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For the first time to the authors’ knowledge, the problem of free vibration of a moderately thick
rectangular plate with edges elastically restrained against transverse and rotational displacements is
considered. The Ritz method combined with a variational formulation and Mindlin plate theory is
used. The admissible functions consist of polynomials and basic functions that impose the required
boundary conditions on the Mindlin plate. The applicability of the formulation is illustrated using
three examples of plates with different combinations of elastically restrained edges and classical
boundary conditions. Numerical results are obtained to investigate the effects of elastic spring
stiffness, relative thickness and aspect ratio upon the natural frequencies of flexural vibration of
rectangular Mindlin plates.
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1. INTRODUCTION

The vibration of rectangular plates with classical boundary conditions [1–4] and elastically
restrained edges [5–18] has been widely analysed over the past few decades. Researchers
have drawn attention to the latter problem because it is generally accepted that edge
supports of a plate are elastic. Most interest is derived from potential practical application
to industrial problems such as vibrations encountered in building construction, printed
circuit boards, marine and aircraft structures. The excellent reviews of Leissa [19–21] have
summarized most of the related work existing in open literature. From these reviews, the
authors found that most work had been based on classical thin plate theory (CTPT).
Limitations of the CTPT [22], however, have limited the application of the thin plate results
to thick plate design although thick plates are important structural elements in many
engineering applications. Chung et al. [14] studied the vibration of orthotropic Mindlin
plates with edges elastically restrained against rotation. No results have been found in open
literature for vibration of thick plates with edges elastically restrained against both
transverse and rotational displacements. Prompted by the lack of research work in this
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area, this paper aims to provide some vibration solutions for thick plates with elastic edge
supports.

In this study, the authors have employed the first order theory of Mindlin [22] to
incorporate the effects of transverse shear deformation and rotary inertia on the vibration
behaviour of thick plates. The integral expressions for the displacement-based strain and
kinetic energy functional have been derived according to Mindlin plate theory [22]. Elastic
edge restraints have been imposed by placing a set of springs along the plate edges that
provide elastic support in both the transverse and rotational directions of the plate. In the
numerical process, the transverse displacement and rotation fields have been approximated
by sets of Ritz functions which are associated with the geometric boundary conditions
implicitly and thus satisfy the geometric boundary constraints at the outset. Following the
Ritz procedure with the integral expressions of the displacement-based strain and kinetic
energy functional, and the Ritz functions, the governing eigenvalue equation has been
derived. The paper describes details of the analysis method and formulations for the free
vibration of Mindlin plates with elastically restrained edges.

Numerical results in terms of vibration frequency parameters for rectangular Mindlin
paltes of various combinations of classical and elastically restrained boundary conditions
are presented. The problems considered herein include plates with (1) four edges elastically
restrained against rotational and transverse displacement, (2) two opposite edges
simply supported and the others elastically restrained, and (3) two opposite edges
clamped and the others elastically restrained. The effects of plate aspect ratio, relative
thickness ratio and elastic spring stiffness parameters upon the vibratory behaviour of
Mindlin plates are examined. Frequency parameters for plates with elastically supported
edges are compared with the results available in the literature and found to be in excellent
agreement.

2. GOVERNING EIGENVALUE EQUATIONS

Consider a flat, isotropic and moderately thick rectangular plate with uniform thickness
t, length a, width b, elastic modulus E, shear modulus G=E/[2(1+ n)] and Poisson ratio
n (see Figure 1). The plate can have any combination of edge conditions and may be
elastically restrained against lateral deflection and rotations on prescribed edges. The
objective of the study is to determine the natural frequencies of the plate with elastically
restrained edges.

For free harmonic vibration of a plate, the maximum strain energy functional based on
the Mindlin shear deformation plate theory [22] can be expressed as:

Figure 1. Geometry and co-ordinate system of rectangular plate analysed.
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where V is the volume of the plate, z is the co-ordinate out of the plate plane, w is the
lateral deflection on the midplane of the plate, ux and uy are rotations of the plate along
the y and x directions, and k is the shear correction factor associated with the Mindlin
plate theory.

Note that if ux =−1w/1x and uy =−1w/1y, equation (1) reduces to the well-known
energy functional for thin plates.

The maximum kinetic energy of a Mindlin plate, T, can be derived as

T= 1
2v

2 gA

[rtw2 + 1
12rt3(u2

x + u2
y )] dA, (2)

in which r is the plate density per unit volume; v is angular frequency; A is the area of
the plate; and t is the thickness of the plate.

It is assumed that the stiffness of the elastic restraint for the lateral deflection is kw and
the stiffness for the rotational restraint is kf . If an edge has an elastic rotational restraint,
only the rotation along the edge has been restrained in this study. The maximum strain
energy stored by the elastic edge restraints can be expressed as
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in which di , i=1, 2, . . . , 8, are the switch parameters. When di =0, the ith restraint on
the edge is removed; when di =1, the ith restraint on the edge is imposed.

For generality and convenience, the global co-ordinates may be normalised with respect
to the plate dimensions, i.e.,

j= x/a; h= y/b. (4)
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Using equation (4), the normalised maximum strain and kinetic energy functional for the
Mindlin plate and the strain energy stored in the elastical restraints may be expressed as
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where A� is the non-dimensional area of the plate; dA�=dj dh; and D is the flexural rigidity
of the plate=Et3/[12(1− n2)].

After choosing a set of appropriate admissible functions for w, ux and uy , the eigenvalue
equation can be derived by applying the Rayleigh–Ritz method to minimize the differences
between the maximum strain energies [equations (5) and (7)] and the maximum kinetic
energy [equation (6)]. A procedure for forming a set of trial functions which satisfy the
geometric boundary conditions of Mindlin plates of arbitrary shapes has been proposed
by the authors [23–25]. A brief description of the procedure is given below.

The transverse deflection, w, and the rotations, ux and uy may be parametrized by
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p
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s
q
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where p is the degree set of a mathematically complete polynomial; c, d and e are row
matrices and their corresponding elements cm , dm and em are the unknown coefficients to
be varied with the subscript m which is given by

m=(q+1)(q+2)/2− i (9)

and f, cx and cy are row matrices with elements:

fm (j, h)= (jq− ihi)f1(j, h), (10a)

cxm (j, h)= (jq− ihi)cx1(j, h), (10b)

cym (j, h)= (jq− ihi)cy1(j, h) (10c)

in which f1, cx1 and cy1 are basic functions that must satisfy the geometric boundary
conditions of Mindlin plates. The details of these geometric boundary conditions for
Mindlin plates have been discussed previously by the authors [24, 25].

The basic functions perform a key role in making the trial functions satisfy the geometric
boundary conditions of a Mindlin plate. They are formed by manipulating the piecewise
boundary expressions of the plate.

The basic function for the transverse deflection, w, can be expressed as

f1(j, h)= t
4

j=1

[Gj (j, h)]Vj, (11a)

where Gj (j, h)=0 is the boundary equation of the jth supporting edge; and Vj , depending
on the support edge condition, takes on:

Vj =0 if the jth edge is free (F); (11b)

Vj =1 if the jth edge is clamped (C), or simply supported (S). (11c)

The basic functions for the rotations, ux and uy , are given by:

cx1 = t
4

j=1

[Gj (j, h)]Vj, (12a)

while

Vy =0 if the jth edge is free (F) or simply supported (S) in the y direction; (12b)

Vj =1 if the jth edge is clamped (C) or simple supported (S) in the x direction.

(12c)

and

cy1 = t
4

j=1

[Gj (j, h)]Vj (13a)

while

Vj =0 if the jth edge is free (F) or simply supported (S) in the x direction; (13b)

Vj =1 if the jth edge is clamped (C) or simply supported (S) in the y direction.

(13c)
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Figure 2. Rectangular plates with (I) four edges elastically restrained; (II) two edges simply supported and
the other two edges restrained; and (III) two edges clamped and the other two edges elastically restrained.

Minimization of the differences between the maximum strain energies and kinetic energy
of the Mindlin plate and the elastic edge restraints with respect to the unknown coefficients
yields:

(1/1ci )(U+Us −T)=0 i=1, 2, . . . , m̄, (14a)

(1/1di )(U+Us −T)=0 i=1, 2, . . . , m̄, (14b)

(1/1ei )(U+Us −T)=0 i=1, 2, . . . , m̄, (14c)

which leads to

(K+Ks −v2M)8cde9=0, (15)

in which m̄ is the total number of polynomial terms in (8) and can be determined by (9)
with i=0 and q= p. K and M are the stiffness and mass matrices of the plate and Ks is
the stiffness matrix for the elastic edge restraints.

The matrices K, M and Ks in equation (15) can be expressed in the form:

L= & Lcc

symm.

Lcd

Ldd

Lce

Lde

Lee' (16)

in which L is replaced by K, M or Ks as appropriate. The submatrices for the linear stiffness
matrix of the Mindlin plate, K, can be derived as:
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Kde =DgA� 0n 1cx

1j

1cT
y

1h
+

1− n

2
1cx

1h

1cT
y

1j 1 dA�, (17e)

Kee =
D
ab gA� $a2 1cy

1h

1cT
y

1h
+

(1− n)b2

2
1cy

1j

1cT
y

1j
+ a2b2kGtcyc

T
y% dA�, (17f)

and the submatrices of M are given by

Mcc = abrt gA�

ffT dA�, Mdd = 1
12abrt3 gA�

cxc
T
x dA�, (18a, b)

Mee = 1
12abrt3 gA�

cyc
T
y dA�, Mcd =Mce =Mde =0 (18,c d)

The submatrices of Ks are given by

Kscc =g
1/2

−1/2

kw{d1[ffT] =h=−1/2 + d2[ffT] =h=1/2}a dj

+g
1/2

−1/2

kw{d3[ffT] =j=−1/2 + d4[ffT] =z=1/2}b dh, (19)

Ksdd =g
1/2

−1/2

kf{d7[cxc
T
x ] =j=−1/2 + d8[cxc

T
x ] =j=1/2}b dh, (20)

T 3

Comparison studies of frequency parameter, l=(vb2/p)zrt/D, for simply supported thick
square plate with four edges elastically restrained against rotation (SSSS plate, a/b=1 and

t/b=0·1).

Mode sequence
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Sf Sources 1 2 3 4 5 6

101 Present 2·6722 5·3657 5·3657 7·7021 9·2707 9·3212
Chung et al· [14] 2·672 5·376 5·378 7·781 9·290 9·316

102 Present 3·1736 6·0706 6·0706 8·4997 10·0603 10·1671
Chung et al· [14] 3·075 5·930 5·932 8·384 9·905 9·977

103 Present 3·2617 6·2090 6·2090 8·6650 10·2329 10·3518
Chung et al· [14] 3·242 6·190 6·194 8·690 10·266 10·322
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Figure 3. Frequency parameter, l=(vb2/p2)(rt/D)1/2 versus the elastic lateral edge restraint parameter, Sw ,
for rectangular Mindlin plate with EEEE edge conditions. Key: ——, t/b=0·001; – – –, t/b=0·1; ·–·–, t/b=0·2;
q, first mode; w, second mode; r, third mode. a/b and Sf values respectively are: (a) 1, 0; (b) 1, 102; (c) 1,
108; (d) 2, 0; (e) 2, 102; (f) 2, 108.

Ksee =g
1/2

−1/2

kf{d5[cyc
T
y ] =h=−1/2 + d6[cyc

T
y ] =h=1/2}a dj, (21)

Kscd =Ksce =Ksde =0. (22)

The frequency parameters, l=(vb2/p2)zrt/D, are obtained by solving the generalised
eigenvalue problem defined by equation (15) using subroutine RSG in EISPACK.

3. RESULTS AND DISCUSSION

The completeness of the formulation is further furnished by numerical examples. Three
examples of Mindlin plates have been considered: (1) all four edges elastically restrained
(EEEE); (2) two opposite sides simply supported and the others elastically restrained
(SESE); and (3) two opposite sides clamped and the others elastically restrained (CECE);
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as shown in Figure 2. Note that the notation E is introduced to represent an edge with
elastic restraints against both rotational and transverse displacements. The Poisson ratio
has been fixed at 0·3 and shear correction factor k has been taken as 5/6 throughout the
study.

For generality and convenience, two non-dimensionalised elastic restraint parameters
have been adopted in the following numerical analysis:

Sw = kwb3/D, Sf = kfb/D. (23, 24)

Before the numerical results are examined, it is appropriate to look at the results of some
convergence and comparison studies. The convergence of the eigenvalue is firstly
established by a numerical study as shown in Table 1. This convergence study considered
a square Mindlin plate with four edges elastically restrained (EEEE plate, Sw =Sf =102

and 108). The downward convergence of eigenvalue, which is the characteristic of the Ritz
method, is clearly demonstrated. The existence of the upperbound eigenvalue is mainly due
to the overestimation of plate stiffness by the Ritz procedure. A satisfactory numerical

Figure 4. Frequency parameter, l=(vb2/p2)(rt/D)1/2 versus the elastic rotational edge restraint parameter, Sf ,
for rectangular Mindlin plate with EEEE edge conditions. Key as for Figure 3. a/b and Sw values respectively
are: (a) 1, 0; (b) 1, 102; (c) 1, 108; (d) 2, 0; (e) 2, 102; (f) 2, 108.
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Figure 5. Frequency parameter, l=(vb2/p2)(rt/D)1/2 versus the elastic lateral edge restraint parameter, Sw ,
for rectangular Mindlin plate with SESE edge condtions. Key as for Figure 3.

accuracy can be achieved by employing a higher number of terms in the approximation
of the trial functions.

The convergence study covered two plate thickness ratios t/b=0·001 (thin) and
0·20 (moderately thick). The number of degree of polynomials ps used in the trial
functions increases from 4 to 14 which is equivalent to changing the determinant size of
the eigenvalue equation from 45×45 to 360×360. It is observed that a degree of
polynomial ps =12, which is equivalent to a determinant size of 273×273, is sufficient
to furnish convergent eigenvalues for plates with elastic restraint parameter Sw =Sf =102,
while ps =14 is required to generate a satisfactory convergence of eigenvalues for
plates with elastic restraint parameter Sw =Sf =108. Throughout this study, ps =14 has
been used in all computations to ensure satisfactory convergence of eigenvalues for all
cases.

Table 2 presents frequency parameters generated by the authors and by Leissa
[2], Gorman [9] and Grossi and Bhat [13] for thin square plates (t/b=0·001) with all
edges elastically restrained against transverse and rotational displacements
(EEEE plate). Excellent agreement has been achieved between the present results
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and the results in references [2], [9] and [13]. Frequency parameters are presented in Table 3
for simply supported thick square plates (t/b=0·1) with edges elastically restrained against
rotation. The results obtained using the present method are in good agreement with the
results reported by Chung et al. [14].

Having confirmed the proposed method by the foregoing convergence and
comparison studies, this method has been applied to generate frequency responses for
the three example problems (see Figure 2) for two plate aspect ratios, a/b=1·0 and
2·0. The results are shown in Figures 3–8. The elastic restraint parameter (Sw or Sf )
varies from 10−1 (a very small restraint) to 108 (approaches infinite restraint) while the
thickness ratio t/b ranges from 0·001 (a thin plate) to 0·20 (a moderately thick plate). Thus,
the coverage of the results is relatively thorough and complete because the results extend
from narrow to wide, and thin to thick plates. The effects of t/b, a/b and Sw (or Sf ) upon
the vibratory responses are evident from Figures 3–8.

The frequency parameters l for the first three modes are presented in: (1) Figures 3 and
4 for the EEEE plate (Case I in Figure 2); (2) (Figures 5 and 6 for the SESE plate (Case

Figure 6. Frequency parameter, l=(vb2/p2)(rt/D)1/2 versus the elastic rotational edge restraint parameter, Sf ,
for rectangular Mindlin plate with SESE edge conditions. Key as for Figure 4.
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Figure 7. Frequency parameter, l=(vb2/p2)(rt/D)1/2 versus the elastic lateral edge restraint parameter, Sw ,
for rectangular Mindlin plate with CECE edge conditions. Key as for Figure 4.

II in Figure 2); and (3) Figures 7 and 8 for the CECE plate (Case III in Figure 2) by varying
the elastic restraint parameters. In general, it is observed that the frequency parameter
beyond a certain large value (say 104), the rate at which the frequency parameter
approaches the upper limit is relatively slow. This is almost certainly due to the nature
of the stiff elastic restraints which are approaching the classical supporting edge conditions
of the plate.

It is further observed that the frequency parameter decreases as the plate thickness ratio
increases. This confirms that the frequency parameter of a thicker plate is lower than that
of a thinner plate due to the effects of transverse shear deformation and rotary inertia.
These effects are more pronounced for plates with larger thickness ratios and vibrating in
higher modes.

It is interesting that for some examples (see Figures 5 and 8), mode crossings
are observed as the elastic restraint parameters approach certain values (Sw q 104

or Sw q 105 in Figure 5(a)). It is further noted that the fundamental modes for cases
4(a) and 4(d) in Figure 4 are the rigid body mode which has a zero natural frequency
parameter.
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Figure 8. Frequency parameter, l=(vb2/p2)(rt/D)1/2 versus the elastic rotational edge restraint parameter, Sf ,
for rectangular Mindlin plate with CECE edge conditions. Key as for Figure 4.

4. CONCLUDING REMARKS

This paper presents, to the authors’ knowledge, the first known vibration analysis of
thick rectangular plates with edges elastically restrained against transverse and rotational
displacements. The rotational and transverse elastic restraints may be used to simulate the
actual boundary conditions of the plates. Three example problems are presented to
illustrate the applicability of the method. The present method is, however, a very general
approximate technique which is able to provide vibration solutions for plates with any
combination of boundary conditions and elastically restrained edges. The results shown
in the design charts may be useful to engineers by providing them with direct frequency
parameters if their problems fall within the range for which results are plotted. It is
expected that the data presented in this paper will serve an important role in providing
other researchers with reference values with which to compare their results.
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