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VIBRATIONS OF OPEN-SECTION CHANNELS:
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An exact analytical method is presented for the analysis of forced vibrations of uniform,
open-section channels. The centroid and the shear center of the channel cross-sections
considered do not coincide; hence the flexural and the torsional vibrations are coupled. In
the context of this study, the type of any existing coupling is defined in terms of the
independent motions which are coupled through mass and/or stiffness terms. Hence, if the
flexural vibrations in one direction are coupled with the torsional vibrations, the resulting
coupling is called double-coupling. On the other hand, if the flexural vibrations in two
mutually perpendicular directions and the torsional vibrations are all coupled, the resulting
coupling is referred to as triple-coupling. The study also takes the effects of cross-sectional
warping into consideration but, since it is derived from torsional characteristics, the
warping is not treated as an independent motion. Wherever necessary, the admission of
warping is characterized by the inclusion of warping constraint. The current work uses the
wave propagation approach in constructing the analytical model. Single-point force
excitation has been considered throughout and the channels are assumed to be of
Euler–Bernoulli beam type. Both double- and triple-coupling analyses are performed. The
coupled wavenumbers, various frequency response curves and the mode shapes are
presented for undamped and structurally damped channels.
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1. INTRODUCTION

Open-section channels are widely used in aeronautical structures as stiffeners. In general,
they have a cross-section in which the centroid and the shear centre do not coincide. This
leads to the phenomenon that the flexural vibrations are coupled with the torsional
vibrations.

This complicated problem has attracted scientists for a long time. One of the early
analytical works in this field was performed by Gere et al. [1]. They determined the
coupled, free vibration characteristics of uniform, open-section channels using the
Rayleigh–Ritz method. Later Lin [2], again by using the same energy method, analyzed
the triply coupled free vibration characteristics of a skin–stringer configuration. In
reference [3], Bishop et al. compared the effectivenesses of various beam theories in the
solution of beams having coupled torsion and bending. Dokumacı [4] developed an exact
analytical model for the determination of coupled vibration characteristics of open-section
channels which were symmetric with respect to an axis. The warping was not admitted.
In reference [5], Bishop et al. allowed the cross-sectional warping in Dokumacı’s theory
and investigated the doubly coupled Euler–Bernoulli beams of open cross-section. All of
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these works, although pioneering in nature, fell short of providing an answer to the forced
vibration characteristics and included only the classical end boundary conditions.

Cremer and Heckl [6] proposed a method for analyzing the forced wave motion in
uniform structures. The use of that method was found to be extremely useful when the
responses of uniform structures to point harmonic forces or line harmonic loads were
calculated. Mead and Yaman then presented analytical models for the analysis of forced
vibrations of Euler–Bernoulli beams [7, 8]. In reference [7], they considered finite length
beams, both periodic and non-periodic, and studied the effects of various classical or
non-classical boundary conditions on the flexural response. In reference [8] attention was
focused on infinite and periodic beams. One of the bays was subjected to a point harmonic
force. Effects of support characteristics, excitation and response locations were fully dealt
with.

What follows here is a study of the forced, coupled vibration characteristics of uniform
cross-section channels. The channel cross-sections are either symmetric with respect to an
axis or there exists no axial symmetry. Consequently, either only the flexural vibrations
in one direction are coupled with the torsional vibrations (doubly coupled case) or both
flexural vibrations and the torsional vibrations do simultaneously occur (triply coupled
case). The mathematical model for the analysis of coupled vibrations is being formulated
by using the wave propagation approach [6, 7]. The forcing is taken in the form of a point
harmonic load. The end conditions are assumed to be classical and hence simply
supported, clamped and free ends are taken into consideration.

The effects of the cross-sectional warping constraint are fully dealt with. Both damped
and undamped analyses are performed. The method developed, although basically aimed
at the determination of forced vibration characteristics, is also capable of finding free
vibration properties. This is also illustrated, by plotting the various mode shapes.

2. THEORY

2.1.     – 

It is known that the total forced response of a linear, uniform, finite beam is a
superposition of the forced response of the beam as if it were infinite and the free response
of the beam as if it were finite. Hence, in this study the beam responses are determined
as the sum of the response of an infinite beam to a point load together with the waves
reflected from the ends of the finite beam.

In Figure 1 represented an infinite and a finite Euler–Bernoulli beam, each of which is
subjected to a point, harmonically varying force. The generated and reflected waves (if any)
for each case are also shown. Consider Figure 1(a), which shows a uniform, infinite
Euler–Bernoulli beam on which a point harmonic force F0 eivt acts at x=0. As can be seen,

Figure 1. A uniform Euler–Bernoulli beam subjected to a point harmonic force. (a) Infinite beam, generated
waves; (b) finite beam, generated waves and the waves reflected from the ends.
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the application of the force creates a pair of waves which travel away from the point of
excitation in each direction. In the absence of damping one of the two waves, travelling
in either direction, has a purely real wave number defining a non-propagating wave and
the other one has a purely imaginary wave number representing a propagating wave. These
waves are called the forced waves and the total transverse displacement of the infinite beam
at any = x = can be found to be [6]

w(x, t)=F0 s
N

n=1

an e−kn = x = eivt. (1)

N defines the so-called degree-of-freedom of the structure cross-section and for an
Euler–Bernoulli beam N=2, the degrees of freedom being the transverse displacement w
and the slope dw/dx. kn is the nth wavenumber of the beam (kn =(mv2/EI)1/4). The an

values are the complex wave component amplitudes which are to be found by satisfying
the relevant compatibility and continuity conditions at the point of application of the point
harmonic force [7]. (A list of nomenclature is given in Appendix B.)

Now consider Figure 1(b). It represents a beam which is finite in length. Any forced
waves generated by the external excitation F0 eivt acting at x= xf will be reflected from the
ends of the beam. These reflected waves are called the free waves. In an Euler–Bernoulli
beam there are four free waves and the transverse displacement due to them is given by

w(x, t)= s
4

n=1

An eknx eivt. (2)

Hence, the total harmonic transverse displacement of the beam at any x (0Q xQL) can
be found to be

w(x, t)=0 s
4

n=1

An eknx +F0 s
2

n=1

an e− kn = x− xf =1 eivt. (3)

The An values are the complex amplitudes of the free waves and are found by satisfying
the relevant boundary conditions at the ends of the beam. Once determined, their
substitution into equation (3) yields the transverse displacement at any point of the finite
beam. More comprehensive information can be found in reference [7].

2.2.   

Consider Figure 2, in which is shown a typical open cross-section, which is symmetric
with respect to the y-axis. A transverse force applied through the centroid C results in a
transverse force through the shear centre O and a twisting torque about O. The real and
the effective loadings are illustrated in Figure 2(b).

In this case the flexural vibrations in the z direction are coupled with the torsional
vibrations whereas the flexural vibrations in the y direction occur independently. The
equations of motion for these types of coupled vibrations are known to be [1, 2]

EIj

14w
1x4 +m

12w
1t2 +mcy

12f

1t2 =0, EG0
14f

1x4 −GJ
12f

1x2 +mcy
12w
1t2 + rI0

12f

1t2 =0, (4)

where w is the flexural displacement in the z direction, f is the torsional displacement, EIj

is the flexural rigidity in the z direction, GJ is the torsional stiffness, m is the mass per unit
length, cy is the eccentricity between the centroid and the shear centre in the y direction,
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Figure 2. A typical cross-section of double-coupling. (a) Co-ordinate system; (b) real and effective loadings.

r is the material density, I0 is the second polar moment of area with respect to the shear
centre, and EG0 is the warping stiffness with respect to the shear centre.

If one assumes that

w(x, t)=wn eknx eivt, f(x, t)=fn eknx eivt, (5)

the expansion of equation (4), together with the expressions (5), gives the following
equation for the wavenumbers:

(EIj ) (EG0)k8
n −(EIj ) (GJ)k6

n −((rI0 v2) (EIj )+ (EG0) (mv2))k4
n

+(GJ) (mv2)k2
n +(r2AI0 − c2

y r2A2)v4 =0. (6)

Here A is the constant cross-sectional area and v is the angular frequency. This equation
is of eighth order and yields eight wavenumbers in four positive and negative pairs ( j=4).
These waves are influenced by both the flexural and the torsional properties of the structure
and describe the doubly coupled motion characteristics.

Note that the exclusion of warping constraint from the analysis reduces equation (6) to
sixth order:

(EIj ) (GJ)k6
n +(rI0 v2) (EIj )k4

n −(GJ) (mv2)k2
n −(r2AI0 − c2

y r2A2)v4 =0. (7)

Equation (7) now gives six wavenumbers in positive and negative pairs ( j=3).
Following the theory outlined in section 2.1, one can conclude that a force Pz through

the centroid will create the following forced waves at any = x = along the length of the
channel:

w(x, t)=Pz s
j

n=1

an e−kn = x = eivt, f(x, t)=Pz s
j

n=1

cn e−kn = x = eivt. (8)

By using equations (4) and (5) the required cn values can be found to be

cn =Cn an , Cn =[(EIj k4
n −mv2)/(mcy v2)]. (9)

The an values can be found by satisfying the following compatibility and continuity
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conditions:

EIj 13w(x, t)/1x3 =x=0 =Pz /2, 1w(x, t)/1x =x=0 =0,

T(x)=GJ
1f(x, t)

1x bx=0

−EG0
13f(x, t)

1x3 b x=0

=
Pz cy

2
,

u(x, t)=−2As
1f(x, t)

1x bx=0

=0. (10)

Here AS is the swept area and T(x) is the torque.
Equations (10), together with equations (8) and (9) can be cast into a fourth order matrix

equation and the required an values found numerically.
Note that if the warping constraint is excluded from the analysis equations (10) become

EIj 13w(x, t)/1x3 =x=0 =Pz /2, 1w(x, t)/1x =x=0 =0, GJ 1f(x, t)/1x =x=0 =Pz cy /2.

(11)

This simultaneously reduces the order of matrix equation for the an’s to three.
Now, by including the effects of the 2j free waves as well, the total displacements can

be found to be

w(x, t)=0 s
2j

n=1

eknxAn +Pz s
j

n=1

an e−kn = x− xf =1 eivt,

f(x, t)=0 s
2j

n=1

eknxCn An +Pz s
j

n=1

cn e−kn = x− xf =1 eivt. (12)

If included in the analysis, the warping displacement can be found to be

u(x, t)=−2As
1f(x, t)

1x
=−2As 0 s

2j

n=1

kn eknxCn An −Pz s
j

n=1

cn kn e−kn = x− xf =1 eivt. (13)

The An values are found by satisfying the necessary 2j end boundary conditions. For a
variety of classical end conditions, the boundary conditions are known to be as follows:

simply supported ends,

j=3, w(0)=w(L)=w0(0)=w0(L)=f(0)=f(L)=0,

j=4, w(0)=w(L)=w0(0)=w0(L)=f(0)=f(L)=f0(0)=f0(L)=0;

clamped ends,

j=3, w(0)=w(L)=w'(0)=w'(L)=f(0)=f(L)=0,

j=4, w(0)=w(L)=w'(0)=w'(L)=f(0)=f(L)=f'(0)=f'(L)=0;

free ends,

j=3, w0(0)=w0(L)=w1(0)=w1(L)=f'(0)=f'(L)=0,

j=4, w0(0)=w0(L)=w1(0)=w1(L)=T(0)=T(L)=f0(0)=f0(L)=0; (14)

Here, '= 1/1x, 0= 12/1x2 and 1= 13/1x3.
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When the expressions (12) (if warping constraint is included also in equation (13)) are
substituted into the relevant equations (14), a matrix equation is obtained. For the case
of simply supported ends, no warping constraint and a unit force Pz the following
equations can be found:

w(0)=0, 0 s
2j

n=1

An + s
j

n=1

an e−kn = xf =1=0,

w0(0)=0, 0 s
2j

n=1

k2
n An + s

j

n=1

k2
n an e−kn = xf =1=0,

f(0)=0, 0 s
2j

n=1

Cn An + s
j

n=1

Cn an e−kn = xf =1=0,

f(L)=0, 0 s
2j

n=1

Cn eknLAn + s
j

n=1

Cn an e−kn = L− xf =1=0,

w0(L)=0, 0 s
2j

n=1

k2
n eknLAn + s

j

n=1

k2
n an e−kn = L− xf =1=0,

w(L)=0, 0 s
2j

n=1

eknLAn + s
j

n=1

an e−kn = L− xf =1=0. (15)

These equations can be cast into the following matrix form:

s
3

n=1

an e−knxf

s
3

n=1

k2
n an e−knxf

1 1 1 1 1 1 A1

k2
1 k2

1 k2
2 k2

2 k2
3 k2

3 A2 s
3

n=1

Cn an e−knxf

C1 C1 C2 C2 C3 C3 A3

G
G

G

G

G

K

k

C1 e1 C1 e−1 C2 e2 C2 e−2 C3 e3 C3 e−3
G
G

G

G

G

L

l

g
G

G

G

G

F

f

A4
h
G

G

G

G

J

j

=−
s
3

n=1

Cn an e−kn(L− xf)
. (16)

k2
1 e1 k2

1 e−1 k2
2 e2 k2

2 e−2 k2
3 e3 k2

3 e−3 A5

e1 e−1 e2 e−2 e3 e−3 A6 s
3

n=1

k2
n an e−kn(L− xf)

s
3

n=1

an e−kn(L− xf)

Here en =eknL and e−n =e−knL.
The relevant matrix equations for clamped ends and free ends are given in Appendix A.
The necessary matrix equation for the determination of An values when there is warping

constraint, for simply supported ends and a unit force Pz , is

F
G
G
G
G
G
G
g
G
G
G
G
G
G
f

J
G
G
G
G
G
G
h
G
G
G
G
G
G
j
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s4

n
=

1

a n
e−

k n
x f

s4

n
=

1

k2 n
a n

e−
k n

x f

w
(0

):
1

1
1

1
1

1
1

1
A

1
s4

n
=

1

C
n
a n

e−
k n

x f

w
0(

0)
:

k
2 1

k2 1
k2 2

k2 2
k2 3

k2 3
k2 4

k2 4
A

2

f
(0

):
C

1
C

1
C

2
C

2
C

3
C

3
C

4
C

4
A

3
s4

n
=

1

k2 n
C

n
a n

e−
k n

x f

f
0(

0)
:

k
2 1
C

1
k2 1

C
1

k2 2
C

2
k2 2

C
2

k2 3
C

3
k2 3

C
3

k2 4
C

4
k2 4

C
4

A
4

f
0(

L
):
GG GG GG GG GK k

k2 1
C

1
e 1

k2 1
C

1
e −

1
k2 2

C
2
e 2

k2 2
C

2
e −

2
k2 3

C
3
e 3

k2 3
C

3
e −

3
k2 4

C
4
e 4

k2 4
C

4
e −

4
GG GG GG GG GL l

gG GG GG GG GF f

A
5
hG GG GG GG GJ j

=
−

s4

n
=

1

k2 n
C

n
a n

e−
k n

(L
−

x f
)

.
(1

7)

f
(L

):
C

1
e 1

C
1
e −

1
C

2
e 2

C
2
e −

2
C

3
e 3

C
3
e −

3
C

4
e 4

C
4
e −

4
A

6

w
0(

L
):

k2 1
e 1

k2 1
e −

1
k2 2

e 2
k2 2

e −
2

k2 3
e 3

k2 3
e −

3
k2 4

e 4
k2 4

e −
4

A
7

s4

n
=

1

C
n
a n

e−
k n

(L
−

x f
)

w
(L

):
e 1

e −
1

e 2
e −

2
e 3

e −
3

e 4
e −

4
A

8

s4

n
=

1

k2 n
a n

e−
k n

(L
−

x f
)

s4

n
=

1

a n
e−

k n
(L

−
x f

)

F G G G G G G G G g G G G G G G G G f

J G G G G G G G G h G G G G G G G G j
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Appendix A also gives the relevant matrix equations for clamped and free end cases in
which there is warping constraint.

The required An values are numerically found from equations (16) or (17). Their
substitution into equations (12) and (13) yields the required displacement response at any
point of the beam.

2.3.   

In Figure 3 is shown a typical cross-section of no axial symmetry, representing a triply
coupled case. In this case the flexural vibrations in the z direction, flexural vibrations in
the y direction and the torsional vibrations are all coupled. The equations of motion for
these types of coupled vibrations are known to be [1, 2]

EIj

14w
1x4 +m

12w
1t2 +EInj

14v
1x4 +mcy

12f

1t2 =0, EIn

14v
1x4 +m

12v
1t2 +EInj

14w
1x4 +mcz

12f

1t2 =0,

EG0
14f

1x4 −GJ
12f

1x2 +mcy
12w
1t2 +mcz

12v
1t2 + rI0

12f

1t2 =0. (18)

In addition to the parameters already defined in section 2.2, v is the flexural displacement
in the y direction, EIn is the flexural stiffness in the y direction, EInj is the coupling stiffness
and cz is the eccentricity between the centroid and the shear centre in the z direction.

If one assumes that

w(x, t)=wn eknx eivt, v(x, t)= vn eknx eivt, f(x, t)=fn eknx eivt, (19)

substitution of these expressions into equations (18) gives the following equations for the

Figure 3. A typical cross-section of triple-coupling. (a) Co-ordinate system; (b) real and effective loadings.
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wavenumbers:

(EG0) [(EIj ) (EIn )− (EInj )2]k12
n −(GJ) [(EIj ) (EIn )− (EInj )2]k10

n −[(rI0 v2) ((EIj ) (EIn )

−(EInj )2)+ (EG0) (mv2) (EIj +EIn )]k8
n +(GJ) (mv2) (EIj +EIn )k6

n

−[(rI0 v2)(mv2)(EIj +EIn )+ (EG0) (mv2)2 − ((EIj )c2
z +(EIn )c2

y −(EInj )c2
z c2

y ) (mv2)2]k4
n

−(GJ) (mv2)2k2
n +[(mv2)3(c2

z + c2
y )− rI0 v2(mv2)2]=0. (20)

This equation is of 12th order and defines 12 wavenumbers in six positive and negative
pairs ( j=6). These waves are influenced by both the flexural and the torsional properties
of the structure and describe the triply coupled motion charactertistics.

Note that the exclusion of warping constraint from the analysis reduces equation (20)
to tenth order:

(GJ)[(EIj )(EIn )−(EInj )2]k10
n +[(rI0v

2){(EIj) (EIn)− (EInj)2}]k8
n −(GJ) (mv2)(EIj +EIn)k6

n

+[(rI0 v2) (mv2) (EIj +EIn )2 − {(EIj )c2
z +(EIn )c2

y −(EInj )c2
z c2

y } (mv2)2]k4
n

+(GJ) (mv2)2k2
n −[(mv2)3(c2

z + c2
y )− rI0 v2(mv2)2]=0. (21)

Equation (21) defines ten wavenumbers in five positive and negative pairs ( j=5).
Following the theory outlined in section 2.2, one can conclude that a force Pz through the
centroid will create the following forced waves at any = x = along the length of the beam:

w(x, t)=Pz s
j

n=1

an e−kn = x = eivt, v(x, t)=Pz s
j

n=1

bn e−kn = x = eivt,

f(x, t)=Pz s
j

n=1

cn e−kn = x = eivt. (22)

The bn and cn values are found, by using equations (18) and (19), to be

bn =Pn an , Pn =
(EIj k4

n −mv2) (EG0 k4
n −GJk2

n − rI0 v2)− (−cy mv2)2

(−cy mv2) (−cz mv2)− (EInj k4
n ) (EG0 k4

n −GJk2
n − rI0 v2)

,

cn =Fn an , Fn =
(EIj k4

n −mv2) (EIn k4
n −mv2)− (EInj k4

n )2

(EInj k4
n ) (−cz mv2)− (−cy mv2) (EIn k4

n −mv2)
. (23)

The an values can be found by satisfying the following compatibility and continuity
conditions:

EIj 13w(x, t)/1x3 =x=0 +EInj 13v(x, t)/1x3 =x=0 =Pz /2, 1w(x, t)/1x =x=0 =0,

EIn 13v(x, t)/1x3 =x=0 +EInj 13w(x, t)/1x3 =x=0 =0, 1v(x, t)/1x =x=0 =0,

GJ 1f(x, t)/1x =x=0 −EG0 13f(x, t)/1x3 =x=0 =Pz cy /2, 1f(x, t)/1x =x=0 =0. (24)

Equations (22), (23) and (24) result in a sixth order matrix equation which, through
numerical solution, yields the an values.
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In the absence of the warping constraint, equations (24) become

EIj 13w(x, t)/1x3 =x=0 +EInj 13v(x, t)/1x3 =x=0 =Pz /2, 1w(x, t)/1x =x=0 =0,

EIn 13v(x, t)/1x3 =x=0 +EInj 13w(x, t)/1x3 =x=0 =0, 1v(x, t)/1x =x=0 =0,

GJ 1f(x, t)/1x =x=0 =Pz cy /2. (25)

Now equations (22), (23) and (25) give a fifth order matrix equation for the an values. If
the force is applied only as Py , equations (24) become

EIj 13w(x, t)/1x3 =x=0 +EInj 13v(x, t)/1x3 =x=0 =0, 1w(x, t)/1x =x=0 =0,

EIn 13v(x, t)/1x3 =x=0 +EInj 13w(x, t)/1x3 =x=0 =Py /2, 1v(x, t)/1x =x=0 =0,

GJ 1f(x, t)/1x =x=0 −EG0 13f(x, t)/1x3 =x=0 =Py cz /2, 1f(x, t)/1x =x=0 =0. (26)

If both Py and Pz are applied simultaneously, depending on the admission of warping
constraint, the required conditions should be provided by considering equations (24), (25)
and (26).

Consideration of 2j free waves as well gives the total transverse displacements due to
Pz as

w(x, t)=0 s
2j

n=1

eknxAn +Pz s
j

n=1

an e−kn = x− xf =1 eivt,

v(x, t)=0 s
2j

n=1

eknxPn An +Pz s
j

n=1

Pn an e−kn = x− xf =1 eivt,

f(x, t) 0 s
2j

n=1

eknxFn An +Pz s
j

n=1

Fn an e−kn = x− xf =1 eivt. (27)

If required, the warping displacement can be found as

u(x, t)=−2As
1f(x, t)

1x
=−2As 0 s

2j

n=1

eknxkn Fn An −Pz s
j

n=1

kn Fn an e−kn = x− xf =1 eivt. (28)

The An values are again found by satisfying the necessary 2j end boundary conditions. For
simply supported ends, and for EInj =0, they are known to be

j=5, w(0)=w(L)=w0(0)=w0(L)= v(0)= v(L)= v0(0)= v0(L)=f(0)=f(L)=0,

j=6, w(0)=w(L)=w0(0)=w0(L)= v(0)= v(L)= v0(0)= v0(L)

=f(0)=f(L)=f0(0)=f0(L)=0. (29)

If equations (27) (and also equation (28) if warping constraint is included) are substituted
into the relevant equations (29), a matrix equation is obtained. The order of the matrix
equation is ten for the no warping constraint case and twelve for the case in which the
warping constraint is included. The An values, respectively, are then numerically found
from the following equations; their substitution into equations (27) and (28) gives the
required displacement response at any point of the beam:
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Figure 4. Coupled wavenumbers: h=0, ht =0, double-coupling, no warping constraint. –(–, Real part (k2);
–q–, imaginary part (k1); –t–, imaginary part (k3).

3. RESULTS AND DISCUSSION

The theoretical models used in the study have the following geometric and material
properties; the cross-sections of the models are those given in Figures 2 and 3:
double-coupling, L=1 (m), A=1·0×10−4 (m2), h=5·0×10−2 (m), Ij =4·17×10−8

(m4), cy =15·625×10−3 (m), J=3·33×10−11 (m3), I0 =7·26×10−8 (m4), r=2700
(kg/m3), E=7×1010 (N/m2), G=2·6×1010 (N/m2), G0 =2·85×10−12 (m6); triple-coup-
ling, L=1 (m), A=9·68×10−5 (m2), h=38·10×10−3 (m), In =5·08×10−9 (m4),
Ij =2·24×10−8 (m4), Inj =4·25×10−9 (m4), cy =10·43×10−3 (m), cz =9·09×10−3 (m),
J=5·20×10−11 (m3), I0 =4·60×10−8 (m4), r=2700 (kg/m3), E=7×1010 (N/m2),
G=2·6×1010 (N/m2), G0 =7·11×10−12 (m6). The structural damping is included through
the flexural stiffnesses as EIj =EIj (1+ ih), EIn =EIn (1+ ih) and through the torsional
stiffness as GJ=GJ(1+ iht ).

3.1.  

The first part of this section gives the detailed analysis of the coupled wavenumbers. The
wavenumbers are plotted in non-dimensional form and the following non-dimensional
parameters are used: ND wavenumber, (h)kn ; ND frequency, (2ph2(rA/EIj )1/2)f.

It has long been known that if an Euler–Bernoulli beam is harmonically excited at a
point and if it undergoes pure bending then in each direction two waves travel away from
the point of excitation. If the beam is undamped, one of those waves has a purely real
wavenumber and the other one has a purely imaginary wavenumber. Both of those
wavenumbers are identical in magnitude (kb =(mv2/EIj )1/4) for each frequency. If the
vibrations are of undamped purely torsional type and if the warping constraint is omitted,
then in each direction one wave travels away from the point of application of the harmonic
torque which has a purely imaginary wavenumber (kt =(−rI0 v2/GJ)1/2). In the context
of wave propagation, a purely imaginary wavenumber corresponds to a propagating wave,
whereas a purely real wavenumber to a non-propagating wave.

In Figure 4 are represented the non-zero components of wavenumbers of the waves in
the doubly coupled system for zero damping. The warping constraint is excluded from the
analysis. This means that the wavenumber equation is sixth order and the wavenumbers
are found from equation (7). Now, since the flexural vibrations in the z direction and
torsional vibrations are coupled, one expects altogether three waves to travel in each
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Figure 5. Real parts of coupled wavenumbers: h=0·3, ht =0, double-coupling, no warping constraint. –(–,
k1; –t–, k2; –R–, k3.

direction. This is indeed true and is shown in Figure 4, but now due to coupling effects
each wave is affected. The curve for the real wavenumber k2 represents an evanescent wave
which has mainly flexural with some torsional character. The curve for the imaginary
wavenumber k3 represents a propagating wave which is predominantly flexural but with
some torsion. Although both are flexural, due to the existing coupling, they no longer have
identical magnitudes such as those wavenumbers of uncoupled, undamped flexural waves.
The curve which belongs to the imaginary wavenumber k1 represents a propagating wave
which is predominantly torsional with some bending.

If the structural damping is included in the analysis, all the wavenumbers become
complex. This indicates that each wave attenuates with distance travelled and each wave
propagates energy to some extent. This feature can be seen in Figures 5 and 6 which
respectively represent the real parts and the imaginary parts of the wavenumbers of
double-coupling for h=0·3 and ht =0. The warping constraint is again excluded. Now
each wavenumber has both real and imaginary parts. Furthermore, the parts which did
exist for h=0 and ht =0 have not changed significantly in magnitude.

Figure 6. Imaginary parts of coupled wavenumbers: h=0·3, ht =0, double-coupling, no warping constraint.
Key as Figure 5.
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Figure 7. Coupled wavenumbers: h=0, ht =0, double-coupling, warping constraint included. –R–, Real part
(k1); –(–, real part (k3); –q–, imaginary part (k2); –t–, imaginary part (k4).

Figure 8. Coupled wavenumbers: h=0, ht =0, triple-coupling, only mass coupling, no warping constraint.
–(–, Real part (k2); –q–, real part (k4); –t–, imaginary part (k1); –r–, imaginary part (k3); –R–, imaginary
part (k5).

The effect of the warping constraint on the wavenumbers is also considered and the
resulting wavenumber components are given in Figure 7 for no damping. Only non-zero
components are shown. The wavenumbers are found from equation (6). In the case of no
damping, the inclusion of warping constraint introduces a new wave which is evanescent
in nature. The wavenumber of this wave is designated as k1 in Figure 7. In the same figure,
the imaginary wavenumber k2 belongs to a predominantly torsional wave. The
predominantly flexural, evanescent and propagating waves are represented by the
wavenumbers k3 and k4 respectively. The consideration of the warping constraint basically
modifies the magnitude of wavenumber k2 and reduces it considerably, especially at higher
frequencies. This can better be seen if one compares Figures 4 and 7. It is apparent that
the admission of warping constraint prevents the predominantly torsional wave
propagation mechanism with increasing frequency.

The characteristics of the wavenumbers of triple-coupling are given in Figures 8 and 9
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for no damping. The graphs show, respectively, the cases in which only the mass coupling
is considered and both mass and stiffness couplings are taken into consideration. In both
figures, effects of the warping constraint are neglected. Equation (21) is used to determine
the wavenumbers. The graphs are very similar in their trends and at first glance they look
as though coupling stiffness has no additional effect at all on the wavenumbers. The actual
reason stems from the fact that the cross-section considered has a small coupling stiffness.

In Figures 8 and 9, five distinct wavenumbers group to become three at the extreme
frequencies of the ranges considered. In this case, the flexural properties in the y and z
direction and the torsional properties all affect each other. In both figures, the wavenumber
k1 represents a predominantly torsional wave with some bi-directional flexural properties.
The wavenumbers k2 and k3 represent the vertical bending waves (in the z direction), being
evanescent and propagating respectively. The wavenumbers k4 and k5 represent the
evanescent and propagating lateral bending waves. All the waves defined by wavenumbers
k2–k5 are predominantly flexural with some torsion. For the case considered, the lateral,
purely flexural waves have smaller wavenumbers than the vertical, purely flexural waves.
This feature reflects itself in the existence of the triple-coupling as well, especially at higher
frequencies.

Finally, the most general case of the triple-coupling is considered. Now as well as mass
and stiffness couplings, the warping constraint is also assumed to exist. By using equation
(20) 12 wavenumbers, in groups of six, are obtained. The non-zero components of the
wavenumbers of the six waves, for no damping, are given in Figure 10. The wavenumbers
and the corresponding waves they represent are classified as follows. k1 represents the
evanescent wave due to warping constraint. k2 represents the propagating wave which is
predominantly torsional. k3 and k4 are the wavenumbers of evanescent and propagating,
predominantly flexural, waves of vertical bending (in the z direction). The evanescent and
propagating waves of lateral bending are characterized by the wavenumbers k5 and k6.
These waves are also predominantly flexural. At low frequencies there are four groups,
but as frequency increases, the wavenumbers group into three and, as in the case of
double-coupling, the newly introduced wave affects the predominantly torsional wave
characteristics.

Figure 9. Coupled wavenumbers: h=0, ht =0, triple-coupling, mass and stiffness coupling, no warping
constraint. Key as Figure 8.
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Figure 10. Coupled wavenumbers: h=0, ht =0, triple-coupling, mass and stiffness coupling, warping
constraint included. –(–, Real part (k1); –t–, real part (k3); –q–, real part (k5); –r–, imaginary part (k2); –R–,
imaginary part (k4); –W–, imaginary part (k6).

3.2.   

3.2.1. Doubly coupled channels
The second part of the analysis is focused on the frequency response characteristics of

the channels. First, the validity of the proposed method is verified. Since the exact data
given in the literature is scarce, the verification process is done only for doubly coupled
channels. The first validation has been achieved by determining the natural frequencies of
simply supported channels by the methods given in reference [9]. Those values are then

T 1

The coupled resonance frequenices (Hz) of doubly coupled channel (simply supported ends;
T, Torsional; B, bending in the z direction; current method; h=10−6, ht =10−6, Reference

[9]= undamped)

No warping constraint Warping constraint included
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV
Current method Reference [9] Current method Reference [9]

33·01 (1.T) 33·01 58·68 (1.T) 58·68
66·37 (2.T) 66·37 205·34 (1.B) 205·34
99·66 (3.T) 99·66 207·27 (2.T) 207·27

132·92 (4.T) 132·92 453·79 (3.T) 453·79
166·18 (5.T) 166·18
199·43 (6.T) 199·43
201·84 (1.B) 201·84
232·69 (7.T) 232·69
265·93 (8.T) 265·93
299·18 (9.T) 299·18
332·43 (10.T) 332·43
365·67 (11.T) 365·67
398·92 (12.T) 398·92
432·17 (13.T) 432·17
465·41 (14.T) 465·41
498·66 (15.T) 498·66
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T 2

The coupled resonance frequenices (Hz) of a turbine blade (no warping
constraint; current method; h=10−6, ht =10−6, Reference [4] =

undamped)

Current method Reference [4]

144·56 144·65
903·82 904·37

1698·30 1699·31
2523·38 2524·92
4903·95 4906·92
5114·72 5117·77

T 3

The coupled resonance frequenices (rad/s) of a free–free beam
(warping constraint; current method; h=10−6, ht =10−6, Reference

[5]= undamped)

Current method Reference [5]

342·21 342·13
372·38 371·62
721·40 721·16

1247·47 1247·0
1791·99 1788·6
1970·39 1969·8

compared to the resonance frequencies found from the developed method. The resonance
frequenices are precisely located by allowing a very low damping (h=10−6, ht =10−6) in
the proposed theory. These virtually undamped resonance frequencies and the theoretical
natural frequenices of reference [9] are given in Table 1 for a frequency range of 0–500 Hz.
The results show extremely good agreement and this proves the accuracy of the proposed
method.

In this respect, a fixed–free beam representing a turbine blade is also analyzed. In
Table 2, the resonance frequencies obtained from the current method are compared to
those given in reference [4].

A final comparison is made for the resonance frequenices of a free–free beam having
warping constraint. The frequencies found from the developed method and the frequenices
given in reference [5] are presented in Table 3. All of the data about the channels can be
found in the relevant reference.

The agreement shown in Tables 2 and 3 is another indication of the correctness and the
applicability of proposed method.

Bishop et al. [5] compared their results to those of other methods and expressed the view
that their method was a convenient alternative to more complicated methods such as
Vlasov theory and the finite element method. A similar argument can also be pursued
about the proposed method. It is believed that its applicability to problems involving
triple-coupling further enhances the features of the proposed method.

The case considered in Table 3 presented in graphical form is first. The forced frequency
response of the free–free beam is plotted and is shown in Figure 11. Predominantly flexural,
transfer transverse receptance (transverse displacement/transverse force) is found by using
equation (12). The beam is excited at xf =0·13579 m and the response is computed at
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Figure 11. The transfer frequency responses of free–free doubly coupled beam: h=0·01, ht =0·001,
xf =0·13579 m, x=0·97531 m, transverse frequency receptance w/Pz . –(–, no warping constraint; –t–, warping
constraint.

x=0·97531 m. These rather strange excitation and response points are chosen
intentionally, in order not to encounter a possible node within the frequency range of
interest. Flexural and torsional damping values are assigned, respectively, as h=0·01 and
ht =0·001. In order to highlight the importance of the effects of the warping constraint,
the frequency response of the beam having the same end boundary conditions and the
properties but with no warping constraint is also plotted on the same figure.

The frequency response curves of the doubly coupled beam for simply supported, and
clamped end conditions are given in Figures 12 and 13. The predominantly flexural
response values are computed from equation (12) for h=0·01 and ht =0·001. These

Figure 12. The direct frequency responses of simply supported doubly coupled beam: h=0·01, ht =0·001,
x=0·13579 m, w/Pz . –(–, No warping constraint; –t–, warping constraint.
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Figure 13. The direct frequency responses of clamped–clamped doubly coupled beam: h=0·01, ht =0·001,
x=0·13579 m, w/Pz . Key as Figure 12.

figures also illustrate the comparison of the cases in which either the warping constraint
is considered or not. Direct transverse receptance values are computed at x=0·13579 (m).

It can be seen in all the figures concerned that when the warping is constrained the beam
becomes stiffer, so fewer resonance frequencies are found in the same frequency range than
when warping is free. For the cases in which there is no warping constraint, at flexural
resonance frequencies one can observe a well behaved bending resonance behaviour,
whereas the torsional resonance frequencies occur like spikes and at regular intervals. This
indicates that the selected cross-sectional parameters result in a light coupling between the
bending and the torsional motions. On the other hand, if the warping is constrained, the
torsion dominated resonance frequencies no longer occur at equal intervals.

The theoretical beam, the cross-section of which is given in Figure 2, is then taken to
be free–free and the resonance frequencies are precisely located for h=10−6 and ht =10−6.
The warping mode shapes of the beam at relevant resonance frequencies are shown in
Figure 14. Free ends are modelled as if the end cross-sections are free to warp and free
to twist. Hence one may expect to obtain the mode shapes of a free–free beam. A closer
inspection of Figure 14 yields that this is indeed true for the frequencies of 132·57 Hz,
325·76 Hz and 465·34 Hz which represent the first and second torsion dominated
resonances and the first bending dominated resonance in order. However, at 44·58 Hz a
different form of behaviour is observed.

The bending, torsional and warping shapes at 44·58 Hz are given in Figure 15, which
indicates a rigid-body-like mode.

The warping shapes of the free–free beam, at the first resonance frequenices of the beams
having the indicated lengths are shown inFigure 16.All the other parameters of the study are
kept constant. It can be seen that as the length is reduced, the shape becomes more straight.

3.2.2. Triply coupled channels
The coupled, predominantly flexural direct transverse receptances of the triply coupled

beam are shown in Figure 17. The responses are computed at x=0·13579 (m). The
calculations are made by using equation (27). h=0·01 and ht =0·001 are assigned as
damping coefficients. Only the mass coupling characteristics are included. The stiffness
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Figure 14. The warping mode shapes of free–free doubly coupled beam: h=0, ht =0, Pz excitation. –(–,
44·58 Hz; –R–, 132·37 Hz; –q–, 325·76 Hz; –t–, 465·34 Hz.

Figure 15. The fundamental shapes of free–free, doubly coupled beam: h=0, ht =0, f=44·58 Hz, Pz

excitation. –(–, Bending; –q–, torsion; –R–, warping.

coupling terms and the effects of warping constraint are ignored. The resonance
frequencies at 45·49 Hz, 101·73 Hz, 154·79 Hz, 207·43 Hz and 259·89 Hz are torsion
dominated resonance frequencies, and the resonance frequencies at 69·91 Hz, 149·82 Hz
at 257·29 Hz are bending dominated resonance frequenices.

The combined effects of the mass and stiffness couplings are computed and compared
to the effects of mass coupling alone in Figure 18. It shows the transverse direct receptance
in the z direction (w/Pz ). It can be seen from Figure 18 that consideration of the coupling
stiffness is found to affect the bending dominated resonance frequency, but has no
significant effect on the values of the torsion dominated resonance frequencies.

The frequency responses of the most general case are shown in Figure 19. Now, in
addition to the mass and stiffness couplings, the effects of the warping constraint are also
considered. The extreme ends are taken as simply supported. The direct receptances are
calculated from equation (27) for h=0·01 and ht =0·001. The resonance frequencies at
51·87 Hz and 207·41 Hz are torsion dominated resonance frequencies, and the resonance
frequencies at 114·79 Hz and 263·88 Hz are bending dominated resonance frequencies.



1.0

1.05

0.85
0.0

Non-dimensional length

N
on

-d
im

en
si

on
al

 m
od

e 
sh

ap
e

1.00

0.95

0.90

0.2 0.4 0.6 0.8

300

10–3

10–8

0
Frequency (Hz)

D
ir

ec
t 

tr
an

sv
er

se
 r

ec
ep

ta
n

ce
 (

m
/N

)

100 200

10–4

10–6

10–5

10–7

. 152

Figure 16. The fundamental warping shapes of free–free, doubly coupled beam: h=0, ht =0, Pz excitation.
–q–, L=1·0 m; –R–, L=0·8 m; –e–, L=0·6 m; –t–, L=0·4 m; –(–, L=0·2 m; –W–, L=0·1 m.

4. CONCLUSIONS

In this study, a new analytical approach is presented for the analysis of forced vibrations
of open-section channels. Open-section channels, in which the centroid and the shear
centre usually do not coincide, undergo vibrations which are inherently coupled. Hence
any flexural vibration leads to the occurrence of torsional vibrations. The reverse of the
statement also holds true. The analysis requires the simultaneous consideration of all the
possible vibratory motions. The wave propagation approach is found to provide a good
answer to this complicated problem and the method developed is based on it.

The current method analyzes the forced, coupled vibrations of open-section channels.
The channels, taken as Euler–Bernoulli beams, have uniform cross-sections and, depending
on their geometry, have either a single symmetry axis or no symmetry at all. These
consecutively lead to double or triple coupling of vibrations. The excitation is assumed to
be in the form of an harmonic point force.

Figure 17. The direct frequency responses of triply coupled beam: h=0·01, ht =0·001, xf =0·13579 m, only
mass coupling, no warping constraint. –(–, w/Pz , –t–, v/Py .
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Figure 18. The direct transverse receptances (w/Pz) of triply coupled beam: h=0·01, nt =0·001,
xf =0·13579 m, no warping constraint. –(–, Only mass coupling; –t–, mass and stiffness coupling.

In the study, the coupled wavenumbers were analyzed first. The detailed analysis showed
the effects of mass and stiffness coupling and the warping constraint. Various frequency
response curves of coupled vibrations were then presented for a variety of different classical
end boundary conditions.

The method developed, although aimed at determining forced vibration characteristics,
is also capable of determining the free vibration properties. This has been demonstrated
by presenting various mode shape graphs.

The method can also be used in analyzing non-classical boundary conditions.
Futhermore, the effects of multi-point and/or distributed loadings can also be determined
through the proposed approach. This can be achieved simply by modifying the terms of
the forcing vector without increasing the order of the relevant matrix equation. The
method can also be used in the forced or free vibration analysis of uniform channels which
are supported by any means at arbitrary locations along their length. On the other hand,

Figure 19. The direct transverse receptances of triply coupled beam: h=0·01, ht =0·001, xf =0·13579 m,
mass and stiffness coupling, warping constraint included. –(–, w/Pz ; –t–, v/Py .
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the present model does not account for the effects of the cross-sectional distortion of the
channels, which may be important at very high frequencies.

Finally, it can be said that the proposed method, like the similar models of Bishop et al.
[5], can serve as a convenient alternative to complicated techniques such as Vlasov theory
and the finite element method in the analysis of coupled vibrations of uniform channels.
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APPENDIX A: MATRIX EQUATIONS FOR CLAMPED AND FREE ENDS

.1.   

A.1.1. Clamped ends
Assume that both of the ends of the channel are clamped. Then the required boundary

conditions are

w(0)=w(L)=w'(0)=w'(L)=f(0)=f(L)=0. (A1)

When the w(x) and f(x) expressions given by equations (12) are substituted into equations
(A1) the following matrix equation can be obtained:

s
3

n=1

an e−knxf

s
3

n=1

kn an e−knxf

1 1 1 1 1 1 A1

s
3

n=1

Cn an e−knxfk1 −k1 k2 −k2 k3 −k3 A2

C1 C1 C2 C2 C3 C3 A3
=− s

3

n=1

Cn an e−kn(L− xf)G
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k

C1 e1 C1 e−1 C2 e2 C2 e−2 C3 e3 C3 e−3
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f
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h
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k1 e1 −k1 e−1 k2 e2 −k2 e−2 k3 e3 −k3 e−3 A5

s
3

n=1

−kn an e−kn(L− xf)e1 e−1 e2 e−2 e3 e−3 A6

s
3

n=1

an e−kn(L− xf)

(A2)
Here kn , Cn and en are defined in section 2.2.
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A.1.2. Free ends

If both ends are free, the required boundary conditions are

w0(0)=w0(L)=w1(0)=w1(L)=f'(0)=f'(L)=0. (A3)

The consideration of equations (A3), together with equations (12), leads to the following
matrix equation:

s
3

n=1

k2
nane−knxf

s
3

n=1

k3
nane−knxf

k2
1 k2

1 k2
2 k2

2 k2
3 k2

3 A1
s
3

n=1

knCnane−knxf

k3
1 −k3

1 k3
2 −k3

2 k3
3 −k3

3 A2
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=−

s
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−knCnane−kn(L− xf)
.G
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g
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f
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G

G

G
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j
k3

1e1 −k3
1e−1 k3

2e2 −k3
2e−2 k3

3e3 −k3
3e−3 A5
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1e1 k2

1e−1 k2
2e2 k2

2e−2 k2
3e3 k2

3e−3 A6 s
3

n=1

−k3
nane−kn(L− xf)

s
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n=1

k2
nane−kn(L− xf)

(A4)

.2.   

A.2.1. Clamped ends
Suppose that the ends are clamped. Then, one must satisfy the following boundary

conditions:

w(0)=w(L)=w'(0)=w'(L)=f(0)=f(L)=f'(0)=f'(L)=0. (A5)

Substitution of w(x) and f(x) given by equations (12) into equations (A5) gives the
following matrix equation:

Equation (A6) overleaf
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APPENDIX B: NOMENCLATURE

an nth transverse displacement coefficient in the z direction
bn nth transverse displacement coefficient in the y direction
cn nth torsional displacement coefficient
cy eccentricity in the y direction
cz eccentricity in the z direction
h web height of the channel
kn nth wavenumber
m mass per unit length of channel
t time
u warping displacement
v transverse displacement in the y direction
x, y, z spatial variables; co-ordinate system
w transverse displacement in the z direction
A constant channel cross-sectional area
C centroid of channel
E Young’s modulus
G shear modulus
I0 polar second moment of area about shear centre
In second moment of area about the n-axis
Inj product moment of area about the n- and j-axes
Ij second moment of area about the j-axis
J torsion constant
L length of channel
O shear centre of channel
Py transverse load in the y direction
Pz transverse load in the z direction
T resulting torque about shear centre
n, j centroidal axes
f torsional displacement
r material density
v angular frequency
h flexural damping coefficient
ht torsional damping coefficient
G0 warping constant about shear centre
i =z−1
' =1/1x
0 =12/1x2

1 =13/1x3

= = absolute value

Dummy variables confined to certain sections are clearly defined wherever applicable.


