
Journal of Sound and Vibration (1997) 204(1), 159–161

LETTERS TO THE EDITOR

ON NON-LINEAR NORMAL VIBRATION MODES THAT EXIST ONLY IN AN
INTERMEDIATE AMPLITUDE RANGE

Y. V. M

Department of Applied Mathematics, Kharkov Politechnic University, Kharkov 310002,
Ukraine
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Non-linear normal vibration modes are a generalization of normal (principal) vibrations
of linear systems [1–3]. Posed here is a problem of normal vibrations existing only in an
intermediate amplitude range and vanishing by merging in some limiting points as the
amplitude tends to zero or infinity.

Consider a conservative system with two degrees of freedom whose kinetic energy is a
quadratic function of the velocities that is reduced to a canonical form while the potential
energy involves terms of the second, fourth and sixth power. Here it is found that normal
vibrations of the above type do occur as the multipliers of the fourth power terms are
increased.

The equations of motion of the system are written as

ẍ+ 1P(x, y)/1x=0, ÿ+ 1P(x, y)/1y=0, (1)

where

P= s
a

j=0

ajx2− jy j + r$ s
4

j=0

bjx4− jy j%+ s
6

j=0

djx6− jy j.

Substituting x:cx, y:cy, where c= x(0), one obtains a multiplier c2 for the third power
terms in equations (1) and a multiplier c4 for the fifth power terms. Clearly, this substitution
leads to x(0)=1. It is assumed without sacrifice of generality that ẋ(0)= ẏ(0)=0. At
infinitely small amplitudes, c:0, a linear system is realized, while at infinitely large
amplitudes, c:a, an essentially non-linear homogeneous system is approached
containing terms of the fifth power in equations (1). Both limiting systems allow normal
vibrations with rectilinear trajectories in a configuration space of the form y= kx.

In what follows, an equation for the trajectories of normal vibrations in a
configurational space will be used of the form derived in references [1–3], i.e.,

2y0(h−P)/(1+ (y')2)+ y'(−Px)=−Py , (2)

and a boundary value condition of the form

y'(X)(−Px(X, y(X))=−Py(X, y(X)), (3)

where X are the values of the variable x on the surface h−P=0, h being the system
energy. In the case at hand, X=1.

One can approximate the normal vibration trajectories by straight lines y= kx. In order
to find k, one first obtains, from equation (2) (with due account of the conditions (3)),
the relationship

k[−Px(X, kX)]+Py(X, kX)=0. (4)
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With respect to set (1), equation (4) is an algebraic equation of the sixth power in k.
For the sake of definiteness, assume that

P= x2/2+ y2/2+ (x− y)2 + r(x4 +6x2y2 +0·8xy3 +2y4)+ x6/6+ y6/6+ (x− y)6/3;

that is, a0 =1·5, ai =−2, a2 =1·5; b0 =1, b1 =0, b2 =6, b3 =0·8, b4 =2, d0 =0·5,
d1 =−2, d2 =5, d3 =−20/3, d4 =5, d5 =−2 and d6 =0·5.

Here, both the linear system and the essentially non-linear homogeneous system
determined by the sixth power terms in the expression of potential energy allow for normal
vibrations of the form y= kx where k=1.

Here k is the amplitude value of the variable y. Further examination reveals that, at
not too large values of the parameter r, equation (4) has only two real solutions. As r

is increased in the intermediate range of c, another pair of real solutions appears for kq 0,
and then yet another pair exists for kQ 0; the number of normal vibration modes may
thus be as large as six. The appearance of these modes with increasing r is depicted in
Figure 1 as plots of c versus b=arctg k. Here curve 1) corresponds to r=1, 2) to r=2,
3) to r=5, 4) to r=10, 5) to r=25, 6) to r=100 and 7) to r=1000. The arrows
indicate further evolution of the normal vibrations. As r:a, all normal vibrations tend
to normal modes with rectilinear trajectories existing in a homogeneous system which is
determined by the fourth power terms in the expression for the potential energy. These
limiting modes are governed by the equalities y= kx where k= {1·496, 0, −1·279, −5};
the latter straight lines are indicated by the cipher 8 in Figure 1. The broken branches
merge as r:a. No solutions of this type exist in the limiting homogeneous system.

Figure 1. The dependence of non-linear normal modes on the amplitude of oscillations (by using the
parameters c and b=arctg k. The curve 1) corresponds to r=1, 2) to r=2, 3) to r=5, 4) to r=10, 5) to
r=25, 6) to r=100 and 7) to r=1000. The arrows indicate further evolution of the normal vibrations. The
limiting lines (as r:a) are indicated by the cipher 8. The solutions corresponding to the broken curves are
unstable.
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The approximate analytical results are fairly consistent with computer simulations. As
one would expect, the solutions corresponding to the broken curves in Figure 1 are
unstable. Numerical calculations were carried out for the initial conditions corresponding
to a rectilinear approximation. The resulting trajectories generated by the computer are
nearly rectilinear.
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