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An infinite string, supported by the equidistantly spaced identical suspensions, is
considered. Each suspension consists of a spring and a dashpot with viscous damping,
in parallel. The small transverse oscillations of the string are affected by the viscous
drag of an external medium. The concentrated harmonic force, moving steadily along
the string, causes steady-state oscillations. This means that the displacement along the
string across the suspension spacing brings the time delay and the phase lead in the
string’s transverse deflection. The former is equal to the time of the exciting force
motion over the spacing. The latter is equal to the change of the exciting force phase
over this time. The steady-state nature of the oscillations and the linear property of the
infinite periodic structure allows one to consider just one segment of the string between
the neighbouring suspensions.

The string deflection is governed within the segment by a partial differential equation
and two boundary conditions that include the time delay and the phase lead. Both
approach infinity as the speed of exciting force approaches zero and so stationary
excitation cannot be directly included in the present consideration. It is supposed that
the string segment had been at rest before the force approached and returned to rest
after the force had moved away. Fourier transformation is used to solve the boundary
problem in the infinite strip. The solution is represented in the form of a single integral
that is as good for calculation as for qualitative analysis. These show that the periodic
string resonance takes place, if any viscous resistance is absent and the integrand has
a real pole of the second order.

The string oscillations’ dependence on the suspension stiffness is studied. If the
stiffness is small enough, then a Doppler effect takes place. Two limit cases which
correspond to the stiffness that approaches zero or infinity are considered. In the first
case, the string is free. In the second one, the rigid suspensions divide the string into
an infinite sequence of isolated segments. Any isolated segment is exposed to the
moving exciting force over a limited time. Therefore, string resonance is impossible. The
integrand has no second order real pole as well.

In order to include stationary excitation into consideration, a suitable limit procedure
is used. Resonance in response to such an excitation is studied and resonant frequencies
are found. If the excitation point coincides with the suspension location or with the
string mid-span, then the exciting force produces symmetric oscillations in the string.
In these particular cases of excitation, resonance at some resonant frequencies
disappears, but anti-resonance, that seems to be impossible in response to moving
excitation, appears instead. In some cases, the exciting force produces a standing wave
in the string, each suspension coincides with the wave node and so any suspension is
strictly fixed as well as the excitation point. Such anti-resonance is not affected by
suspension viscous damping. In other cases, if viscous damping is small, the excitation
point and suspensions experience small oscillations.
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1. INTRODUCTION

An infinite periodic structure which is an infinite string, supported by equidistantly
spaced identical suspensions, is considered. Each suspension consists of a spring and
a dashpot with viscous damping, in parallel. Small transverse oscillations of the string
in viscous medium are considered. If any resistance to the string motion is absent,
free undamped oscillations are possible. If the string is finite, then only the specific
values of the free oscillation frequencies can occur [1]. Such frequencies are the
discrete spectrum of free oscillations. The finite string experiences resonance as soon
as the frequency of the string forced oscillations coincides with any frequency of its
free oscillations. As will be shown, the frequencies of the infinite periodic string free
oscillations belong to the infinite sequence of the segments which are separated by
another sequence of segments. Such frequencies fill the segments of the first sequence
continuously. This means that the frequency spectrum of the free oscillations is not
discrete, but continuous.

The infinite string oscillations, caused by a concentrated harmonic force, moving
steadily along the string, are studied. The study shows that the resonance of the
infinite periodic structure, excited by the moving harmonic force, occurs, if the
structure and the force parameters comply with some condition that is, obviously,
quite different from the above-mentioned condition, corresponding to the finite
string resonance. The string deflection, obtained by means of the Fourier
transformation in the form of a single integral, is as good for calculation as for
qualitative analysis. This shows that resonance takes place, if the integrand has a real
pole of the second order. The resonance of the infinite structure with the continuous
spectrum of frequencies was displayed, when oscillations of infinite uniform beams,
resting on uniform elastic foundation and excited by the moving force, had been
studied [2–5]. It turns out that the condition of the infinite periodic structure
resonance is the same.

2. BOUNDARY PROBLEM

An infinite string is supported by periodic visco-elastic suspensions with spacing l,
identical stiffness k and viscous damping k1 (see Figure 1). The string complex transverse
deflection y(x, t) is caused by the concentrated harmonic force a0 exp(iv0t) of the
amplitude a0 and the angular velocity v0, moving steadily along the string with non-zero
speed v0. The variables t and x denote the time and the longitudinal co-ordinate along the
string. The point x=0 corresponds to one of the suspension points. Small steady-state
oscillation of the string are considered. Therefore, the string trannsverse deflection is in
proportion to a0 and any change in the value of a0 causes no interest. The dimensionless
value F0 =v0l/v0 is the change of the exciting force phase over the time l/v0 as the force
moves over the distance l. This depends on both interesting parameters of excitation v0

and v0. The value of exciting force gains the factor exp(iF0) over this distance. The value

Figure 1. Periodic structure; (a) Suspension; (b) Span of a string.
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of the string deflection gains this factor too, in accordance with the linear property of the
periodic structure. Therefore, one supposes that

y(x+ l, t+ l/v0)= exp(iF0)y(x, t). (1)

This is similar to Mead’s approach (see [6, 7], for example). The condition (1) has been
used to describe the steady-state oscillations of periodic beams, excited by a moving
harmonic force [8]. If v0 =0, then the exciting force is constant, F0 =0 and exp (iF0)=1.
In this particular case, the condition (1) easily reduces to

y(x+ l, t+ l /v0)= y(x, t) (2)

and shows that the displacement along the string of the space l causes the time delay l/v0

in the string deflection and that the exciting force speed v0 cannot equal zero in such
consideration. This means that the particular case of the stationary exciting force can not
be considered as easily as the case of the constant exciting force, but can be obtained by
means of a suitable limit procedure, as will be shown. If n is an integer and v0 is related
to v0 by the following equality

v0 =2pnv0, (3)

then the exciting force is in phase again after its movement over l. In this case,
F0 =2pn, exp(iF0)=1 and one obtains the condition (2) again. The condition (3) has been
used to describe the oscillations of rails by a moving loaded wheel or harmonic force [9,
10].

The string transverse deflection is governed by the equation

r
12y(x, t)

1t2 + r
1y(x, t)

1t
− f

12y(x, t)
1x2 = a0 exp(iv0t)d(x− x0), (4)

where f and r are the string tension force and linear density, r is viscous drag per the string
unit length, d denotes the Dirac function. A string has no bending stiffness, contrary to
a beam. As it will be shown, some peculiarities in the periodic string oscillations follow
from this. A string tangent is discontinuous at any point where a concentrated force is
applied. The co-ordinate x0 = v0t locates the moving point of excitation. The function
y(x, t) is continuous at this point. But the function f1y(x, t)/1x experiences a sudden
change which is equal to the exciting force. Similarly, the function y(x, t) is continuous
at the point x=0, but the function f1y(x, t)/1x experiences the sudden change
ky(0, t)+ k11y(0, t)/1t, which is equal to the force, acting upon the suspension at this
location. Here k and k1 are the suspension stiffness and viscous damping. Taking this and
the condition (1) into account, one obtains

y(l, t+ l/v0)= exp(iF0)y(0, t), (5)

f1y(l, t+ l/v0)/1x=exp(iF0)(f1y(0, t)/1x− ky(0, t)− k11y(0, t)/1t). (6)

It is further supposed that the string segment was at rest long before the exciting force
approached and returns to rest due to resistance in the periodic structure long after the
force moves away. This means that y(x, t) and its derivatives vanish as t:2a. The last
is not necessary and can be replaced by other suitable suppositions.

The deflection y(x, t) is determined within the string segment 0E xEl from the solution
of the partial differential equation (4), together with the two boundary conditions (5), (6)
and the last supposition. Over the remainder of the string it is determined by the condition
(1). The boundary conditions (5) and (6) include the time delay l/v0. So one has a boundary
problem with a time lag [11, 12] in the strip (0, l)× (−a,+a), or, in the terminology of
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[13], one has a differential-difference boundary problem. Such a problem arises, for
example, if one studies the interaction between an electric railway feeding wire and a
moving locomotive pantograph [14].

Denote dimensionless values

X= x/l, X0 = x0/l= v0t/l, T= v0t/l, Y(X, T )= y(x, t)/l, K= kl/f,

K1 = k1/(rf )1/2, R= rl/(rf )1/2, A0 = a0/f, V 2
0 = rv2

0 /f=(v0/v*
)2,

where v
*

= ( f/r)1/2 is the speed of waves, propagating in the free string. Except V0, these
dimensionless values do not depend on v0. The dimensionless value V0 is similar to the
Mach number in aerodynamics. Variables X and T denote the dimensionless longitudinal
co-ordinate along the string and the dimensionless time. The dimensionless co-ordinate X0

of the moving excitation point coincides with T. Introducing the dimensionless values into
equations (4–6) and taking into account that d(x− x0)= d(X−T )/l, one obtains

V 2
0
12Y(X, T)

1T 2 +RV0
1Y(X, T)

1T
−

12Y(X, T)
1X 2 =A0 exp(iFT)d(X−T), (7)

Y(1, T+1)=exp(iF0)Y(0, T), (8)

1Y(1, T+1)/1X=exp(iF0)(1Y(0, T)/1X−KY(0, T)−K1V01Y(0, T)/1T). (9)

3. FREQUENCY SPECTRUM OF FREE PROPAGATING WAVES IN THE PERIODIC
STRING

If any resistance to the string motion and the exciting force are absent, then R, K1 and
A0 are equal to zero, but V0 should be considered now as the unknown dimensionless value
of the free undamped wave propagation speed. Therefore, the partial differential equation
(7) and the boundary conditions (8) and (9) reduce to

V 2
01

2Y(X, Y)/1T 2 − 12Y(X, T)/1X 2 =0, Y(1, T+1)=Y(0, T), (10, 11)

1Y(1, T+1)/1X= 1Y(0, T)/1X−KY(0, T). (12)

It is supposed in this section that any point of the string experiences harmonic oscillations
and so the solution of the equation (10) can be written as

Y(X, T)=A(X) exp(iV0T/V0)=A(X) exp(iv0t), (13)

where A(X), 0EXE1, is the dimensionless complex amplitude of oscillations of the string
point X. The value V0 =V0F0 =v0l(r/f )1/2 depends on v0 not v0, and so can be understood
as a dimensionless frequency of oscillations. By substituting the expression (13) into
equations (10–12), one obtains

d2A(X)/dX 2 +V2
0A(X)=0, exp(iV0/V0)A(1)=A(0), (14, 15)

exp(iF0/V0) dA(1)/dX=dA(0)/dX−KA(0). (16)

The fundamental solution of the ordinary differential equation (14) can be written as

A(X)=C1 sin (V0(1−X))+C2 sin (V0X),

where C1 and C2 are arbitrary constants. By substituting this solution into the boundary
conditions (15) and (16), one obtains the following equality

cos (V0/V0)= cos V0 +K sin V0/(2V0), (17)
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Figure 2. Dependence on V0 of the right side of the equation (17); 1, K=0; 2, K=1; 3, K=2; 4, K=4; 5,
K=8; 6, K=16.

that links V0 and V0. This shows that the free wave propagation speed v0 depends on the
frequency v0 of the string’s free oscillations. The finite string can freely oscillate only with
frequencies which belong to the discrete spectrum that consists of the infinite set of isolated
points. The infinite free string can freely oscillate with any frequency. The spectrum is
entire in this case. The equality (17) shows that a periodically suspended infinite string
presents an intermediate kind of spectrum. The value of the equality (17) left side is
bounded by −1 and 1. If n is an integer and V0 = pn, then the value of the right side of
equality (17) turns into (−1)n. The curves in Figure 2 show how the values of the right
side of equality (17) calculated with different values of the suspension dimensionless
stiffness K, depend on V0. The two dotted lines correspond to −1 and 1. The equality (17)
with a given V0 can take place, only if

−1E cos V0 +K sin V0/(2V0)E 1. (18)

In this case, the value of V0 can be found by means of the equality (17). As one sees from
Figure 2, the value of V0, which satisfy the inequalities (18), belong to the infinite sequence
of the segments, separated by another sequence of segments. Such values of V0 fill any
segment of the first sequence continuously. This means that the frequency spectrum of the
free propagating waves in the periodically suspended string is continuous, but not entire
like that in the free string. As K tends to zero, the length of the segments increase. In the
limiting case K=0, the string becomes free and the segments merge. Therefore, the
spectrum becomes entire and includes all the angular velocities. The right borders of the
segments are the points pn. As K increases, the left borders of the segments tend to these
points. In the limiting case K=a, the segments tighten into the points pn. This means
that the spectrum of the angular velocities v0 becomes discrete and consists of the points
(pn/l )( f/r)1/2. If K=a, the suspensions are rigid and divide the string into the infinite
sequence of the isolated segments of the length l. It is known that these points are the
discrete spectrum of the finite string free oscillations [1].
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4. FORCED OSCILLATIONS

Let

g
+a

−a

Y(X, T) exp(−iFT) dT=Y
 (X),

where F is a dimensionless parameter. Then

g
+a

−a

Y(X+1, T+1) exp(−iFT) dT=exp(iF)Y
 (X+1).

By performing a Fourier transformation on equation (7), applying the boundary
conditions (8) and (9) and integrating by parts, one obtains

−d 2Y
 (X)/dX2 −S2Y
 (X)=A0 exp(i(F0 −F)X), (19)

where the complex value S is determined by the following

S2 =V 2
0F

2 − iRV0F, (20)

and

exp(i(F−F0))Y
 (1)=Y
 (0), exp(i(F−F0)) dY
 (1)/dX=dY
 (0)/dX−K(F)Y
 (0),

(21, 22)

where

K(F)=K+iK1V0F. (23)

The solution of the ordinary differential equation (19) may be written as

Y
 (X)=
C1 sin (S(1−X))+C2 sin (SX)+A0 exp(i(F0 −F)X)

(F−F0)2 −S2 .

By substituting this solution into boundary conditions (21) and (22), one obtains two
equations to determine two unknown values of C1 and C2. By evaluating them and
substituting into the solution of equation (19), one finally obtains

Y
 (X)=A0(1+K(F)N(X, F)/D(F)) exp(i(F0 −F)X)/((F−F0)2 −S2),

where

N(X, F)= exp(i(F−F0)X) sin (S(1−X))+ exp(i(F−F0)(X−1)) sin (SX),

D(F)=2S(cos (F−F0)− cos S)−K(F) sin S.

These equations show that F is similar to F0. Both N(X, F) and D(F) depend on S. Two
complex values 2S are determined by the equality (20). If −S is substituted for S, then
both N(X, F) and D(F) change their signs, but the fraction N(X, F)/D(F) does not and
so Y
 (X) does not change its value. If S is zero, then both N(X, F) and D(F) are zero too
and so the fraction stays limited as well as Y
 (X).

By performing an inverse Fourier transformation

Y(X, T)= (2p)−1g
+a

−a

Y
 (X) exp(iFT) dF
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one obtains the string dimensionless deflection

Y(X, T)=
A0 exp(iF0X)

2p g
+a

−a $1+
K(F)N(X, F)

D(F) % exp(iF(T−X)) dF

(F−F0)2 −S2 (24)

within the segment 0EXE 1. Behaviour of integral (24) is determined by the poles of its
integrand. If (F−F0)2 −S2 =0 and K(F)$ 0, then N(X, F)= sin S and
D(F)=−K(F) sin S. Therefore, the value in the square brackets of the integral (24) is
equal to zero too and the integrand value is limited in this case. These show that only the
roots of the equation D(F)/S=0 may be the poles of the integrand (24) and should be
taken into account for calculations and qualitative analysis.

5. FREE STRING

If K(F)=0, then the integral (24) reduces to the integral

Y(X, T)=
A0 exp(iF0X)

2p g
+a

−a

exp(iF(T−X)) dF

(F−F0)2 −S2 , (25)

which describes forced oscillations of the free string and can be calculated by means of
residues. In order to study the poles of the integrand (25) with V0 Q 1, one may consider
the following equation

(F−F0)2 −V 2
0F

2 + iRV0F0 ((1+V0)F−F0)((1−V0)F−F0)+ iRV0F=0. (26)

The equality (20) has been taken into account. If R=0, then the values F0
1,2 =F0/(12V0)

are the roots of this equation. If R$ 0, then the roots of the equation (26) may be
represented as

F1/2 =F0
1,2 +DF1,2. (27)

If R and DF1,2 are small, then, in accordance with (26), these small values are connected
by the equality

2(F0
1,2 −F0)DF1,2 −2V2

0F
0
1,2DF1,2 + iRV0F

0
1,2 =0

By evaluating DF1,2 and substituting them into (27), one can represent the roots of the
equation (26) as

F1,2 = (F0 2 iR/2)/(12V0).

This last relationship shows there are two poles F1,2 of the first order in the integrand of
equation (25). The imaginary part of one of these poles is positive, while the other one
is negative. If TeX, then the integral is equal to the residue at the pole F1, multiplied
by the factor 2pi. If TEX, then the integral is equal to the residue at the pole F2,
multiplied by the factor −2pi. By evaluating the residue and taking after this R=0, one
can obtain

Y(X, T)= exp(iF0(T3V0X)/(13V0))/(2iV0F0).

By using the initial variables, this can be rewritten as

y(x, t)=
a0v*
2ifv0

exp0iv0(v*
t3 x)

v
*

3 v0 1.
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The top sign corresponds to the excitation point x0 E x and the lower one corresponds
to x0 e x. The last expression represents the direct and inverse waves, which propagate
with the same velocity v

*
. Every point x of the string oscillates with the same amplitude

a0v*
/(2fv0). The angular velocity of the point x oscillations changes from the greater value

v0v*
/(v

*
− v0) to the smaller one v0v*

/(v
*

+ v0), when the excitation point x0 reaches the
point x. This is the Doppler effect, that is well known in optics and acoustics. To show
this effect, one should separate the real and imaginary parts of y(x, t) or Y(X, T). The real
part of the latter with X=0, F0 = p and V0 =0·5 is shown in Figure 3. The amplitude
of the point x oscillations unlimitedly grows as v0:0. It is similar to the string resonance.
In this case, F0 tends to zero and two poles F1,2 of the first order merge and form the single
pole of the second order at the point F=0. The same takes place as resonance in an infinite
beam, resting on uniform elastic foundation, appears [2–5].

6. RIGID SUSPENSIONS

If the suspension dimensionless stiffness K approaches infinity, then the suspensions
become rigid. In this case, K(F)=a and the integral (24) reduces to

Y(X, T)=
A0 exp(iF0X)

2p g
+a

−a $1−
N(X,F)
sin S % exp(iF(T−X)) dF

(F−F0)2 −S2 . (28)

This represents the dimensionless deflection of the string within the isolated segment
0EXE 1 between two rigid suspensions. If X is equal to 0 or 1, then N(X, F)= sin S
and Y(0, T)= (1, T)=0. The integral (28) can be directly obtained by solving the
equation (19), together with two boundary conditions Y
 (1)=Y
 (0)=0.

7. RESONANCE

If any resistance to the periodic structure motion is absent, then R=0, and K1 =0.
Therefore, K(F)=K and S=V0F. The periodic structure properties are determined by
the poles of the integrand (24). The roots of the equation D(F)/(V0F)=0 can provide such
poles. Taking into account the free string propetries, one assumes that the real poles of

Figure 3. Forced oscillations of the free string at point X=0; F0 = p, V0 =0·5.
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Figure 4. Dependence on F of the right side of the equation (29).

the first order give rise to undamped propagating waves. If the parameters of the excitation
force and/or the periodic structure change, then the poles change too. One assumes that
the periodic structure resonance takes place as soon as a pair of the real poles of the first
order merge and form the single pole of the second order. This corresponds to the studies
[2–5] on infinite beams, resting on uniform elastic foundation.

Let one consider how the suspension dimensionless stiffness K affects the string
oscillations. If K=a, then the above-mentioned equation should be replaced by the
equation sin (V0F)/(V0F)=0, as one can see from the integral (28). All the roots of the
last equation are real and simple. According to the assumption, the string resonance is
impossible in this case. But the segment transient response to excitation can be large
enough and remain such after excitation. There is another explanation of this. Any segment
of the string is isolated from the neighbouring ones by the rigid suspensions and exposed
to excitation over limited time. The last is not true, if a periodically supported beam is
considered. All the neighbouring segments of the beam cohere due to bending stiffness.
Returning to the equation D(F)/(V0F)=0. Under consideration, one presents this
equation as

K=2V0F(cos (F−F0)− cos (V0F))/sin (V0F).

Let F0 = p and V0 =0·5 again. In this case, the above equation reduces to

K=−F cos (3F/4)/sin (F/4). (29)

The dependence on F of the even function in the right side of the equation (29) is presented
in Figure 4 as a continuous line. If K=0, then cos (3F/4)=0 and all the roots
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Fn = p(4n−2)/3, n=1, 2, 3, . . . of the equation (29) are real and simple, the roots
F1 =2p/3 and F2 =2p correspond to the free string. As K increases, all the roots change.
Their values can be found graphically as the intersections of the curve in Figure 4 and the
line, which corresponds to the given value of K. Such lines are shown as the dotted ones
and correspond to different values of K. If the value of K is sufficiently small, then all the
roots are real and simple and give rise to undamped propagating waves. The root F1 and
F2 merge and form a single root of the second order as K reaches the specific value of 4·85.
The unmarked dotted line, which corresponds to this specific value, touches the top of the
curve in this case. According to the assumption, this value of K corresponds to resonance.
As K becomes slightly more than 4·85, the second order root branches into the pair of
the first order complex-conjugated roots, that give rise to decaying waves. These waves
vanish quickly as soon as the exciting force moves away. If K=a, then sin (F/4)=0 and
all the roots of the equation (29) are real and simple again. The roots F3n ,
n=2, 2, 3, . . . stay real and simple as K changes from zero to a. These roots change from
p(4p−2/3) to 4pn. All other ones merge and give rise to the following resonances.

To prove the assumption on the string oscillations and resonance, the calculations of
the integral (24) with the external medium viscous drag R=0 and the small value K1 =0·1
of the suspension viscous resistance were made. In this case, there is no real pole in the
integral and its direct calculation is possible. The most interesting values Y(T, T) and
Y(0, T) with the dimensionless parameters F0 = p and V0 =0·5 were obtained. These
complex values represent the transverse deflection of the string at the moving excitation
point, where X=T, and at the suspension X=0. The first one, with accordance to the
condition (1), obeys the equality =Y(T+1, T+1) == =Y(T, T) =, so =Y(T, T) = is a periodic
function. Figure 5 shows a relief map of Y(T, T) over the period 0EX=TE 1 with the

Figure 5. Oscillations of the moving excitation point; F0 = p, V0 =0·5. a, K=4; b, K=4·5; c, K=4·85.
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Figure 6. Forced oscillations of the suspension; F0 = p, V0 =0·5. (a) K=1; (b) K=4·5; (c) K=5·5; (d) K=8.

suspension dimensionless stiffness K that ranges from 1 to 8. The resonance at k=4·85
is clearly seen.

8. PROPAGATING WAVES AND DOPPLER EFFECT

To show the propagating waves and the Doppler effect in the periodic string, one can
separate the real and the imaginary parts of Y(0, T) that corresponds to the suspension
location. If TQ 0, then the moving excitation point approaches the suspension X=0. If
Tq 0, this moves away. The dependence on T of the real part is shown in Figure 6. If
K=1, then the oscillations of the suspension X=0 are similar to those of the free string
shown in Figure 3. The propagating waves and the Doppler effect are clearly seen. If
K=4·5, then propagating waves are still seen, but the Doppler effect is absent due to
coincidence of the roots F1 and F2. If K=5·5 or K=8, there is no propagating wave as
well.

9. STATIONARY EXCITING FORCE

If the exciting force speed V0 tends to zero, then only V0 = v0(r/f )1/2 tends to zero too
and only F0 =v0l/v0 approaches infinity. Therefore, the string deflection, caused by the
standing exciting force cannot be directly obtained from the integral (24), but by means
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of the following limit procedure. At first, the integration variable F is replaced by the
variable V=F−F0. After this, the integral can be represented in the form

Y(X, T)=
A0 exp(iF0T)

2p g
+a

−a $1+
K(V+F0)N(X, V+F0)

D(V+F0) % exp(iV(X0 −X)) dV

V2 −S2 ,

where X0 = x0/l= v0t/l is the dimensionless co-ordinate of the excitation point. This
coincides with T= v0t/l. One sees that F0T=v0t. Let R=0 again. Taking into account
(2) and (23), one, further, obtains

S2 = (V0V+V0)2, K(V+F0)=K+iK1(V0V+V0)

where V0 =V0F0 can be considered now as the dimensionless angular velocity of excitation.
Let X0 stay constant, but V0 tends to zero in the expression obtained. Then, S2 and K(F)
should be replaced by the real constant V2

0 and the complex constant K0 =K+iK1V0.
Thus,

y(x, t)= lY(X, T)= (a0l/f ) exp(iv0t)A(X, X0).

The last expression shows that the string point X performs harmonic oscillations with the
angular velocity v0. The quantity

A(X, X0)=
1
2p g

+a

−a $1+K0
exp(iVX) sin (V0(1−X))+ exp(iV(X−1)) sin (V0X)

2V0(cos V−cos V0)−K0 sin V0 %
×

exp(iV(X0 −X)) dV

V2 −V2
0

(30)

is the complex amplitude of oscillations of the string at point X, caused by the stationary
harmonic exciting force at the point X0. In the integral (30), the excitation point
co-ordinate X0, that has replaced T, can be an arbitrary real number, but 0 EXE 1. If
X0:2a, then A(X, X0):0. This means that at the string point X oscillations decay, if
the excitation point X0 moves away from the point X. If X=X0, then the integral (30)
represents the complex amplitude of the excitation point. If, finally, V0 tends to zero, then
K0 tends to K. Replacing cos V0, sin V0, sin (V0X) and sin (V0(1−X)) by 1, V0 V0X, and
V0(1−X), one obtains the string dimensionless static deflection

A0(X, X0)=
1
2p g

+a

−a $1+K0
(1−X) exp(iVX)+X exp(iV(X−1))

2(cos V−1)−K %
×

exp(iV(X0 −X)) dV

V2

and, if X=X0 again, the value A0(X0, X0) is the string static dimensionless deflection at
the excitation point. The latter can be understood as the dimensionless local flexibility of
the periodic structure. Figure 7 shows how the values of A0(X0, X0) depend on X0. These
values have been calculated with different K. As K decreases, then the values of A0(X0, X0)
increase and the difference between A0(1/2, 1/2) and A0(0, 0) lessens at that time. This
means that the string discrete suspensions act as continuous uniform suspension, if K is
sufficiently small.
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10. RESONANCE AND ANTI-RESONANCE IN RESPONSE TO STATIONARY
EXCITATION

In order to study the resonance of the periodic structure, caused by the stationary
harmonic exciting force, one should take K1 =0, K0 =K and search for the second order
real poles of integrand (30). By studying the roots of the equation

cos V=cos V0 +K sin V0/(2V0), (31)

such poles can be found. The right side of the equation depends on two parameters K and
V0. The dependence has been shown in Figure 2. If V coincides with the second order root
of the equation (31), then sin V=0 and so cos V=21. Thus, the equation (31) has the
second order root, if K and V0 obey the following condition:

cos V0 +K sin V0/(2V0)=21 (32)

One sees, that the values V0 = pn, n=21, 22, 23, . . . , obey this condition with any real
and even complex K. As Figure 2 shows, there is another value V0 between pn and p(n+1),
obeying the condition (32) with any given real K. This value depends on K.

If the excitation point X0 coincides with 0 or 0·5, then the exciting force produces the
string oscillations, which are symmetric with respect to the excitation point, and so, in these
particular cases of excitation, resonance may not take place in despite of fulfilment of the
condition (32). Indeed, in this case, the denominator of the fraction in the square brackets
in the integrand (30) turns into 2V0(cos V3 1). If X0 =0, then the fraction reduces to

K sin V0/[2V0(cos V3 1)]

and turns into zero as soon as V0 = pn. Thus, there is no pole of the second order and
no resonance as well. Further, if X0 =0·5, then the same reduces to

K sin (V0/2) cos (V/2)/[V0(cos V3 1)]

Figure 7. Static flexibility of the periodic structure; 1, K=0·5; 2, K=1; 3, K=2; 4, K=4; 5, K=8.
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Figure 8. Frequency response to stationary excitation; 1, X0 =0; 2, X0 =0·25; 3, X0 =0·5.

and turns into zero as soon as V0 =2pn. There is no resonance again. If the right side of
(32) is equal to −1, then the last expression is

K sin (V0/2) cos (V/2)/[V0(cos V+1)]=K sin (V0/2)/[2V0(cos (V/2)]

and so the integrand reduces to the following

[1+K sin (V0/2)/[2V0(cos (V/2)] exp(iV(X0 −X))/(V2 −V2
0 )

which shows there is a pole of the second order and resonance, only if V0 = p(1+2n).
In order to prove this analysis, the calculations of the integral (3) with the small value

0·04 of the suspension viscous damping K1 were made. If V0 = pn, then the denominator
of the fraction in the square brackets in the integrand (30) becomes 2V0(cos V3 1), as has
been mentioned. This means that the integrand has real poles in despite of presence of the
positive K1 and the integral cannot be calculated with such V0. Therefore, values of V0

between zero and p and between p and 2p were chosen for calculations. According to
Figure 2, there are four resonant values 0·415p, p, 1·17p and 2p of V0 in this band. Three
values 0, 0·25 and 0·5 of X0 were chosen to present the string symmetric and asymmetric
excitation. The values of =A(X0, X0) =, calculated by means of the integral (30) with K=2
and X=X0, are shown in Figure 8 and represent the periodic structure frequency response
to excitation by the stationary harmonic force. The curve 1 presents the frequency response
to the symmetric excitation at the point X0 =0, that coincides with the suspension location.
The string does not experience resonance if V0 = p and V0 =2p. This is in accordance with
the previous analysis. The curve 2 presents the frequency response to the asymmetric
excitation at X0 =0·25. In this case, the string experiences resonance, if V0 coincides with
any resonant value, listed above. The curve 3 presents the frequency response to the
symmetric excitation at the mid-span X0 =0·5. In accordance with the previous analysis,
there is no resonance at V0 =1·17p and V0 =2p.

One sees that Figure 8 provides some additional information. There are two types of
anti-resonance, that seem not to be possible in response to moving excitation. The first
type corresponds to the symmetric excitation and is not affected by the suspension viscous
damping. It is seen at V0 = p, if X0 =0, and at V0 =2p, if X0 =0 or X0 =0·5. It can be
easily proved that K0 disappears from the integrand (30) in all of these cases as well as
the suspension damping K1. The excitation point X0 is strictly fixed and so there is no
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energy influx into the periodic structure. If steady-state oscillations take place, then energy
outflow must not exist, occuring only if the string experiences oscillations in the form of
a standing wave and all suspension locations coincide with the wave nodes. In such case,
there is no energy flow along the string and no energy loss in the strictly fixed suspensions.
Figure 9 shows the string shapes in the form of the standing wave. Vertical strokes locate
the suspensions. Vertical arrows locate the exciting force that is balanced by the tension
forces in two string wings. The curve 1 corresponds to V0 = p and X0 =0, curves 2 and
3 to V0 =2p, X0 =0 and X0 =0·5. Such string deflection cannot be obtained by means
of the integral (30) because there is no decay far from the excitation point. But it can be
easily obtained from the equation (10), if one considers oscillations of the string wings
which cannot take place in periodically supported beams because of their bending stiffness.
Taking into account the physical explanation of anti-resonance, one should expect such
anti-resonance to be caused by asymmetric excitation. The second type of anti-resonance
can be seen from Figure 8 at the resonant dimensionless angular velocity V0 =1·17p, if
X0 =0·5, and at the non-resonant V0 =1·08p, if X0 =0·25. Such anti-resonance is affected
by the suspension viscous damping and so the excitation point experiences small
oscillations making possible energy influx in the periodic structure that compensates for
energy loss in the oscillating suspensions. The excitation point amplitude depends on K1,
increasing with K1. This is shown by means of dotted curves which correspond to the
greater value 0·16 of K1. In the limit case K1 =0, the excitation point is strictly fixed.

The calculations of =A(X0, X0) = show there is, sometimes, an infinite response, if X$ 0
and V0 = pn, with any non-zero K1. It can appear only, if the exciting force produces a
standing wave, all the suspensions coincide with the wave nodes and so there is no energy
loss again. This is similar to the pinned–pinned resonance periodically supported beams
[15].

11. CONCLUSIONS

An infinite string, supported by equidistantly spaced identical visco-elastic suspensions,
was considered as well as a concentrated harmonic force, that moves steadily along the
string and causes steady-state small oscillations in the string. This allows one to consider
just one segment of the string, between neighbouring suspension points, and creates a
boundary problem that includes the time delay and the phase lead between two points of

Figure 9. Anti-resonance; 1, X0 =0, V0 = p; 2, X0 =0, V0 =2p; 3, X0 =0·5, V0 =2p.
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the string separated by the suspension space. Both approach infinity as the speed of the
exciting force approaches zero and so a stationary exciting force cannot be directly
included in the consideration.

Fourier transformation was used to solve the boundary problem and the solution was
presented in the form of a single integral that was used for calculation and for qualitative
analysis. This showed that the periodic string, having a continuous spectrum of free
oscillations, experiences resonance, if the integrand has a real pole of the second order.
The string oscillations’ dependence on the suspension stiffness was studied. A Doppler
effect occurs if the stiffness is small enough or equal to zero. The latter corresponds to the
free string. As the study showed, there is no resonance if the suspension stiffness
approaches infinity. This can be explained as follows. The rigid suspensions divide the
string into an infinite sequence of isolated segments. Any isolated segment is exposed to
the moving exciting force over a limited time and, therefore, string resonance is impossible.

In order to consider stationary excitation, a suitable limit procedure was used.
Resonance occurred again as well as anti-resonance, that seems to be impossible in
response to moving excitation. If the excitation point coincides with the suspension
location or with the string mid-span, then the exciting force produces symmetric
oscillations in the string. In these particular cases of excitation, resonance at some resonant
frequencies disappears, but anti-resonance appears instead. In some cases, the exciting
force produces a standing wave in the string, each suspension coincides with the wave node
and so any suspension is strictly fixed as well as the excitation point. Such anti-resonance
is not affected by suspension viscous damping and cannot appear in periodically supported
beams.
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