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STRUCTURAL DAMPING IN LAMINATED BEAMS
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Three closely related models for two-layered beams in which slip can occur at the
interface are described. In the first, beam layers are modelled under the assumptions of
Timoshenko beam theory. Along the interface, an adhesive layer of negligible thickness
bonds the surfaces so that a small amount of slip is possible. Friction is assumed to be
proportional to the rate of slip. The second is obtained from the first by letting the shear
stiffness of each beam tend to infinity. The third is obtained from the second by assuming
that the moment of inertia parameter is negligible. In the last case, an analog of the
Euler–Bernoulli beam is obtained which exhibits frequency proportional damping
characteristics. The three models are compared, both numerically and analytically, and
found to be in close agreement for low frequency motions. Optimal damping rates are
calculated for these low frequency motions.
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1. INTRODUCTION

In Hansen [1] a model for a two-layered plate in which slip can occur along the interface
is derived. There, it is assumed that an adhesive layer of negligible thickness and mass
bonds the two adjoining surfaces in such a way that the restoring force created by the
adhesive is proportional to the amount of slip. The plate layers are modelled under the
assumptions of Reissner–Mindlin plate theory, i.e., the straight filaments orthogonal to
each center sheet at equilibrium remain straight during deformation and the transverse
displacements are constant along each deformed filament. In the symmetric case, where
both plates are identical, a system of bending equations can be decoupled from a set that
describes the in-plane motions. These bending equations (see reference [1, equation (3.16)])
form a coupled hyperbolic system involving the transverse displacement, rotation angles
and slips (i.e., the slip in two independent directions). This plate model reduces to the
Reissner–Mindlin plate in the limit as the adhesive stiffness tends to infinity.

In this article we will be concerned with the beam analog, with strain-rate damping
included, of the above described plate model [1, equation (3.16)]. The equations for this
beam model in the absence of external forces are

rv̈+(G(c−wx ))x =0,

Ir (3s̈−c� )−G(c−wx )− (D(3sx −cx ))x =0,

Ir s̈+G(c−wx )+ 4
3gs+ 4

3bṡ−(Dsx )x =0, (1a–c)
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where ‘‘ ˙ ’’ denotes differentiation with respect to time, the subscripted x denotes
differentiation with respect to the longitudinal spatial variable, w denotes the transverse
displacement, c represents the rotation angle, s is proportional to the amount of ‘‘slip’’
along the interface and the parameters r, G, Ir , D, g, b are the density, shear stiffness,
mass moment of inertia, flexural rigidity, adhesive stiffness and adhesive damping
parameter, respectively (see section 2). The system (1) is an analog of the Timoshenko
beam model in the sense that equations (1a, b) reduce exactly to the Timoshenko beam
system if the slip s is assumed to be identically zero. The third equation describes the
dynamics of the slip. A derivation of the system (1) with external forces included is given
in section 2.

The authors’ main interest in this article is to compare the spectral characteristics of
system (1) with lower-order approximations for the case where the shear stiffness
parameter G is large and the moment of inertia parameter Ir is small compared to D.

By letting G:a in the system (1) one obtains an analog of the Rayleigh beam, also
involving an extra equation for the slip (see section 3). Then by setting Ir =0 in the latter
system one obtains the following:

rv̈−(Djx )xx =0, b(j� + v̇x )+ g(j+wx )−3(Djx)x − 3
4(Dwxx )x =0, (2a, b)

where j=3s−c is the effective rotation angle. The spectral properties of equations (2)
are analyzed in section 4.

To describe some of our results, first consider equations (2) in the undamped case, i.e.,
where b=0. If the adhesive stiffness g tends to infinity (effectively causing a no-slip
condition between the two layers), then equation (2b) suggests that j1−wx , so that
equation (2a) reduces to the Euler–Bernoulli (EB) beam equation rẅ+(Dwxx )xx =0. On
the other hand, if g tends to zero (so that the two layers effectively become delaminated)
then equation (2a) reduces to an EB beam with one fourth the stiffness of the case where
g:a. (This is the same as the sum of the stiffnesses of two EB beams of thickness
h/2.) For gq 0 one finds that equations (2) predict a behavior which is intermediate
between these two extremes, with high-frequency behavior approaching that of the case
g=0.

If bq 0, the spectrum associated with system (2) consists of a sequence of negative
real eigenvalues and a sequence of complex conjugate pairs which exhibit frequency
proportional damping, that is, the real parts of the eigenvalues are approximately
proportional to the imaginary parts. As the amount of damping in the adhesive layer is
increased (i.e., as b increases), after some critical amount, the damping rates of the modes
begin to decrease. Thus system (2) predicts an optimal level of damping, after which,
adding more damping is counterproductive. The value of b that gives the optimal damping
is given in proposition 4.1.

In section 5 the behavior of systems (1) and (2) is compared both analytically and
numerically. One finds that equations (1) and (2) are in very close agreement provided that
the frequency v is small compared to G/r and r/Ir . In the example, a steel two-layer
beam one meter long and one half centimeter thick is considered (see section 5).
The spectrum associated with the two models agrees to within about one percent for
the first twenty modes (up to about 15 KHz).

2. MODEL DESCRIPTION

The beam model we consider here coincides with a special case of the two-layer plate
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model [1, equation (3.16)] when the composite plate consists of two identical rectangular
plates of uniform thickness. Thus refer to reference [1] for a precise derivation of the model.
Here, are outlined only the main points needed to derive the beam analog of the plate
model in reference [1].

The laminated beam considered consists of two identical beams of uniform thickness
h/2, width r and length l (see Figure 1). Assume that at equilibrium the upper and lower
beams occupy the respective regions

Q+ = {(x, y, z)$ (0, l)× (−r/2, r/2)× (0, h/2)},

Q− = {(x, y, z)$ (0, l)× (−r/2, r/2)× (−h/2, 0)}.

2.1.  

Let (U1, U2, U3)(x, y, z) denote the displacement vector of the point which, when the
beam is in equilibrium, has co-ordinates (x, y, z). (Any time dependence in this notation
is suppressed). So that one may obtain a beam theory, all the displacements are assumed
to be independent of the y co-ordinate, and the deformations are zero in the y direction:

6Ui (x, y, z)=Ui (x, 0, z),
U2(x, y, z)0 0,

i=1, 3, [(x, y, z)$Q+ *Q−,
[(x, y, z)$Q+ *Q−.

(3)

Since this beam model allows slip to occur along the interface, there will usually be a
discontinuity in the displacement along the interface. Define u+ and u− by

u2
i (x)= lim

z:02
Ui (x, y, z), i=1, 3, [x $ (0, l).

Both the upper and lower beams will be modelled as Timoshenko beams which allow
lontigudinal motions (i.e., stretching motions). Thus in each beam layer, planar
cross-sections that at equilibrium are orthogonal to the centerlines of each beam are
assumed to remain planar, but may translate transversely or longitudinally and also may
rotate parallel to the y-axis. Furthermore, as is assumed in the Timoshenko theory, the
transverse displacements are assumed to be constant throughout the deformed
cross-sections.

Figure 1. A cross-section through the points A, B, C, D and parallel to the y–z plane deforms independently
in each layer into cross sections through A', B' in the lower layer and C', D' in the upper layer. The variables
c2, u2

1 and u2
3 are indicated. (No symmetries are assumed in this figure).
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Thus the displacements are of the form

U1(x, y, z)=6u+
1 (x)− zc+(x),

u−
1 (x)− zc−(x),

if (x, y, z)$Q+,
if (x, y, z)$Q−,

U3(x, y, z)=6u+
3 (x),

u−
3 (x),

if (x, y, z)$Q+,
if (x, y, z)$Q−,

(4)

where c+(x) (respectively, c−(x)) is the rotation angle, with positive orientation, through
which the cross-section of the upper (respectively, lower) beam has rotated relative to its
equilibrium position (x, ·, ·) (see Figure 1).

So that the beams do not delaminate (in the transverse direction) one assumes that the
transverse displacements of both beam layers are the same (and hence may be expressed
in terms of a single transverse displacement variable w):

w= u+
3 = u−

3 . (5)

Implicit in equation (5) is a ‘‘small slip’’ assumption, namely, for equation (5) to be valid
to linear order, the interfacial slip u+

1 − u−
1 should be small in comparison to h (see

Figure 1).
Since the two beams are identical, as a consequence of conservation of momentum, the

bending motions decouple from the longitudinal motions and possess the symmetry

U1(x, y, z)=−U1(x, y, −z), [(x, y, z)$Q+ *Q−. (6)

(The longitudinal motions satisfy U1(x, y, z)=U1(x, y, −z) and U3 0 0). Thus, for the
purpose of studying bending, equation (6) may be assumed a priori, and does not constitute
a kinematic restriction. As a consequence of equation (6)

u+
1 + u−

1 =0, c+ =c−.

Let one denote

s=(u+
1 − u−

1 )/2h, c=c+.

The dimensionless slip s is proportional to the interfacial slip u+
1 − u−

1 . Note that =s = should
be small in comparison to 1 for consistency with the assumption (5).

It follows from equations (5) and (6) that for (x, y, z)$Q+, equation (4) may be rewritten
as

U1(x, y, z)= s(x)h− zc(x), U3(x, y, z)=w(x). (7)

Thus the displacement is uniquely determined in terms of the transverse displacement
w, the dimensionless slip s and the average rotation angle c by equations (3), (5)–(7).

2.2.       

Since the mass of the adhesive layer is assumed to be negligible, the kinetic energy is
the sum of the kinetic energy of each beam:

K=
1
2 gQ+ *Q−

r(U� 2
1 +U� 2

2 +U� 2
3 ) dQ,
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where ‘‘ ˙ ’’= 1/1t and r= r(x)q 0 is the volume density. Using equations (3), (5)–(7), one
obtains

K=
hr
2 g

l

0

[r(ẇ)2 + Ir ((c� −3ṡ)2 +3ṡ2)] dx, (8)

where Ir = rh2/12.
The potential energy consists of the contribution from each beam and the adhesive. The

potential energy for the beams is given in terms of the stresses sij and strains eij by

Pb =
1
2 gQ+ *Q−

s
3

i, j=1

sijeij dQ.

Using equation (7) and small strain assumptions one obtains

e11 =
1U1

1x
= sxh− zcx , e31 = e13 =

1
2 01U1

1z
+

1U3

1x 1=
1
2

(wx −c).

(The other strains vanish due to equation (3) and the assumption that the transverse
displacements are constant throughout the thickness). If the beam layers are homogeneous
and transversely isotropic then

s11 =E/(1− n2)e11, s31 = s13 =2Ge13,

where E denotes the in-plane Young’s modulus, n represents the in-plane Poisson’s ratio,
and G represents the transverse shear modulus. In the isotropic case, G=E/2(1+ n). We
may allow E, G, n to be x-dependent as long as they are assumed to be strictly positive
and bounded with nQ n̄Q 1/2.

Due to the symmetries in equations (5), (6) the strain energy of the upper and lower
beams are the same, and thus from equation (7) we obtain

Pb =gQ+ $ E
1− n2 (sxh− zcx )2 +G(c−wx )2% dz dy dx

=
rh
2 g

l

0

{D[(cx −3sx )2 +3s2
x ]+G(c−wx )2} dx, (9)

where D=Eh2/12(1− n2) is the modulus of flexual rigidity (for a Timoshenko beam of
thickness h, Young’s modulus E and Poisson’s ratio n).

2.3.     

It is assumed that the thickness of the adhesive bonding the two plate layers is small
enough so that the contribution of its mass to the kinetic energy of the entire beam may
be ignored (or included in the beam layers).

To derive an expression for the potential energy carried by the adhesive, one initially
assumes that the adhesive layer may be modelled as a Timoshenko beam of thickness d
that is perfectly bonded to the beam layers (at z=2d/2). Assume that within this adhesive
layer the following stress-strain law holds:

s11 =Eae11, s13 =2Gae13. (10)
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By equation (6), the displacements within this thin layer are of the form

U1(x, y, z)= zu(x), U3(x, y, z)=w(x),

where u is the rotation of a beam element. Since the total slip between the beam surfaces
is 2sh, for perfect bonding of the adhesive layer to the beam layers (at z=2d/2) one has

u=2sh/d.

Therefore from small strain assumptions one obtains

e11 =
2sxhz

d
, e13 = e31 =

1
2 02sh

d
+wx1.

The potential energy Pa of the adhesive layer is given by

Pa =
1
2 g

l

0 g
r/2

−r/2 g
d/2

−d/2

s
i, j=1,2,3

sijeij dz dy dx.

Performing the required integrations one obtains

Pa =
r
2 g

l

0

dEah2s2
x

3
+ dGa 02sh

d
+wx1

2

dx.

Now one uses the assumption that the adhesive layer is thin and compliant: one passes
to the limit as d:0, Ga:0 with

gMGah/d fixed. (11)

In the limit one obtains

Pa:
rh
2 g

l

0

4gs2 dx. (12)

The limiting expression (12) for the potential energy of the adhesive layer can be viewed
most simply as the potential energy obtained under the assumption that the adhesive
supplies a restoring force proportion to the interfacial slip (i.e., Hooke’s Law).

2.4. 

To fix ideas, assume that the beam is clamped at the end x=0, subject to the volume
distribution of body forces ( f	 1(x, z), 0, f	 3(x, z)), and at the end x= l is subject to the (area)
distribution of forces (g̃1(z), 0, g̃3(z)). (The forces are assumed to be independent of y, with
no forces acting in the y direction). The resultant force and moment density functions are
defined as (for i=1, 3)

fi (x)= (1/rh) gA

f	 i dS, gi =(1/rh) gA

g̃i dS, Mi (x)= (1/rh) gA

f	 iz dS,

mi =(1/rh) gA

g̃iz dS, Pi (x)= (1/rh) gA

f	 i sgn (z) dS, pi =(1/rh) gA

g̃i sgn (z) dS,

where A=(−r/2, r/2)× (−h/2, h/2) and sgn (z)= =z =/z denotes the sign function. The
forces and moments f1, M3, P3, g1, m1 and p3 can produce no work due to the kinematic
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assumptions in equations (4), (5) and the decoupling in equation (6). Thus, for consistency
with these constraints one should assume that

f1 =M3 =P3 =0, g1 =m3 = p3 =0.

The work done by the remaining forces and moments on the plate is

W=gQ+ *Q−

( f	 1U1 + f	 3U3) dQ+gx= l

(g̃1U1 + g̃3U3) dy dz

= rh g
l

0

(hsP1 −cM1 +wf3) dx+ rh[hs(x)p1 −c(x)m1 +w(x)g3] =x= l .

2.5.   

The Lagrangian L on the interval (0, T) is given by

L=g
T

0

[K(t)+W(t)−Pb (t)−Pa (t)] dt.

By the principle of virtual work, the equations of motion can be found by setting the
variation of the Lagrangian to zero, where the variation is taken with respect to all
kinematically admissible motions.

If one defines the effective rotation angle j by

j=3s−c,

one obtains (see reference [2] for a similar calculation)

rẅ +(G8)x = f3,

Irj� −G8−(Djx )x =M1,

Ir s̈+G8+ 4
3gs−(Dsx )x = 1

3hP1 −M1, (13a–c)

where

8=3s− j−wx , 0Q xQ l, tq 0.

The cantilever boundary conditions (obtained from the principle of virtual work) are

w(0)= j(0)= s(0)=0, G(l)(3s(l)− j(l)−wx (l))= g3,

D(l)jx (l)=m1, D(l)sx (l)= 1
3hp1 −m1, tq 0. (14a–d)

Initial conditions may be given as

(j, s, w) =t=0 = (j0, s0, w0), (j� , ṡ, ẇ) =t=0 = (j1, s1, w1), 0Q xQ l. (15)

Equations (13)–(15) are the beam analogs of the plate system [1, equations (3.16)–(3.18)].
A couple of comments are in order.

(1) If g:a (so that the adhesive becomes infinitely stiff) one expects that s:0 (in some
sense). Putting s=0 in equations (13a) and (13b) results in the Timoshenko beam system.
A precise statement of the convergence of solutions of the system (13)–(15) to those of the
Timoshenko system is given in reference [1].

(2) If g=0 there is no coupling between the two beams other than applied forces. Thus
(with appropriate initial conditions, boundary conditions and external forces) equations
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(13)–(15) reduce to a system describing two uncoupled Timoshenko beams of thickness
h/2. (Again, see reference [1] for a more detailed discussion).

2.6.     

We will also be concerned with the effect of damping in the adhesive layer.
If the adhesive is modelled as a linear viscoelastic material then one replaces the

stress-strain law in equation (10) by an appropriate viscoelastic constitutive law. Since the
influence of direct stresses in the adhesive layer is not present in the limiting potential
energy (12), one only needs to consider the stress-strain law for the transverse shear within
the adhesive layer. The stress-strain law for the transverse shear (10) is modified to

s13 =2 g
t

0

G	 a (t− t)ė13(t), (16)

where G	 a is the relaxation modulus of shear. Note that equations (16) and (10) are the same
if G	 a is constant. (It is assumed that the material is relaxed at time 0 in equation (16).)

According to the viscoelastic correspondence principle the equations of motion are
modified in the same way that equation (10) is modified to equation (16) (see reference
[2], for example). Therefore the equations of motion (13), (14) are modified by the
substitution

gs(x, t):g
t

0

g̃(t− t)s(x, t) dt, (17)

where the relaxation function g̃(t) is defined in terms of the relaxation function G	 a by
equation (11) (with g and Ga replaced by g̃ and G	 a ).

To simplify the present analysis it will be assumed for this article that g̃ may be
approximated by a linear combination of a constant function and an impulse at the origin:

g̃(t)= bd(t)+ g.

This corresponds to a constitutive law of the form

s13 =2(Gae13 +Ha ė13), (18)

where Ga and g are related by equation (11) and Ha is similarly related to b. The damping
obtained from equation (18) is referred to as strain-rate damping or Kelvin–Voigt damping
and states the adhesive supplies a restoring force proportional to the rate of strain. In the
limit as the thickness d of the adhesive layer tends to zero, b can be viewed as a coefficient
of sliding friction for the interface between the beam layers.

Applying the correspondence principle one finds that the equations of motion (13) are
modified to

rẅ+(G8)x = f3, Irj� −G8−(Djx )x=M1,

Irs̈+G8+ 4
3gs+ 4

3bṡ−(Dsx )x = 1
3hP1 −M1, (19a–c)

where

8=3s− j−wx , 0Q xQ l, tq 0.

The boundary conditions (14) and initial conditions (15) are unchanged. Note that the
system (19) is the same as equation (1) in the absence of external forces.
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It should be mentioned that if one is only interested in the forced response of the beam
to harmonic inputs, the widely-used complex modulus approach (see reference [3] for a
survey of this approach and many references) may be applied to model the viscoelastic
adhesive layer. In this case equations (13) are modified by simply allowing g to be complex.
However this approach ignores any transient behavior and consequently cannot be used
to study free motions or solutions of initial value problems.

3. LOW FREQUENCY APPROXIMATIONS

In this section two approximations of the system (19) which are valid for stiff and
moderately thin beams are discussed. The first is obtained by letting the shear stiffness G
tend to infinity in equation (19), while the second is obtained from the first by letting the
moment of inertia parameter Ir:0.

3.1.    :a
If the shear stiffness G of the beam layers is large enough, the shear motions will usually

be minimal and consequently a reasonable beam model should be obtained without
allowing shear deformation.

In this subsection such a beam model is obtained as a limit as G:a of the original
(shear deformable) model (19). For now, we proceed in a formal way. Justification will
be provided in the next subsection.

First eliminating the term (G8) from two of the equations (19) and taking appropriate
linear combinations of these equations and their derivatives, one obtains

rẅ+ 1
4(Irj� )x − 3

4(Ir s̈)x −(gs)x −(bṡ)x − 1
4(Djx )xx + 3

4(Dsx )xx=f3 + (M1 − hP1/4)x ,

Ir (j� + s̈)+ 4
3gs+ 4

3bṡ−(D(jx + sx))x = 1
3hP1,

Ir (j� −3s̈)−4G8−4gs−4bṡ−(D(jx −3sx ))x =4M1 − hP1, (20a–c)

where

8=3s− j−wx , 0Q xQ l, tq 0.

Likewise, taking linear combinations of the boundary conditions in equation (14) and
using equation (20c) at x= l (to eliminate G(l)8(l) from the boundary condition (14b))
leads to

j(0)=w(0)=wx (0)=0,

[1
4Ir (j� −3s̈)− gs− bṡ− 1

4(D(jx −3sx ))x ]x= l = g3 +M1(l)− (h/4)P1(l)

D(l)jx (l)=m1, D(l)(jx (l)−3sx (l))=4m1 − hp1, tq 0. (21a–d)

As G:a, by equation (9), finite energy solutions can exist only if the shear 8 tends
to zero. Setting 8=0 in equations (20), (21) gives

rẅ− 1
4(Irẅx )x −(gs)x −(bṡ)x + 1

4(Dwxx )xx = f3 + (M1 − (h/4)P1)x ,

Ir (4j� + ẅx )+4gs+4bṡ−(D(4jx +wxx ))x = hP1, (22a, b)

where

s= 1
3(j+wx ), 0Q xQ l, tq 0,
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with boundary conditions

j(0)=w(0)=wx (0)=0,

−1
4Ir (l)ẅx (l)− g(l)s(l)− b(l)ṡ(l)+ 1

4(Dwxx )x (l)= g3 +M1(l)− (h/4)P1(l),

D(l)jx (l)=m1, D(l)wxx (l)= hp1 −4m1, tq 0. (23a–d)

Initial conditions for equations (22), (23) take the form

(j, w) =t=0 = (j0, w0), (j� , ẇ) =t=0 = (j1, w1). (24a, b)

The system (22)–(24) is (at least formally) the limiting form of the equations satisfied
by (j, w) as G:a. The convergence of the corresponding solutions is discussed in the next
subsection.

Remark 3.1. The additional force terms in equations (22a) and (23b) (besides f3, g3) are
due to moments applied to the individual layers. If the resultant applied moment in each
beam vanishes (this does not rule out an overall applied moment) then f	 1 satisfies

g
0

−h/2 g
r/2

−r/2

(z+ h/4) f	 1 dy dz=g
h/2

0 g
r/2

−r/2

(z− h/4) f	 1 dy dx=0, 0Q xQ l.

A similar condition also applies to the surface force g̃1. Under these conditions the
moments M1 and P1 are no longer independent and are related by hP1 =4M1, hp1 =4m1,
and consequently the additional forcing terms appearing in equations (22a) and (23b)
vanish.

Remark 3.2. Equation (22) is closely related to the Rayleigh beam:

rẅ −(Irẅx )x +(Dwxx )xx =0. (25)

If g:a or b:a (so that the glue becomes infinitely stiff or viscous) it can be shown [1]
that s:0 (weakly). Putting s=0 in equation (20c) and combining this with equation (20a)
gives equation (25). On the other hand if g and b are zero then equation (22a) reduces
to two uncoupled Rayleigh beams of thickness h/2 (as opposed to thickness h, as in
equation (25)).

3.2.     :a
The previous equations (22)–(24) are formally the limiting system as G:a of the system

(14), (15) and (19). However, this does not necessarily imply any resemblance between
corresponding solutions due to the presence of a boundary layer as G:a. If equations
(22)–(24) are meant to approximate a composite beam in which the shear moduli of the
beam layers are large, then one would hope that solutions of equations (14), (15) and (19)
become close (in some sense) to solutions of equations (22)–(24) as G:a.

In this subsection, the sense in which solutions of equations (14), (15) and (19) converge
to solutions of the limiting system (22)–(24) are described in a precise way. In order to
do so, a few mathematical definitions and theorems one needed, which will be used solely
in this subsection.

For simplicity the discussion is limited to the unforced problem with constant
coefficients. (Similar results also hold for the forced problem with varying coefficients, but
are more complicated to describe).

One first needs to describe the spaces of existence and uniqueness of finite energy
solutions for the original system (14), (15) and (19) and the limiting system (22)–(24).
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Let L2(0, l) denote the set of all square-integrable functions on the interval, (0, l) and
denote Hn(0, l)= {8: 8, 8', . . . , 8(n)$L2(0, l)}. In the case of the cantilever boundary
conditions (14) one lets

H1

*
= {8: 8 $H1(0, l), 8(0)=0}

and defines the spaces

V=(H1

*
)3, H=(L2(0, l))3.

Using [1, Theorem 4.1.], one can prove the following result.
Theorem 3.1. Given any (j0, s0, w0)$V and any (j1, s1, w1)$H there is a uniquely defined

solution (j, s, w) to the unforced problem (14), (15), (19) for which

(j, s, w)$C([0, a); V)+C1([0, a); H). (26)

Equation (26) states that the position variables vary continuously in time in the space
V while the velocity variables vary continuously in time in the space H. Since these spaces
correspond to finite potential and kinetic energy, V×H is referred to as the finite energy
space for equations (14), (15), (19).

Similar results are valid for the non-homogeneous problem provided the applied forces
in equations (15) and (19) satisfy standard regularity conditions; see reference [2].

Now define H2

*
= {8 $H2(0, l): 8(0)=8x (0)=0} and denote

W=H1

*
×H2

*
, V=L2(0, l)×H1

*
.

The space W×V is the finite energy space for equations (22)–(24). More precisely, one
can prove (similar to reference [1, Theorem 5.3.]) the following result:

Theorem 3.2. For the unforced problem (22)–(24), given any (j0, w0)$W and any
(j1, w1)$V there is a unique solution (j, w) to equations (22)–(24) for which

(j, w)$C([0, a), W)+C1([0, a), V).

Now consider a family of solutions (j(G), s(G), w(G)) to equations (14), (15), (19)
corresponding to shear modulus G and a fixed set of initial data (j0, s0, w0, j1, s1, w1) of
finite energy. By Theorem 3.1, there is a uniquely defined solution for every G. The plan
is to show that (j(G), s(G), w(G)) converges weakly to a limit (j(a), s(a), w(a)) and
furthermore that (j(a), s(a), w(a)) is a solution of equations (22)–(24).

Since this program has been carried out for the analogous plate system in reference [1],
only the main points are described here.

In order that the initial data have finite energy as G:a one needs to impose that w0$H2

*
and w1$H1

*
and furthermore that within each beam initially there is no shear, i.e.,

3s0 = j0 +w0
x , 3s1 = j1 +w1

x . (27)

It follows from the fact that the unforced problem is dissipative that the energy E(t)
remains bounded for all t in [0, T] and for all G. It thus follows from equation (9) that
the shear 8 must tend to zero uniformly in t as G:a. Furthermore, since the initial energy
is independent of G (since equation (27) is imposed) one has (again, using that the energy
is dissipative) that the V×H norms of the solutions are uniformly bounded independent
of t and G. This implies the existence of a weak limit point as G:a. It is then possible
to show that this limit point is unique and is a solution of the limiting system (22)–(24).

More precisely, from reference [1] one has the following result.
Theorem 3.3. Let (j0, w0), (j1, w1) be given in W×V and moreover assume that s0 and
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s1 satisfy equation (27). Then for any T q 0 the solution (j(G), s(G), w(G)) to the unforced
problem (14), (15), (19) tends to (j, s, w) as G:a in the sense that

6(j(G), s(G), w(G)):(j, s, w)
(j� (G), ṡ(G), ẇ(G)):(j� , ṡ, ẇ)

in La(0, T, V) weak-star,
in La(0, T, H) weak-star,

where (j, w) is the unique solution of equations (22)–(24) (with no external forces) and
3s= j+wx .

The weak convergence in Theorem 3.3. is probably the best that can be expected since
for each Gq 0 ‘‘shear modes’’ will be present, and as the shear stiffness increases, these
oscillations increase in frequency, but may not necessarily go to zero pointwise. In the
limiting system these oscillations are eliminated through ‘‘averaging effects’’; i.e., in much
the same way that sin (Kx):0 (weakly) as K:a.

3.3. LIMIT AS Ir:0
For the moment consider the Rayleigh beam (25). If Ir /r is very small then the EB beam

obtained by setting Ir equal to 0 will provide a close approximation to equation (25) for
the low frequency range of the spectrum. Of course this is not true for the higher
frequencies since the principal symbols associated with equation (25) and the EB beam are
different. In the same way, the system obtained by setting Ir =0 in equations (22)–(24)
will also be seen to provide a close approximation to equations (22)–(24) for the low
frequencies.

Putting Ir =0 in equations (22)–(24) gives

rẅ −(gs)x −(bṡ)x + 1
4(Dwxx )xx = f3 + (M1 − (h/4)P1)x ,

bṡ+ gs−(Djx + 1
4Dwxx )x =(h/4)P1, (28a, b)

where

3s= j+wx , 0Q xQ l, tq 0,

with boundary conditions

j(0)=w(0)=wx (0)=0,

−(g(l)/3)(j(l)+wx (l))− (b(l)/3)(j� (l)+ ẇx(l))+1
4(Dwxx )x (l)= g3 +M1(l)− (h/4)P1(l),

D(l)jx (l)=m1, D(l)wxx (l)= hp1 −4m1, tq 0. (29a–d)

The initial conditions may be specified as

w =t=0 =w0, ẇ =t=0 =w1, j =t=0 = j0. (30)

If b=0 it is necessary to specify the compatibility condition

(g/3)(j0 +w0)− [D(j0
x + 1

4w
0
xx )]x =M1 =t=0. (31)

A thorough investigation of the existence and uniqueness properties of equations
(28)–(30) is beyond the scope of the present article. However, in the next section the
spectrum of equations (28)–(30) in the case of constant coeficients and simply supported
boundary conditions will be examined. For that case a unique solution is well defined
through separation of variables.

The system (28), (29) can often be written in a simpler form. In particular, remark 3.1.
concerning the terms (M1 − (h/4)P1)x in equation (28a) and similar terms in equations
(29b) and (29d) still applies.
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In the absence of all external forces equation (28) can be rewritten as

rẅ−(Djx )xx =0,

(b/3)(j� + ẇx )+ (g/3)(j+wx )− (D(jx + 1
4wxx))x =0, 0Q xQ l, tq 0, (32a, b)

which is the same as equation (2). Thus, as mentioned in the introduction, equation (28)
is closely related to the EB beam. This relationship is described in detail in the next section.

Other boundary conditions besides equation (29) are easily deduced from equation (29).
For example, in the simply supported case there are no applied moments at the ends and
the ends are fixed. If there are no applied moments on the interior then the simply
supported boundary conditions take the form

w(i)=wxx (i)= jx (i)=0, i=0, l, tq 0, (33)

Remark 3.3. In the constant coefficient case (32) (or (28)) is also closely related to the
sixth order beam model of DiTaranto [4] and Mead and Markus [5]. (These are both the
same model; see reference [6].) If one begins with the three-layer model in reference [6],
in the symmetric case (with the outer layers identical) and a center layer of thickness d
and shear modulus K, then passes to the limit as d:0, K:0 with K/d fixed, one obtains
a sixth order equation which is, under certain conditions, equivalent to equation (32). This
only applies to the constant coefficient case with special boundary conditions and initial
conditions that admit sinusoidal solutions.

4. SPECTRAL ANALYSIS

In this section the spectral characteristics of equations (32), (33) in the case of constant
coefficients are analyzed. In this case, the eigenfunctions associated with equations (32),
(33) are purely sinusoidal. Thus, to analyze the spectrum one assumes solutions to
equations (32), (33) of the form

w=esk t sin (akx), j=B esk t cos (akx),

where ak = kp/l. Then the boundary conditions (33) are satisfied and equation (32) holds
provided

rs2
k −BDa3

k =0, (bsk + g)(B+ ak )+3Da2
k (B+ ak /4)=0. (34a, b)

Solving for B in equation (34a) and substituting this into equation (34b) gives

brs3
k +(3Da2

k + g)rs2
k + bDa4

ksk +Da4
k (g+3Da2

k /4)=0. (35)

4.1.   b=0
When b=0 there are two roots sk = sk and sk = s̄k to equation (35), where

sk =izDa4
k(g+3Da2

k /4)/r(g+3Da2
k ). (36)

The flexural wave speeds are defined by nk = sk /(iak ). If g:a one sees from equation
(36) that nk:akzD/r, the same as in the EB beam rẅ +Dwxxxx =0. If g:0 the wave
speeds tend to half this value, the same as an EB beam with stiffness D/4. For fixed gq 0
the wave speeds are between these two extremes, asymptotically approaching the values
of the case g=0 as the frequency increases. Similar behavior of flexural wave speeds has
been seen in sandwich plate theories [6]. Furthermore, the decrease in flexural wave speeds
in comparison to that predicted by the EB theory for composite materials is also supported
by experiments [7].
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4.2.   b$ 0, g=0
When bq 0, g=0, letting vk =−a2

k /sk , equation (35) becomes

(3D2/4)v3
k −Dbv2

k +3Drvk − br =0, (37)

or, equivalently F(vk )=3D/b, where

F(v)c((D/r)v2 +1)/v((D/4r)v2 +1).

By noting that F is an odd function with the properties: F(v):+a as v:0+, F(v):0 as
v:+a, F is decreasing on (0, a), it follows that equation (37) has only one real root
v= p which satisfies

b/3DQ pQ (4/3)/(b/D) (38)

and a pair of complex conjugate roots, c, c̄. By factoring out p one finds that

=c =2 =4br/3pD2, zr/DQ Im cQ 2zr/D, Re c= 1
2(4b/3D)− p). (39)

Furthermore,

p/b:1/3D, Im c:2zr/D, Re c:0 as b:0 (40)

p/b:4/3D, Im c:zr/D, Re c:0 as b:a. (41)

One thus finds that sk =−a2
k /vk , (k=1, 2, . . .), and since the roots of equation (37) consist

of c, c̄ and p (independent of k), the eigenvalues associated with equations (32), (33) for
the case g=0 consist of {lk (b)}= {vk (b)}*{sk (b)}*{s̄k (b)},
where

vk (b)=−k2p2/l2p(b), sk (b)=−k2p2/l2c(b), k=1, 2, . . . , (42, 43)

where p(b) and c(b) satisfy equations (37)–(41).
There are several interesting things to note.
(1) For fixed bq 0 the branch {sk (b)} tends to a (as k:a) along a ray (from the

origin) in the left half of the complex plane. Thus the real and imaginary parts of sk (b)
are proportional, i.e., the damping is frequency proportional (see Figure 2). Previously
known frequency proportional damping models include the square root model [8] and the
spatial hysteresis model [9]. This type of damping is in agreement with experimental
measurement in composite beams [7].

(2) The branch of eigenvalues {vk (b)} is due to the parabolic component in equation
(32), (33). As b:0, each of these eigenvalues tends to a along the negative real axis, while

Figure 2. The three branches of eigenvalues for the model (32), (33) with g=0 (solutions of equation (35)).
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as b:a they tend toward the origin. (Again, see Figure 2). This type of pattern, where
there is a branch of negative real eigenvalues along with the vibrational eigenvalues is
typical of thermoelastic systems as well as some viscoelastic beam models.

(3) By equations (40), (41), c(b) tends to the imaginary axis in both extremes: as b:0
and as b:a. Thus equation (43) indicates that all the eigenvalues tend to the imaginary
axis as b:0 and also as b:a. Thus the model (32), (33) suggests that there is an optimal
level of damping achievable and beyond that point, adding more damping to the adhesive
layer is counterproductive. This phenomenon has long been known to occur in composite
beams involving damping layers [10]. Figure 3 illustrates the trajectories of the eigenvalues
sk (b). The value of b which gives the optimal damping is given in proposition 4.1.

Figure 2 shows the first 50 eigenvalues of equations (32), (33) for the case g=0, i.e.,
the roots of equation (35) for k=1, 2, . . . , 50. The parameters used are (all in MKS units)
r=2000, D=56 250, l=1, b=22 500. The value of D was obtained by using
E=2·4×1010 (a typical value for steel), h=0·005 and n=1/3. The value of b was picked
to give optimal damping (see proposition 4.1.). The following result concerning the
problem of optimal damping of equations (32), (33) can be proved for the case g=0.

Proposition 4.1. Let sk = sk (b), k=1, 2, . . . be the eigenvalues as defined by equation
(43). Then arg sk is independent of k and

max
0E bQa

arg sk (b)=2p/3. (44)

Furthermore, b=3zDr/2 is the unique value of b for which arg dk (b)=2p/3.
Proof. One knows by equation (43) that the argument of the eigenvalues

sk , k=1, 2, . . . are all the same and satisfy

arg sk =−arg (−c). (45)

Note also that the values of c(b), 0E bQa, together with the segment from izr/D
to 2izr/D form a continuous closed curve S in the closed right-half complex plane.
Consider the points of intersection (if any) of S with the ray Rc{r eip/3: 0E rQa}. If
v= r eip/3$S+R then v satisfies equation (37), i.e.,

−3D2r3/4−Dbr2 ei2p/3 +3Drr eip/3 − rb=0,

Figure 3. Trajectories of sk (b) for 0E bQa, 1E kE 10, g=0 (equation (35)); points corresponding to the
optimal damping b=3zDr/2 are denoted by asterisks *.
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which implies that Im (Dbr2 ei2p/3)= Im (3Drr eip/3) and therefore r=3r/b. Plugging
v=(3r/b) eip/3 into equation (37) results in (9Dr/(2b)− b)2 =0 which implies b= b* =
3zDr/2. Hence the ray R intersects the curve S only once at the point c= c*(b) =
(3r/b*) eip/3 =z2r/D eip/3. Since S encloses a bounded region of the complex plane,
uniqueness of this intersection implies optimality; i.e., min0E bQa arg c(b)=arg
c(b*)= p/3. Thus equation (44) follows from equation (45). q

Figure 3 shows the trajectories of the eigenvalues sk (b), 1E kE 10, for 0E bQa. As
b goes from zero to infinity the corresponding frequencies of each sk doubles. The values
of r, D and l are the same as those used in Figure 2.

4.3.   gq 0, bq 0.
Consider the case bq 0, gq 0. From Rouché’s Theorem applied to the polynomial in

equation (35) one can deduce the following: If sk (g, b), s̄k (g, b), vk (g, b) denote the roots
of the polynomial in equation (35), then

=sk (0, b)− sk (g, b) =/=sk (0, b) =:0, as k:a,

=vk (0, b)−vk (g, b) =/=vk (0, b) =:0, as k:a,

that is, the stiffness of the adhesive does not significantly affect the position of the high
frequency eigenvalues. It follows that all the conclusions reached for the case g=0 also
hold (asymptotically) for the case gq 0.

Figure 4 shows a comparison of the eigenvalues for the cases g=0 (same as in Figure 2)
and the case g=2·0×106. This value of g was picked using equations (11) with a typical
value for a Young’s modulus of a glue. Here l=10 was used since with l=1 the difference
between the two branches was insignificant.

5. COMPARISON WITH THE GENERAL CASE Ir q 0, 0QGQa

In this section the spectrum of (19) is compared with the spectrum of (32) both
analytically and numerically.

Figure 4. Comparison of the first 30 eigenvalues for the case g=0 (· · ·) and g=2×106 (+ + +) in the
model (32), (33).
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For the general unforced problem with simply supported boundary conditions and g,
D constant, system (19) takes the form

rẅ +G8x =0, Irj� −G8−Djxx =0, Ir s̈+G8+ 4
3gs+ 4

3bṡ−Dsxx =0

8=3s− j−wx , 0Q xQ l, tq 0. (46a–d)

The simply supported boundary conditions take the form

w(i)= jx (i)= sx (i)=0, i=0, l. (47)

By letting w=esk t sin (akx), j=B cos (akx) esk t and s=C cos (akx) esk t, where ak = kp/l,
one obtains 8=(3C−B−(kp/l)) cos ((kp=l) x) esk t and equations (46a–c) yield

rs2
k +G(kp/l)(kp/l+B−3C)=0,

IrBs2
k −G(3C−B− kp/l)+DBk2p2/l2 =0,

IrCs2
k +G(3C−B− kp/l)+ 4

3gC+ 4
3bCsk +DCk2p2/l2 =0. (48a–c)

From equation (48a, b) one obtains

B=
rs2

k

ak (Irs2
k +Da2

k )
, C=

ak

3
+

rs2
k

3ak 0 1
Irs2

k +Da2
k
+

1
G1.

Putting these values of B and C into equation (48c) results in

s
6

i=0

Cisi
k =0, (49)

where the coefficients Ci , i=1, . . . , 6 are given by

C6 =3rI2
r /4G, C5 = brIr /G,

C4 = Ir [r(3+ g/G)+ 3
4a

2
k (Ir +2rD/G)], C3 = b(r+ Ira

2
k + rDa2

k /G),

C2 = [r(g+3Da2
k )+ Ir (ga2

k + 3
2Da4

k )+ (rDa2
k /G)(g+ 3

4Da2
k )]

C1 =Dba4
k , C0 = a4

kD(g+ 3
4Da2

k ). (50)

Note that formally setting Ir =0 and 1/G=0 in equations (49)–(50) results in precisely
equation (35).

Since equation (49) is sixth order (for each k), there are three additional roots compared
to the third degree polynomial in equation (35). These are due to the presence of rotational
modes of vibration that are not present in the simplified model (32), (33). However, under
the assumption that G is very large and Ir is very small, the size of the eigenvalues
corresponding to these rotational modes are quite large. In section 5.1. it is shown that
the low frequency eigenvalues associated with equations (46), (47) are closely
approximated by corresponding eigenvalues associated with (32), (33).

Figure 5 shows the first 300 eigenvalues of equations (46), (47). Here Ir =0·004166,
G=7·5×109 and g=2×106 are used. All the other parameters remain the same as those
used in Figure 2. These values are consistent with those used in Figure 2 and
G= kE/2(1+ n), where k denotes a shear correction coefficient that is taken to be 5/6.
Note that the first of each of these ‘‘rotational’’ eigenvalues (marked ‘‘k=1’’, but away
from the origin) are of the order of the 300th eigenvalue corresponding to modes that are
present in the model (32), (33).
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5.1.     (46), (47)  r:0, :a
Suppose that Ir = eI
 r , G−1 = eG
 −1, where e is a small parameter and I
 r , G
 , g, b, r, D

are all O(1), that is, much larger than e, but much smaller than 1/e (some renormalization
may be required for this hypothesis to apply).

Let Qk (s) denote the polynomial in equation (49) and let Pk (s) denote the polynomial
in equation (35) (both with sk replaced by s). Let G(z, R) denote the circle of radius R about
the complex number z.

Proposition 5.1. Assume there are numbers e, d; 0Q eQ dQ 1/2 such that

=lk =Q d/e, (51)

where lk denotes a root of Pk . Then there exists Mq 0, independent of k, d, e, such that
Qk has exactly one root inside G(lk , Md =lk =).

The proof of proposition 5.1. involves an application of Rouché’s theorem to the
polynomials Pk and Qk and is given in Appendix A.

Proposition 5.1. states that if lk is an eigenvalue corresponding to the model (2) (so that
lk is one of the numbers sk , s̄k or vk in equations (42), (43)), and k is small enough so
that (51) holds, then there is a unique eigenvalue l
 k corresponding to the model (1) for
which =lk − l
 k =QMd =lk =. Thus (since M is independent of d) the relative error in
approximating l
 k by lk is of the order of d. The constant M in proposition 5.1. can be
computed explicitly and is a maximum of sums, products and ratios (but not differences)
of the parameters I
 r , G
 , r, D, g, b.

Figure 6 shows a comparison of the first 30 eigenvalues of the models (46), (47) and
(32), (33). The values of the parameters used here are the same as those used in Figure 5.

One may apply proposition 5.1. to the parameter values used in Figure 6 as follows.
Each parameter is first renormalized in equation (46) by division by r. This results in new
parameter values: r=1, D=28·125, G=3·75×106, g=1000, Ir =2·08×10−6,
b=11·25. Observe that by taking e=10−6, d=0·01, Proposition 5.1 predicts a relative
error of the order of 1% for =lk =Q 104, i.e., up to 10 KHz, which is approximately the same
as the actual relative error.

6. SUMMARY AND CONCLUSIONS

In this paper a model for a symmetric, two-layer beam that allows interfacial slip was
derived which includes the effects of shear deformation and rotary inertia in each beam

Figure 5. The six branches of eigenvalues obtained with the full model (46), (47) (solutions of
equations (49), (50)).
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Figure 6. Comparison of the first 30 eigenvalues obtained with the full model (equations (49), (50)) and the
limit case Ir =1/G=0 (equations (35), (42), (43)). Points marked · · · · correspond to the full model while points
marked w w w are the roots of Pk (sk ).

layer. The two layers were assumed to be bonded by a viscous adhesive of negligible mass
and thickness. By letting the shear stiffness parameter G tend to infinity and dropping the
terms involving the rotational inertia Ir , a much simpler model (28) is produced. If G is
large and Ir is small then this simpler model provides a close approximation to the original
model for harmonic motions with frequencies that are small compared to G and 1/Ir . For
these frequencies, the discussion in section 4 concerning the behavior of the spectrum and
optimal damping also applies to the original model. It was found that the frictional
damping resulted in a frequency-proportional damping pattern in the spectrum and the
optimal damping angle was described in proposition 4.1.

This investigation was motivated towards understanding the damping characteristics in
a multi-laminated or possibly fiber-composite beams. Here a single location where slip was
possible was assumed, since this simplified the eigenvalue calculations. Future research will
hopefully extend much of this analysis to beam models with many adhesive layers.
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APPENDIX A: PROOF OF PROPOSITION 5.1

The polynomial Qk may be written as

Qk (s)=Pk (s)+ eFk (s)+ e2Gk (s)+ e3Hk (s).

The result follows from Rouché’s theorem if the following inequality can be proved:

=Pk (s) =q e =Fk (s) =+ e2=Gk (s) =+ e3=Hk (s) =, [s on G(lk , Md =lk =). (A1)

There are two possibilities: either lk is a real root vk of equation (33) or it is one of the
complex roots sk , s̄k . Both cases are handled in the same way so consider only the case
lk = sk .

Let RQ =sk =/2. Since Pk (s)= br(s− sk )(s− s̄k )(s−vk ) and arg sk E 2p/3 (see
proposition 4.10) it follows from simple geometry that

=Pk (s) =e brRz3/2=sk =2 (z3−1)/2q 0·3br =sk =2R on G(sk , R). (A2)

To obtain an appropriate bound for the right side of equation (A1) one treats each term
separately. For example, using equation (51) one has

e3=Hk (s) == = (3rI
 2r/4G
 )e3s6=EM1d
3=sk =3 on G(sk , R),

where M1 = (3rI
 2r /4G
 )(3/2)3. The term Fk (s) in equation (A1) is of the form

Fk (s)= c̃2s2 + c̃3s3 + c̃4s4.

The term c̃2s2 is the most troubling since c̃2 =3I
 rDa4
k /2+ l.o.t., where l.o.t. denotes lower

order terms in k. One has

=c̃2s2=EM2a
4
k =sk =2 EM3 =sk =4 on G(sk , R).

Handling the other terms in the same way,

e =Fk (s) =EM4d =sk =3 on G(sk , R).

Likewise one can obtain a similar bound for e2=Gk (s) = on G(sk , R).
Thus one obtains

e =Fk (s) =+ e2=Gk (s) =+ e3=Hk (s) =QM5d =sk =3 on G(sk , R), (A3)

for any RE =sk =/2. Thus equation (A1) follows from equations (A2), (A3) provided
M5d =sk =/(0·3br)QRE =sk =/2. Thus by choosing d sufficiently small, equation (A1)
follows. On the other hand, Proposition 5.1. becomes trivial if one restricts d to any interval
of the form [d0, 1/2], by taking M=2/d0. q


