
by five retaining blocks. The structure is supported by two linear springs and two torsional
springs. Figure 1 shows this structure when N1 =5. The simple model used here is a hinged
four-span beam on the bottom plate of a rigid water-trough, which is used to imitate a
minor plate-type beam of the complex structure. There is a torsional spring with stiff

Figure 1. Sketch of the mechanical model of a parallel flat-plate-type structure. (a) Structure supported by
two linear springs and two torsional springs. (b) Typical cross-section of a suspending segment. (c) Typical
cross-section of a maintaining segment.
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Figure 2. Sketch of the mechanical model of a hinged four-span beam. Ku is the stiffness coefficient of torsional
springs, L1 the length of one span of the beam. (a) The beam in a rigid water trough. (b) Sketch of the cross-section
and the gap between the lower surface of the beam and the upper surface of bottom plate of the rigid
water-trough.

coefficient Ku at each hinged point. The model is shown in Figure 2(a) and its cross-section
is shown in Figure 2(b). There is a narrow channel filled with water between the lower
surface of the beam and the upper surface of bottom plate of the rigid water-trough, its
cross-sectional gap is shown in Figure 2(b). The free surface of the water is in the same
plane as the upper surface of the four-span beam.

Obviously, the supporting conditions of the simple model are different from those of
a minor plate-type beam in the whole structure, but it is the purpose to obtain the added
water mass and the added water damping of a typical cross-section of plate-fluid-plate
system as shown in Figure 3. Hence, the difference of supporting conditions of both models
is ignored in the following analysis.

Two basic assumptions are made: (a) the beam is rigid in the wide direction (X direction
in Figure 2(b)) and the simple harmonic vibration of the cross-section of the beam is
parallel to the Y direction; (b) the water motion occurs only in the X–Y plane and the
water is treated as an incompressible viscous fluid.

For assumption (a), the structure only consists of plane bending beam elements if the
finite element method is used to describe the structure motion in air. Its motion equations
can be expressed in the form

M0ÿ+K0y=0, (1)

where M0 is the mass matrix, K0 the stiffness matrix, y is a general displacement column,
( ˙ ) denotes differentiation with respect to time. Because the free surface of water is in the
same plane as upper surface of the beam, the water reaction forces on the upper surface
of the beam are very small and are simply taken to be zero when the beam is vibrating.
Hence, the water reaction forces on the beam only result from the water in the channel.
The motion equations of the structure in water can be expressed in the form

M0ÿ+K0y=F, (2)

where F is water reaction force column. For frequency analysis, F is expressed in the form

F=−Cdẏ−Mdÿ, (3)
where Cd and Md are added mass matrix and added damping matrixes respectively.

Figure 3. Co-ordinate system. t1 is the thickness of a cross-section of the beam, h the gap width, B the width
of cross-section of the beam and H the distance between the lower side of the cross-section of the beam and
the upper side of cross-section of the bottom plate of the rigid water trough when the beam is vibrating.
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3. DETERMINATION OF WATER REACTION FORCES

The co-ordinate system is shown in Figure 3, in which t1 denotes the thickness of
cross-section of the beam, B the width of cross-section of the beam and h the width of
the gap. From basic assumption (a), the motion of the beam relative to the bottom of the
rigid water-trough can be represented by H as

H= h+A sin vt, (4)

where A is the amplitude of simple harmonic vibration of the beam, v frequency and t
time.

In reality, the motion of the water in the gap is three-dimensional. Because the four-span
beam is placed in still water, the longitudinal influx approximates to zero. Thus, a
two-dimensional model of the water is used and the motion equations of the water in the
gap are
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where U is the fluid velocity component in X direction, V the fluid velocity component
in the Y direction, p is pressure, r is fluid density, m the fluid viscous coefficient and n= m/r.
Introducing the stream function C

U=−1C/1Y, V= 1C/1X (6)

and adopting the following non-dimensional variables and parameters

x=X/B, y=Y/h, t=vt, R=vAB/v, u= eU/vA, n=V/vA,

c=C/vAB, e= h/B, b=A/h, h=H/h=1+ b sin t,

equation (5) can be rewritten into the form
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The boundary conditions for the velocities corresponding to equation (7) are

−
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1c

1y
=0,

1c

1x
=

1
b

dh
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, y= h. (8)

For the case of infinite parallel plates, the pressure at the exits of the cross-section of the
gap could be taken as constant. For the case of the finite plates shown in Figure 3, the
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pressure at the exits of X= 2B/2 (see Figure 3) will simply be taken as a function of
time, p1(t).

3.1.  

Assuming the gap h (see Figure 2) to be small, e= h/B is a small parameter. Hence, the
non-dimensional stream function can be expressed in the expansion

c=c0 + ec1 +O(e2). (9)

Substituting equation (9) into equations (7), (8) yields for the e0 term

14c0/1y4 =0. (10)

−
1c0
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=
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1c0
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and for the e term
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−1c0/1y= 1c0/1x=0, y=0, h (13)

From equations (11), (12), one can obtain

c0 =F0(t)+ x[3(y/h)2 −2(y/h)3] cos t. (14)

From equations (12–14),

c1 =F1(t)+$Rf2

2b% y2 +$Rf3
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R
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10h4 +
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where

f2 =−(11x/10) sin t+(13bx/7h) cos2 t, f3 = (6x/5h) sin t−(81bx/35h) cos2 t.

3.2.  

Adopting the non-dimensional pressure expression [14]

p̃= p/(vmAB2/h3) (16)

and from equation (5), the non-dimensional momentum equations become
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Substituting equation (9) into equations (17), (18) respectively, the two term expansions
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of the pressure gradient can be obtained

1p̃
1x

1 12x
h3 cos t+ eR0− 6x

5bh
sin t+

81x
35h

cos 2t1,
1p̃
1y

1 0 (19, 20)

In equation (19), the first part of the right side is in phase with the velocity of the beam,
the second part in phase with the acceleration of the beam and the third part is lower and
higher harmonic. This part can be neglected for frequency analysis of the structure.
Equation (19) is rewritten in the form

1p̃/1x1 (12x/h3) cos t−(6exR/5bh) sin t (21)

3.3.           

Integrating equation (21) from x to 1/2, the non-dimensional pressure distribution is

p̃= p̃1(t)+012x2 −3
2h3 1 cos t−0eR(12x2 −3)

20bh 1 sin t (22)

where p̃1(t) is the non-dimensional pressure at the exit of X=B/2. It is a small value and
is simply taken to be zero. When the amplitude of simple harmonic vibration is small,
h=1+(A1/h) sin t1 1. The dimensional form corresponding to equation (22) is

p=
6mvAB2

h3 $0xB1
2

−
1
4% cos vt−
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2

−
1
4% sin vt (23)

Hence the fluid forces associated with the pressure can be obtained by integrating equation
(23) from −B/2 to B/2

F1 =g
B/2

−B/2

pdx=−(mvAB3/h3) cos vt+ rv2AB3/10h sin vt

or

F1 =−m(B/h)3H� −(rB3/10h)H� (24)

The fluid forces associated with the shear stress can be calculated from
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m
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2 0Bh1
2
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11rB2

40
H� (25)

All fluid forces on the beam per unit length in its longitude direction is

F0 =F1 −F2 = (−vcad +v2mad )H (26)

where cad = m(B/h)2(B/h+3/2) will be called the added water damping coefficient,
mad = rB2(B/10h+11/40) called the added water mass coefficient. Equation (26) describes
a distribution of water reaction forces on the beam. Figure 4 shows the distribution on
a bending beam element, in which 2L denotes the length of the beam element. Obviously
the water reaction force distribution is associated with the displacement of the beam.
Assuming ck (z) to be the distribution of kth mode of the beam vibrating in air, the
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Figure 4. The distribution of the water reaction force on a bending beam element in its longitude direction.

displacement of the beam in water can approximately be expressed in the form

H= s
N

k=1

ck (z)jk , (27)

where N is the number of modal shapes of the beam vibrating in air, and jk is the
coefficient. By means of the eigenvectors which result from equation (1), the distribution
ck (z) can be calculated by using the third order spline interpolation method. The
distributing forces of water reaction on a beam element (Figure 4) are simply lumped on
the two nodal points of the beam element. The results are

Fi =(−vcad +v2mad ) s
N

k=1 g
L

0

ck (z) dzjk, Fj =(−vcad +v2mad ) s
N

k=1 g
2L

L

ck (z) dzjk,

(28, 29)

From equations (28), (29), the right side of equation (2) can be constructed. There exists
a little difference between the right side and the left hand side of equation (2), which is
that the left side is expressed in a physical co-ordinate system, but the right side is in a
mode co-ordinate system. The eigenvectors of the beam vibrating in air are used to expand
the general displacement column y. Equation (2) can then be rewritten in the form

(I+Mad )j� +Cadj� +Lj=0 (30)

where I is a unit matrix, Mad is the added mass matrix in the mode co-ordinate system,
Cad is the added damping matrix in the mode co-ordinate system, L=diag (v2

I ), vI is
frequency of the beam vibrating in air and j= {j1, j2, . . . , jN}.

4. FREQUENCIES OF THE BEAM VIBRATING IN WATER

The following are the values of the main parameters: B=0·047 m, L=0·1625 m,
h=0·015 m, Ku =350 Nm/rad, m=1·004×10−3 Ns/m2, water density r=1000 kg/m3,
material density of the beam r1 =8400 kg/m3 and the elasticity modulus of the beam
E=9·8×1010 N/m2.

Equation (30) describes the free vibration of a damped system. Its eigenvalues can be
expressed in the form

li = zivi +jz1− z2
i vi , i=1, 2, . . . , N (31)

where zi is viscous damping factor, vi is frequency, j=z−1. Equation (30) can be



2.0

600

h (mm)

m

0.80.4 1.6

4 × 105

c

400

300

150

1.2

8 × 105

1.2 × 106

1.6 × 106

.-.   .-. 802

T 1

Frequency values of the beam

Frequencies in air (Hz) Frequencies in water (Hz)
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

v1 v2 v3 v4 v1 v2 v3 v4

A 187·4 198·1 213·1 227·1 121·7 128·7 138·5 147·6
B 196·0 207·0 219·0 228·0 118·0 137·0 147·0 152·0
C 4·4 4·3 2·7 0·4 3·1 6·1 6.1 2·9

A, computational values of frequency; B, test values of frequency; C, the relative errors of
frequency (%).

rewritten in the form

$ 0
−M−1L

I
−M−1Cad%q= lq (32)

where M−1 = (I+Mad )−1, q=(jT j�T)T. Neglecting the N eigenvalues with positive real
parts in the 2N eigenvalues resulting from equation (32), the remainder eigenvalues are
written as

li = ai +jbi , i=1, 2, . . . , N (33)

where qi =Re(li ), bi =Im(li ). Comparing equations (31) and (33) yields

zivi =−ai , z1− z2
1vi = bi . (34)

From equation (34), one can write

z2
i = a2

i /(b2
i − a2

1 ), v2
i =(ai /zi)2. 1=1, 2, . . . , N (35)

When the gap h=0·015 m, the values of the first four frequencies are listed in Table 1,
from which one observes that the maximum value of the relative error between the
computational frequencies and the test frequencies of the beam vibrating in air is 4·4%,
and the maximum one of the beam vibrating in water is 6·1%. The relative error of the
first frequency of the beam vibrating in water is 3.1%. This relative error can satisfy the

Figure 5. The varying curves of added water mass damping coefficients with gaps. The solid line denotes the
added mass coefficient, the dashed line the added damping coefficient. Non-dimensional added mass coefficient
m=mad/(r1Bti), non dimensional added damping coefficient c= cad/m, h is the gap.
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Figure 6. The varying curves of the frequencies of the beam vibrating in water with gaps. Solid line denotes
the first frequency, dashed line the second frequency and + the test values of the two frequencies.

needs of dynamical analysis in engineering. The coincidence between the computational
values and the test values of frequency demonstrates the correctness of the added water
mass and damping matrices.

Now, the varying tendency of added mass, added damping coefficients and frequencies
of the beam vibrating in water with the gap width h are examined. Figure 5 shows the
varying curve of computational added mass and added damping coefficients with the gap
width h, in which the solid line denotes the non-dimensional added mass coefficient
m=mad /(riBti ), and the dashed line the non-dimensional added damping coefficient
c= cad /m. Obviously, the added damping coefficient increases more sharply than the added
mass coefficient does when the gap becomes smaller. The reason is that the added damping
coefficient is inversely proportional to h3, but the added mass coefficient is only inversely
proportional to h (see equation (26)). Hence, when the gap h is very small, the effects of
added damping on the response of a structure with narrow channels become more
important than those of added mass. The varying curves of the first two frequencies of
the four-span beam vibrating in water with the gap are shown in Figure 6, in which the
solid line denotes the first frequency, the dashed line the second frequency and ‘+’ the
test values of the two frequencies. Figure 6 shows that the smaller the gap h, the lower
the frequencies are. The reason is that the added water mass increases when the gap h
decreases which makes the frequencies of the beam drop. Hence, the varying curves of the
frequencies of the beam are typical. Moreover, when the gap h=0·015 m, there is a 35%
decrease of the first frequency of the beam vibrating in water as compared with that in
air. When the gap h=0·002 m, the frequency decreases by 63%.

5. CONCLUSIONS

By means of the small parameter expansion method similar to that used in reference
[14], the added water mass and damping coefficients for a typical cross-section of
plate-fluid-plate are deduced. The added water mass and damping are used to analyze the
frequency of a hinged four span beam vibrating in water and contained by a rigid water
trough. The correctness of added mass and damping coefficients is indirectly confirmed by
the coincidence between the computational frequency of the beam and the test one.

The frequencies of the hinged four-span beam vibrating in water depends largely on the
gap width between the lower side of the cross-section of the beam and the upper side of
the cross-section of the bottom plate of the water trough. The smaller the gap, the larger
is the added water mass and the lower are the frequencies of the beam.
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