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This paper presents a theoretical study of three errors in the measurement of
structure-borne power flow in one-dimensional structures using two-accelerometer
techniques. It is assumed that the physical and material properties of the test structure are
known. For the measurement of bending wave power flow, the errors due to the neglect
of shear force and rotating inertia and the presence of longitudinal waves are examined
individually. It is shown that the omission of shear force and rotating inertia results in a
large bias error at high frequencies. The presence of incoherent longitudinal waves results
in no bias error for the biaxial accelerometer technique or usually a negligible bias error
for the two-accelerometer array technique. However, if longitudinal waves are coherent
with bending waves the bias error increases with increasing the coherence and the
longitudinal to bending wave energy ratio and becomes large when the bending wave energy
is smaller than the highly coherent longitudinal wave energy. For the measurement of
longitudinal wave power the effect of bending waves is important. As long as the bending
wave power is not much smaller than the longitudinal wave power, the bias error is large
even if bending and longitudinal waves are incoherent. Measures should be taken during
measurements to eliminate or reduce the contribution from bending waves to a certain
extent, otherwise, the longitudinal wave power cannot be measured using the
two-accelerometer array technique.
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1. INTRODUCTION

The ability of structural intensity techniques to measure both the magnitude and direction
of power flow makes them attractive techniques for investigating a wide variety of
structures. However, intensity measurement techniques are prone to errors. These errors
depend on the properties of the structure to be measured, the type of waves present on
the structure and the instrumentation employed in the measurement. Attempting to
analyse all the errors at the same time results in a very complicated analysis and makes
it difficult to draw clear conclusions. Therefore, it is necessary to examine each of the errors
in isolation. Some of the errors have been theoretically analysed [1–4] and some still need
to be further investigated.
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These errors can be classified as either bias errors or random errors. Bias errors can be
calculated exactly and result in either an over or under estimation of the true power flow.
Random errors cannot be calculated exactly and for any given situation they too can either
over or under estimate the true power flow. This paper looks at three bias errors that can
occur in the measurement of structure-borne power flow using the two accelerometer
techniques. For simplicity the analysis is restricted to one dimensional beams. However,
in some cases the method of analysis can be extended to two dimensional plates.

Of all structural intensity techniques, both the two-accelerometer array and biaxial
accelerometer techniques are convenient to implement and widely used in practical
engineering. These two techniques are briefly described in the first part of this paper, then
three bias errors associated with them are examined individually. The errors due to the
presence of longitudinal waves and the neglect of shear deformation and rotatory inertia
are examined for the measurement of bending wave power. It is shown that the error due
to the neglect of shear deformation and rotatory inertia increases with increasing frequency
and becomes large at high frequencies. The effect of coherent longitudinal waves could be
important if the coherence is high and the longitudinal wave energy is greater than the
bending wave energy, however, the effect of incoherent longitudinal waves is usually
negligible. For the measurement of longitudinal wave power flow, the error due to the
presence of bending waves is examined. It is shown that the contribution from either
coherent or incoherent bending waves is important and must be eliminated or reduced to
a certain extent, otherwise, the measured results will be corrupted.

2. MEASUREMENT OF STRUCTURE-BORNE POWER FLOW

For a one-dimensional beam lying along the x direction of a Cartesian co-ordinate
system, as shown in Figure 1, the translational acceleration at any farfield location due
to the propagation of travelling bending waves can be expressed as

a=(A+ e−jkx +A− ejkx) ejvt (1)

where j=z−1; k is the bending wavenumber; v=2pf is the radian frequency; A+ and
A− represents the amplitudes of the travelling bending waves in the positive and negative
directions respectively. The longitudinal wave acceleration is given as

aL =(B+ e−jkLx +B− ejkLx) ejvt (2)

where kL is the longitudinal wavenumber; B+ and B− are the amplitudes of the longitudinal
waves propagating in the positive and negative directions respectively.

Figure 1. Diagram of the two-transducer technique probes used in the measurement of bending wave power flow
on a uniform beam.
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The spectral densities of the bending and longitudinal wave power flows, PB and PL in
a thin beam can be given as [1, 5, 6]

PB =(2mbc2
b /v3) Im {G(1a/1x, a)} (3)

PL =(mbc2
l /v3) Im {G(1aL /1x, aL )} (4)

where mb is the mass per unit length of the beam; cb and cl are the bending and longitudinal
wavespeeds; Im {G(1a/1x, a)} is the imaginary part of the cross spectrum, G(1a/1x, a)
between the acceleration a and its first spatial derivative. In practice, either the bending
or longitudinal wave acceleration can be measured directly using a translational or
rotational accelerometer, however, the measurement of the first spatial derivative of an
acceleration is not a straightforward procedure. The first spatial derivative can only be
approximately obtained from other measured data. Based on the principle of finite
difference, the first spatial derivative of either bending or longitudinal wave acceleration
can be estimated from the difference of two accelerometer signals so that the spectral
densities of the bending and longitudinal wave power flows in a thin beam can be measured
using a two-accelerometer array and are given by [6]

PB =(2mbc2
b /v3d ) Im {G(a1, a2)} (5)

PL =(mbc2
l /v3d ) Im {G(aL1, aL2)} (6)

where d is the accelerometer separation and a1 (aL1) and a2 (aL2) are the bending
(longitudinal) wave acceleration signals measured using the accelerometer array. For
bending waves, the first spatial derivative of a translational acceleration is the rotational
acceleration so that it can also be indirectly measured using a rotational accelerometer.
Therefore, the spectral density of the bending wave power flow in a thin beam can be
measured alternatively using a biaxial accelerometer [5] as shown in Figure 1, and
estimated using equation (5) where d is the distance from the neutral axis of the beam to
the axis of the rotational accelerometer.

It can be seen from equations (3) to (6) that the power flow depends on both the
imaginary part of the cross spectrum and the material properties of the beam being tested.
The errors associated with the physical and material properties are relatively straight
forward and are not discussed here. It is assumed in the following analysis that the physical
and material properties of the beam are known.

Bias errors are systematic errors that can be computed for any given situation and can
be given in normalized form as

o=(Pme −P)/P=Pme /P−1 (7)

where o is the normalized bias error; Pme and P are the measured and true values of the
power flow. Measured power can sometimes be corrected for bias errors during data
processing using the following expression

P=Pme /(1+ o) (8)

3. BIAS ERROR DUE TO THE EFFECTS OF SHEAR DEFORMATION AND ROTATORY
INERTIA

Equation (3) is derived from classical Bernoulli–Euler bending theory, which deals with
pure bending waves, and is valid only for bending wavelengths much larger than the
thickness of the structure along which propagation occurs. For short wavelengths, shear
deformation and rotatory inertia become important [7, 8], and the estimation of bending
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Figure 2. An element of a beam subjected to bending and shear deformation

wave power flow using equation (3) will result in an estimate error. In order to estimate
this error, the effects of shear deformation and rotatory inertia were included.

Consider an element of a uniform beam, as shown in Figure 2. At rest the beam is
straight and lies along the x-axis. If the angle 8 denotes the rotation of the neutral axis
of the beam due to bending, h denotes the displacement due to bending, Q and M represent
the shear force and bending moment respectively, the following differential equations will
hold [9]

1h

1x
=8−

Q
g

;
128

1x1t
= −

1
B

1M
1t

; −
1M
1x

=Q+ rJ
128

1t2 ; −
1Q
1x

=mb
12h

1t2 (9)

where B is the bending stiffness; r is the material density; J is the second moment of area
of the cross-section of the beam; g is the modified shear stiffness and given by [9]

g=Ehb/2(1+ m)k (11)

where h and b are the thickness and width of the beam; m is Poisson’s ratio and k is a
constant, equal to 1·2 for a rectangular cross-section [9]. The Timoshenko bending wave
equation can be derived from equations (9) as [9, 10]

B
mb

14h

1x4 +
12h

1t2 −$h2

12
+

B
g% 14h

1x21t2 +
rJ
g

14h

1t4 =0 (12)

which describes two types of bending waves each with a different wavenumber. At low
frequencies one wave is a travelling bending wave and the other is a decaying bending wave
as in the solution to the wave equation for thin beams. The two wavenumbers, k1 and k2n ,
are given by [10]

k1 =Xmbv
2

2B 0h2

12
+

B
g1+

mb

2BX0h2
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+
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Bv2
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+
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2

2B 0h2

12
+
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where k1 is the wavenumber of travelling bending wave and k2n is the wavenumber of the
decaying bending wave. It can be shown from equation (13) that when the frequency is
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greater than

f0 = (1/2p)zg/rJ1 cl /ph (14)

the decaying bending wave becomes a travelling bending wave [10]. When the frequency
of interest is much smaller than f0, then

4B/mb�0h2

12
+

B
g1

2

v2; g�rJv2

equations (12) and (13) can be simplified to
4

k1 1 k2n 1 k=zmbv
2/B (15)

which is the bending wavenumber for a thin beam.
The bending moment and shear force can be derived from equation (9) as

M=−B012h

1x2 +
mbv

2

g
h1, Q=

gB
g− rJv2

13h

1x3 +
(rJg+mbB)v2

g− rJv2

1h

1x
(16, 17)

When the frequency is smaller than f0, the bending wave power flow in the far field is due
to the travelling wave and its spectral density is given by

PB =Im 6G(Q, v)+G0M,
1n

1x17=
t

v3 Im 6G01a
1x

, a17 (18)

where n=jvh is the translational velocity and t is given by

t=
gBk2

1 − (rJg+mbB)v2

g− rJv2 +B0k2
1 −

mbv
2

g 1 (19)

When the bending wavelength is much larger than the thickness of the beam, equation (18)
can be simplified to equation (3). Equation (3) is therefore an approximation of equation
(18) and the use of equation (3) instead of equation (18) results in an estimate error, which
leads to a normalized bias error oa

oa =
2[1− ( f/f0)2](k/k1)2

2−0·716( f/f0)2(l/h)2 − ( f/f0)2[1−0·316( f/f0)2(l/h)2]
−1 (20)

At frequencies far below f0, this equation can be simplifed to

oa =0·9f/f0 (21)

which shows that low frequencies the normalized bias error, oa , is linearly proportional
to the frequency.

At frequencies greater than f0, the decaying bending wave becomes a travelling bending
wave (the wavenumber k2n in equation (13) becomes an imaginary number) so that there
are two travelling bending waves propagating simultaneously along the beam in each
direction. If ak1 and ak2 represent the accelerations of the travelling bending waves with
wavenumbers k1 and k2 (k2 =−jk2n is a real number) respectively, the spectral densities
of the force and moment related power components, PBQ and PBM , can be expressed as

PBQ =Im {G(Q, n)}=
gB

g− rJv2 s
2

i=1

k2
i

v3 Im 6G01aki

1x
, a17−

rJg+mbB
v(g− rJv2)

Im 6G01a
1x

, a17
(22)
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PBM =Im 6G0M,
1n

1x17=
B
v3 s

2

i=1 0k2
i −

mbv
2

g 1 Im 6G01a
1x

, aki17 (23)

where a= ak1 + ak2 is the total bending wave acceleration. The total bending wave power
is the sum of the force and moment related components for both wavetypes. Using only
two accelerometers it is not possible to differentiate between ak1 and ak2 and so meaningful
measurements cannot be made.

The error due to the omission of shear and rotatory effects below the frequency
f0 can be seen by considering bending waves propagating on a masonry column
with a cross-section of 0·44×0·44 m. The frequency f0 for this column is 1596 Hz
which was calculated from equation (14). The normalized bias error, oa , is shown in
Figure 3 which shows both the exact estimate of the error using equation (20) and
the approximate estimate of the error from equation (21). It can be seen that the
approximate estimate from equation (21) is accurate at low frequencies where the
frequency ratio, f/f0 , is smaller than 0·2 and reasonable even at high frequencies
close to the frequency f0. Equation (3) overestimates the bending wave power and
the estimate error increases with increasing frequency. For this type of building
structure the error is important in all but the lowest frequencies and therefore
equation (18) rather than equation (3) should be used to calculate bending wave power
flow.

Figure 3 also shows the negative normalized bias error (−(k− k1)/k1) of the
bending wavenumber for the masonry column. It can be seen that the error in the
power flow is much larger than the error in the wavenumber. A 10% error in the estimate
of powerflow occurs at about one octave below the frequency where there is a 10% error
in the wavenumber.

4. BIAS ERROR DUE TO THE PRESENCE OF LONGITUDINAL WAVES

In real structures other types of structural waves are usually present in addition to
bending waves. These can cause bias errors in the measurement of bending wave power.
Longitudinal waves travelling in a uniform beam will produce lateral displacements, as

Figure 3. Normalized bias error due to the omission of the effects of shear deformation and rotatory inertia.
Error in the estimate of bending wave power: ——, exact error calculated using equation (20); — - — -;
approximate error calculated by using equation (21), - - - - -, error in the estimatae of bending wavenumber.
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Figure 4. Cross-contraction associated with longitudinal waves in a uniform beam.

shown in Figure 4, because of the cross-contraction phenomenon [9]. For a rectangular
beam with a thickness h, the amplitude of the lateral acceleration âLZ resulting from the
presence of longitudinal waves is given by [9].

âLz =2(pmh/lL )âL (24)

where âL is the amplitude of the longitudinal wave acceleration, aL , and lL is the
longitudinal wavelength.

Since pm is approximately unity for most structural materials, the amplitude ratio of the
lateral acceleration aLz to the longitudinal wave acceleration aL is approximately equal to
the ratio of the thickness h to the longitudinal wavelength lL . For a constant longitudinal
wave acceleration, the higher the frequency the greater the lateral acceleration. When
longitudinal wavelengths are of the same order as, or shorter than, the thickness h,
equation (24) can no longer be valid as the lateral displacements on opposite surfaces of
the beam are no longer in phase over the cross-section and do not vary linearly with
distance from the neutral axis of the beam [9].

In practice, translational accelerometers also have a non-zero transverse sensitivity
which can also result in the accelerometers generating signals when they are excited by
inplane waves. When both bending and longitudinal waves propagate along a uniform
beam, the measured bending wave acceleration aBM consists of three components, the
bending wave acceleration a and the lateral acceleration aLz due to the cross-contraction
phenomenon and the contribution from the horizontal motions due to the non-zero
tranverse sensitivity of the accelerometer, and is given by

aBm = a+ aLz + a(aL + aR)= a+ aaR + a0aL (25)

where a0 = a2 pmh/lL ; a is the transverse sensitivity of the accelerometer; aR = d(1a/1x)
is the rotational acceleration associated with bending waves in the absence of longitudinal
waves. For the measurement performed using the biaxial accelerometer technique, the
rotational acceleration that is measured, aRm , will also include three components: the
bending rotation, the longitudinal wave acceleration and the contribution from the vertical
motions, and is given by

aRm = aR + aL + a(a+ aLz )= aR + aa+(1+ apmh/lL )aL

In practice, the transverse sensitivity of any accelerometer, a, is usually smaller than 0·05,
therefore, the quantity, apmh/lL , is much smaller than 1, the above equation can be
approximated to

aRm 1 aR + aa+ aL (26)
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Theoretically, the effects of longitudinal waves on either translational or rotational
acceleration of bending waves can be eliminated if two identical accelerometers (both
phases and amplitudes are well matched) are fixed on the same position but opposite sides
of the test structure [6]. Therefore, for the intensity measurements, the probe should consist
of four identical accelerometers and two signal sum/difference preamplifiers, as shown in
Figure 5. The phases among the accelerometers and between the signal sum/difference
preamplifiers must be well matched. If not, the effects of longitudinal waves cannot be
eliminated or reduced to a given extent, and the use of the four-accelerometer probes
shown in Figure 5 could result in a larger bias error than the use of the two-accelerometer
probes shown in Figure 1. However, it is difficult, in practice, to find four phase-matched
accelerometers, especially for high frequencies.

Also in practice, difficulties may arise for using the four-accelerometer probes, for
examples (1) only one side of the test structure can be accessed; (2) less than four identical
accelerometers or no/one signal sum/difference preamplifier may be available. The
two-accelerometer probes are easier and more convenient to implement than the
four-accelerometer probes. It is useful to estimate approximately the bias error before the
measurement and then to decide which kind of intensity probe should be employed.

If the biaxial accelerometer technique is employed, from equations (25) and (26) the
measured imaginary part of the cross spectrum can be expressed as

Im {G(aRm , aBm )}1 (1− a2) Im {G(aR, a)}+(1− aa0) Im {G(aL , a)}

+(a0 − a) Im {G(aR, aL )}

Since the rotational acceleration aR is usually smaller than translational acceleration a, and
the quantity =a0 − a == pmh/lL is less than 1, and the coherence between a and aL should
be equal to the coherence between aR and aL , the above equation can be further
approximated to

Im {G(aRm , aBm )}1 (1− a2) Im {G(aR, a)}+Im {G(aL , a)} (27)

According to equation (7), the normalized bias error oLa can be expressed as

oLa 1−a2 +
Im {G(aL , a)}
Im {G(aR, a)} =−a2 +Xg2 G(aL )

G(aR)
sin uLB

sin u12
(28)

where g2 is the coherence between the bending and longitudinal wave accelerations, a and
aL ; G(a) and G(aL ) are the autospectra of the bending and longitudinal wave accelerations;

Figure 5. Diagram of the four-accelerometer probes used in the measurement of bending wave power flow on
a uniform beam where longitudinal waves exist.
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u12 and uLB are the phases of the cross spectra, G(aR, a) and G(aL , a). The first term in the
above equation represents the normalized bias error, oa , solely due to the non-zero
transverse sensitivities of the biaxial accelerometer, the value of which is usually smaller
than 0·0025 and can be neglected. The second term is the normalized bias error oL solely
due to the presence of coherent longitudinal waves. If the bending and longitudinal waves
are incoherent, i.e., g2 =0, the normalized bias error oL is zero. This indicates that
incoherent longitudinal waves will not affect the measurement accuracy of the biaxial
accelerometer technique. If bending and longitudinal waves are coherent, the normalized
bias error oL is proportional to the ratio of the imaginary parts of two cross spectra and
could be greater than 1 if the coherence is high and the bending wave energy is smaller
than the longitudinal wave energy.

For the measurement of bending wave power flow using the two-accelerometer array
technique, the measured imaginary part of the cross spectrum can be expressed as

Im {G(aBm1, aBm2)}=Im {G(a1, a2)}+ a2
0 Im {G(aL1, aL2)}+ a0 Im {G(aL1, a2)

+G(a1, aL2)}+ a2 Im {G(aR
1 , aR

2 )}+ a Im {G(aR
1 , a2)

+G(a1, aR
2 )}+ aa0 Im {G(aL1, aR

2 )+G(aR
1 , aL2)}

=Im {G(a1, a2)}+ a2 Im {G(aR
1 , aR

2 )}+ a Im {G(aR
1 , a2)

+G(a1, aR
2 )}+ a2

0 Im {G(aL1, aL2)}+ a0 Im {G(aL1, a2 + aaR
2 )

+G(a1 + aaR
1 , aL2)}

1 Im{G(a1, a2)}+ a2 Im {G(aR
1 , aR

2 )}+ a Im {G(aR
1 , a2)

+G(a1, aR
2 )}+ a2

0 Im {G(aL1, aL2)}+ a0 Im {G(aL1, a2)

+G(a1, aL2)} (29)

For travelling bending waves given by equation (1), there are

Im {G(aR
1 , aR

2 )}=(dk)2 Im {G(a1, a2)}, Im {G(aR
1 , a2)}=−Im {G(a1, aR

2 )} (30, 31)

Combining equations (5)–(7) and (29)–(31) gives the normalized bias error oLa for the
measurement of bending wave power flow using the two-accelerometer array technique

oLa 1 (adk)2 + a2
0b

PL

PB
+ a0 Im{G(aL1, a2)+G(a1, aL2)}/Im{G(a1, a2)} (32)

For thin beams

b=(kh)2/6=3·6 h/lL (33)

For thick beams

b=(0·32Bk2
1 −1·32rJv2)/(g− rJv2)+ (h2/12)(k2

1 −mbv
2/g) (34)

When only bending waves exist, equation (32) gives the normalized bias error, oa , solely
due to the non-zero transverse sensitivities of the accelerometers

oa =(adk)2 (35)

Since the ratio of the accelerometer separation to the bending wavelength, d/l, should be
at least smaller than 0·2, oa is usually less than 0·004 which is negligible. When the
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transverse sensitivities of the accelerometers are zero, equation (32) gives the normalized
bias error, oL , solely due to the presence of longitudinal waves

oL 1 b0pmh
lL 1

2 PL

PB
2

pmh
lL

Im {G(aL1, a2)+G(a1, aL2)}
Im {G(a1, a2)}

(36)

which increases with the increases of the longitudinal to bending wave power ratio and
the coherence g2. If longitudinal waves are incoherent with bending waves (g2 =0), the
second term in the above equation is zero and the bias error is linearly proportional to
the longitudinal to bending wave power ratio PL /PB .

For thin beams, the bending wavelength to the beam thickness ratio, l/h, should be
larger than 6 [9], which leads to h/lL Q 0·05. Therefore, the following equation will hold

=oL =E 4·5×10−4b PL

PB b+0·05 b Im {G(aL1, a2)+G(a1, aL2)}
Im {G(a1, a2)} b (37)

where the first term is negligible unless the longitudinal wave power flow is very much
greater than the bending wave power flow. If bending and longitudinal waves are coherent,
the signs of the imaginary parts of the two cross spectra, G(aL1, a2) and G(a1, aL2), should
be opposite, and the normalized bias error is small as long as the longitudinal wave energy
is not much greater than the bending wave energy.

If the shear deformation and rotatory inertia are included, b should be calculated from
equation (34) rather than (33), it increases with increasing frequency and approaches to
2/3 at frequencies close to f0. The value of pmh/lL is smaller than 1/p (seeing equation (14)).
Therefore, the following equation will hold

=oL =E 2
30 =PL /PB =+(1/p) =Im {G(aL1, a2)+G(a1, aL2)}/Im {G(a1, a2)}= (38)

where the second term is zero or negligible if bending and longitudinal waves are
incoherent or coherent but the magnitudes of the imaginary parts of the cross spectra,
G(aL1, a2) and G(a1, aL2), is approximately equal. For the case where bending waves are
incoherent with longitudinal waves, oL is negligible unless the longitudinal wave power flow
is much larger than the bending wave power flow. For the case where bending and
longitudinal waves are highly coherent and the bending wave energy is smaller than the
longitudinal wave energy, oL could be large. In practice, the longitudinal wave energy
usually increase with increasing frequency. Therefore, the effect of coherent longitudinal
waves could become important at high frequencies.

5. BIAS ERROR DUE TO THE PRESENCE OF BENDING WAVES

The presence of bending waves also affects the measurement of longitudinal wave power
flow resulting in a bias error. When longitudinal and bending waves propagate in a uniform
beam, the measured longitudinal wave acceleration aLm will include three components: the
longitudinal wave acceleration aL , the bending rotation aR and the contribution from the
vertical motions due to the non-zero transverse sensitivity of the acelerometer, that is

aLm = aL + aR + a(a+ aLz )= a1aL + aa+ aR (39)

where a1 =12 apmh/lL . The bending rotation can be eliminated by using two identical
rotational accelerometers which are fixed on the same position but opposite sides of the
test structure [6]. The intensity probe should consist of four identical rotational
accelerometers and two signal sum/difference preamplifiers, as shown in Figure 6. In
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Figure 6. Diagram of the four-transducer probe used in the measurement of longitudinal wave power flow on
a uniform beam where bending waves exist.

practice, however, there could be difficulties, similar to those discussed in the above section,
to use or find the four-transducer probe.

If the two-transducer probe is used, the imaginary part of the measured cross-spectrum
can be expressed as

Im {G(aLm1, aLm2)}= a2
1 Im {G(aL1, aL2)}+ a2 Im {G(a1, a2)}+Im {G(aR

1 , aR
2 )}

+ a Im {G(a1, aR
2 )+G(aR

1 , a2)}+ a1 Im {G(ax1, aL2)+G(aL1, ax2)}

where ax1 = aR
1 + aa1 and ax2 = aR

2 + aa2 are the measured rotational accelerations in the
x direction due to the bending waves only. Combining the above equation and equations
(5)–(7), (30) and (31) gives the normalized bias error, oBa , for the measurement of
longitudinal wave power due to the presence of bending waves and the non-zero transverse
sensitivities of the transducers

oBa =2
2apmh

lL
+0apmh

lL 1
2

+
(kd)2 + a2

b

PB

PL
+ a1

Im {G(ax1, aL2)+G(aL1, ax2)}
Im {G(aL1, aL2)}

(40)

where b is given by equation (33) for thin beams or equation (34) for thick beams. If only
longitudinal wave exist, the above equation gives the normalized bias error, oa , solely due
to the non-zero transverse sensitivities of the transducers

oa =22apmh/lL +(apmh/lL )2 1 2 2ah/lL (41)

which is usually negligible. When the transverse sensitivities of the transducers are zero,
the normalized bias error, oB , solely due to the presence of bending waves is given by

oB =
(kd)2

b

PB

PL
+ a1

Im {G(ax1, aL2)+G(aL1, ax2)}
Im {G(aL1, aL2)}

1 (kd)2

b

PB

PL
+

Im {G(ax1, aL2)+G(aL1, ax2)}
Im {G(aL1, aL2)}

(42)

which shows that the bias error increases with the increase of the bending to longitudinal
wave power ratio and the coherence g2. If the phase of the sum of the cross spectra,
G(ax1, aL2) and G(aL1, ax2), is not negligible, the bias error increases with increasing the
bending to longitudinal wave energy ratio. If bending and longitudinal waves are highly
coherent, the second term in the above equation is greater than 1 when the bending wave
energy is greater than the longitudinal wave energy. If bending and longitudinal waves are
incoherent (g2 =0), the second term in the above equation is zero, oB is linearly
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proportional to the bending to longitudinal wave power ratio and for thin beams given
by

oB 1 6(d/h)2 PB /PL (43)

which is proportional to the quantity (d/h)2. The above equation shows that the bias error
oB is more sensitive to the increase of the distance to beam thickness ratio d/h than the
increase of the bending to longitudinal wave power ratio PB /PL . As the distance d cannot
be smaller than half the beam thickness, the bias error is usually large even if the power
ratio PB /PL is small. If the bending wave power is larger than the longitudinal wave power,
the normalized bias error is at least larger than 1·5, therefore, the longitudinal wave power
cannot be measured if the contribution from bending waves is not eliminated or reduced
to a certain extent. If the distance d is larger than the beam thickness h, a small bending
to longitudinal wave power ratio will result in a large bias error in the measurement of
longitudinal wave power flow.

6. CONCLUSIONS

This paper has individually examined three bias errors in the measurement of structural
wave power flow. Through the theoretical analysis the following conclusions can be drawn.

1. For a one-dimensional structure, there is a special frequency f0 above which the
decaying bending wave becomes a travelling bending wave and it is impossible to measure
the power flow using two-accelerometer techniques. At frequencies below the frequency
f0, the bending wave power can be measured using two-transducer techniques; however,
the estimate of bending wave power flow using the existing intensity theory, derived on
the basis of the classical Bernoulli–Euler wave model, will result in an approximate error
which increases with increasing frequency. At frequencies far below the frequency f0, the
shear deformation and rotatory inertia can be neglected, the approximate estimate error
for using the existing intensity theory is small and can be neglected. At frequencies close
to the frequency f0, the shear deformation and rotatory inertia become important, the
approximate estimate error is large. This error can be corrected during data processing.

2. For the measurement of bending and longitudinal wave powers using two-transducer
techniques, the non-zero transverse sensitivities of the transducers results in a negligible
bias error.

3. For the measurement of bending wave power flow using a biaxial accelerometer, the
presence of incoherent longitudinal waves results in no bias error. When bending and
longitudinal waves are coherent, the bias error increases with the increases of the
longitudinal to bending wave energy ratio and the coherence, and could be greater than
1 if the longitudinal wave energy is much greater than the bending wave energy, which
is the case at high frequencies.

4. For the measurement of bending wave power flow using the two-acelerometer array
technique, the bias error due to the presence of longitudinal waves increases with increases
in the longitudinal to bending wave power ratio and the coherence. If the coherence
between bending and longitudinal waves is low, the bias error is usually negligible as long
as the longitudinal wave power is not much greater than the bending wave power. If
bending and longitudinal waves are highly coherent, the bias error could be large,
especially for the case where the bending wave energy is smaller than the longitudinal wave
energy.

5. For the measurement of longitudinal wave power, the presence of bending waves
usually results in a large bias error even if bending waves are incoherent with longitudinal



-    71

waves. This bias error increases with the increases of the bending to longitudinal wave
power ratio, the distance to beam thickness ratio and the coherence. If the bending wave
power is greater than the longitudinal wave power, the normalized bias error is at least
larger than 1·5. If the distance is larger than the beam thickness, a small bending to
longitudinal wave power ratio will result in a large bias error. If the contribution from
bending waves cannot be eliminated or reduced to a certain extent, the longitudinal wave
power flow cannot be measured using the two-accelerometer array technique.
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