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The development of piezoelectric motors has spurred an interest in the vibration
characteristics of plates laminated with piezoelectric materials. In particular, this paper
details the study of an annular plate composed of one stainless steel lamina and either one
or two piezoelectric laminae, a common configuration for piezoelectric motors. The
stainless steel layer has teeth milled into the top surface for improved motor behavior. The
motion of the teeth is an important characteristic of the motor’s performance and is
described in detail in this paper. An analytical technique is developed that determines the
vibration of the laminate given the input into the piezoelectric layers, and predicts the
resulting motion of the teeth.
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1. INTRODUCTION

Piezoelectric motors were developed in the early 1980’s in response to the need for a
lightweight, high-torque, and low-speed motor for fractional horsepower applications.
Although the original inventor of the piezoelectric motor remains somewhat in question
(many believe H. V. Barth [1] is responsible for the original design), there is no argument
about who is responsible for the subsequent development of piezoelectric motor systems.
Kumada [2, 3], Kumada et al. [4], Sashida [5], Sashida and Kenjo [6], Ueha and Tomikawa
[7], and many other Japanese researchers have developed high performance piezoelectric
motors for a variety of applications. While piezoelectric motor design continues in Japan
and to a lesser extent in the United States and Germany, the kinematics of the motors
has received scant attention.

Hagedorn and Wallashek have demonstrated a simple model for the free vibration of
a stator disk [8] and an improved model, using the finite difference and Ritz methods, for
the free vibration of a disk with non-uniform thickness [9]. However, forcing due to the
piezeoelectric elements and the laminated nature of the stator are ignored in their studies.
Including these factors into the model makes it more difficult to avoid finite element
analysis, and, indeed, Maeno et al. [12] studied a ring motor including two-body contact
mechanics using a finite element analysis program. Bogy and Maeno [13] examined the
motor again with contact mechanics and fluid interaction using a combination of analytical
and finite element analysis techniques.

Most laminated structures are modelled as a collection of layers with specific material
properties. Several approaches to modelling the laminate are possible; classical lamination
theory [14, 15], first order and higher order shear deformation theories with or without
rotary inertia [16, 17], and a relatively unique and complex procedure by Reddy and Nosier
[18] and Nosier et al. [19] are representative of common solution techniques. Tzou et al.
has developed general laminated composite deep-shell equations [20–22] specifically for
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piezoelectrically forced structures. However, all of these methods are limited in their
capability to model asymmetric laminated structures with closed-form solutions. With the
exception of classical lamination theory and a few cases with the first order shear
deformation theory, the problem to be solved always requires finite element analysis. While
finite element analysis (FEA) is indispensable for many applications, particularly with
complex geometries, it is inconvenient for system design. Each design iteration requires
a new finite element mesh to be generated and a new numerical solution to be obtained.
This process, known as FEA parametric optimization, is computationally expensive, and
it provides a compelling reason to seek analytical solutions.

Approaching the problem with the requirement that all solutions must be of closed-form
has its own difficulties, however. There is no assurance, other than experimental
verification, that the solution will be accurate after making the necessary approximations.
Finite element analysis is avoided by using judicious approximations that retain the
behavior of the laminated structure and the teeth. The class of piezoelectric motors
modelled are based on the thin annular plate as shown in Figure 1. The analysis presented
here is applicable to stator geometries from a solid circular plate (b=0) to an annular
ring (b/ae 0·9) where shear deformation and rotary inertia are negligible. The modelling
approach described here represents an enhancement of the current modelling literature by
predicting steady state stator motion directly from the electric potentials applied to the
piezoelectric laminas, accounting for the asymmetric laminated structure in an
approximate sense, and modelling the kinematics of the stator teeth. The ability to predict
the motion of the stator teeth is essential for subsequent modelling of the interaction
between the stator and rotor which is required to predict motor performance.

2. ANALYSIS

The linear and quasistatic piezoelectric stress equations for a solid are

D�= oT · E+e : S, T� =−e · E+ cE : S. (1)

The double dot indicates an inner product over two indices of the tensors (a list of symbols
is provided in the nomenclature at the end of this paper). For this application (and for
most others), the electrical field travels through the piezoelectric material at much higher
speeds than the strain field—fast enough to assume that from the perspective of the
mechanical motion of the plate, the electrical fields in the piezoelactric laminas change
instantaneously. In other words, the motion of the piezoelectric laminates is quasistatic.
This relatively general form is difficult to work with, but by assuming the stress tensor is
symmetric, the equation may be simplified. Contracting the tensor notation as in Auld [23]
by applying the symmetric stress tensor assumptions, equations (1) simplifies to

D�i = oS
ijEj + eiJSJ , T�I =−eIjEj + cE

IJSJ . (2)

Figure 1. Thin annular plate geometry.
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In particular, the stress due to the electric field in the piezoelectric laminas is
TI =−eIjEj . (3)

The stress-strain relationship in equation (2) will be taken into account in the equation
for the transverse motion of the plate below.

3. FREE VIBRATION OF AN ANNULAR PLATE

The behavior of the stator as it freely vibrates is needed for finding the forced behavior
of the stator through modal expansion. The stator plate is free of loading on both its inner
and outer diameters, and is pinned at the nodal circle as shown in Figure 2 to eliminate
rigid body modes. The stator shown in Figure 2 is designed for operation in the (1, 4)
vibration mode—one radial node, and four azimuthal wavelengths.

Note that for clarity, in the rest of this paper, references to the three principal
co-ordinate directions will use numbers for primary quantities such as displacement,
voltage, and material properties, and letters to denote differentiation, and for derived
quantities such as moment and shear. Hence, the correspondence is (1, 2, 3)0 (r, u, z).

The equation of transverse motion [24] of the plate neglecting shear deformation and
rotary inertia is

(D*119
4 + rh12/1t2)u3 = f(r, u, t), (4)

where f(r, u, t) denotes general forcing,

94( · )= [92( · )]2 =$12( · )
1r2 +

1
r

1( · )
1r

+
1
r2

12( · )
1u2 %

2

(5)

is the biharmonic operator in polar co-ordinates, and the reduced bending stiffness, D*11,
of the composite plate [14, 15] is the (1, 1) component of the matrix D* given by

D*=D−BA−1B. (6)

Shear deformation and rotary inertia may not be neglected for plates where the thickness
is large compared to either the overall dimensions of the plate or to the wavelength of the
highest mode of interest [25]. According to Mindlin [16], if the ratio of the plate thickness
to the wavelength exceeds 0·25, shear deformation and rotary inertia need to be included
in the analysis.

The components of A, B, and D, respectively, are

Aij = s
n

l=1

(Qij )l (zl − zl−1), Bij =
1
2

s
n

l=1

(Qij )l (z2
l − z2

l−1), (7, 8)

Figure 2. Stator plate with teeth, (1, 4) mode.
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and

Dij =
1
3

s
n

l=1

(Qij )l (z3
l − z3

l−1). (9)

In equations (7–9), the reduced stiffnesses Qij for the lth layer, assumed to be isotropic in
the plane, are given by

(Q11)l =(Q22)l =
Yl

1− n2
l
, (Q12)l =

nlYl

1− n2
l
, and (Q33)l =Gl . (10)

Note that most important polycrystalline piezoeceramic materials are isotropic in a plane
normal to the direction of poling, and all polycrystalline piezoceramic materials are
completely isotropic when unpoled. The piezoelectric layers in this motor are poled in the
transverse direction and so the layers are isotropic in the plane. An alternative form of
the reduced stiffnesses Qij is given by [14]

(Qij )l = cij − ci3cj3/c33. (11)

This form is often more convenient for determining the reduced stiffnesses for piezoelectric
materials when the stiffness matrix cij is given.

Equation (4) is an approximation for the composite nature of the stator ignored in the
current literature. The full equations for the general composite plate including asymmetry
are extremely complex and are considered to be intractable in closed form. The lamination
structure of the stator is indicated in Figure 3 for motors with two piezoelectric layers;
motors with only one piezoelectric layer are similar. For the unforced case ( f (r, u, t)=0),
a separable, temporally harmonic solution may be assumed:

u3(r, u, t)=U3(r, u) ejvt. (12)

Equation (4) becomes

(D*119
4 − rhv2)U3 =0. (13)

By dividing through by D*11 and substituting l4 for rhv2/D*11, equation (13) becomes

(94 − l4)U3 =0, (14)

or

(92 + l2)(92 − l2)U3 =0. (15)

This equation has solutions of the same form as the equation

(92 2 l2)U3 =0. (16)

Separating the spatial variables,

U3(r, u)=R(r)F(u), (17)

Figure 3. Lamination structure and nomenclature (not to scale).
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equation (16) becomes

r2$0d2R
dr2 =

1
r

dR
dr1 1

R
2 l2%=−

1
F

d2F
du2 = n2 (18)

by grouping the r-dependent terms on the left and the u-dependent terms on the right.
Solving, the complete solution for the plate is

u3mm (r, u, t)= [A1Jn (lmnr)+A2In (lmnr)+A3Yn (lmnr)

+A4Kn (lmnr)] cos [n(u−fmn )] ejvt (19)

For the piezoelectric motor in this study, the stator plate is annular and is not loaded
on either the inner or outer radius with loads as shown in Figure 4, and the piezoelectric
layers are assumed to be thin in comparison with the stator plate. The boundary conditions
for this configuration with Kirchoff’s approximation are

Mrr =−D*11 $12u3

1r2 + n 01r 1u3

1r
+

1
r2

12u3

1u21%=0 (20)

and

Vrz =−D*11 $ 1

1r
92u3 +

1− n

r2

12

1u2 01u3

1r
−

u3

r 1%=0, (21)

for both the inner and outer radii of the annular stator plate as suggested by Raju [24].
Other motor configurations can be considered by changing the boundary conditions to any
combination of fixed, pinned or free boundaries. The variable Mrr is the resultant
(mechanical) moment on the inner and outer radial faces of the plate and Vrz is the resultant
shear at the same locations. The electrode pattern on the PZT plates does not extend all
the way to the inner and outer boundaries, so the boundary conditions are purely
mechanical. Since the moment and the shear (transverse to the plate) are both zero on the
inner and outer boundaries, equations (20) and (21) are set equal to zero. The solution
for the plate, equation (19), must be substituted into equations (20) and (21) to give four
equations in terms of the parameter lmm and the four constants Ai :

C11 C12 C13 C14 A1

C21 C22 C23 C24 A2G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l
C31 C32 C33 C34 A3

=0, (22)

C41 C42 C43 C44 A4

Figure 4. Piezoelectric motor plate (teeth not shown).
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where C1j refers to the substitution of equation (19) into the moment equation (20) for the
inner radius and collected in terms of Ai . Similarly, C2j refers to the substitution of equation
(19) into equation (20) for the outer radius, C3j refers to the substitution of equation (19)
into equation (21) for the inner radius, and C4j refers to the substitution of equation (19)
into equation (21) for the outer radius. For a useful solution, all of the Ai cannot be zero;
this problem becomes an eigenvalue problem for lmn , which is embedded in the Cij . Taking
the determinant of the matrix [Cij ] and solving for lmn will give the resonant frequency of
the plate for the (m, n) mode by solving for the resonant frequency vmn in

vmn = l2
mn zD*11/rh. (23)

Finding the mode shape for a given (m, n) requires the use of equation (22) again.
Assuming that A4 is unity, the remaining Ai may be found in terms of A4, which would
determine all of the Ai within a constant. Setting A4 =1 in equation (22) and simplifying
gives

C11 C12 C13 −C14

C21 C22 C23
A1 −C24

G
G

G

K

k

G
G

G

L

l

g
G

G

F

f
h
G

G

J

j
g
G

G

F

f

h
G

G

J

j
C31 C32 C33

A2 =
−C34

, (24)

C41 C42 C43
A3 −C44

an overdetermined equation. Using only the first three rows of the matrix, the remaining
Ai may be found:

A1 C11 C12 C13
−1 −C14

g
G

G

F

f
h
G

G

J

j
G
G

G

K

k
G
G

G

L

l
g
G

G

F

f
h
G

G

J

j
A2 = C21 C22 C23 −C24 . (25)

A3 C31 C32 C33 −C34

The piezoelectric motor in this study is a flat disk with a constant thickness, but many
piezoelectric motors have varying thicknesses to increase their performance characteristics.
Hagedorn et al. [8, 9] explored the analysis of these types of stators in great detail using
the Ritz method, and finite difference analysis. Conway et al. [10, 11] found an analytical
solution for an annular plate with parabolically varying thickness in the radial direction.
Some axisymmetric annular plate based piezoelectric motors have step-wise constantly
varying stator thickness, and Hagedorn and Wallashek [8] suggested the use of a multiple
domain approach to determine the free vibration in this case.

The multiple domain approach could make it possible to approximately analyze ring
motors with a thin support web and with large teeth like the Shinsei motor [5]. The
approximation is due to the requirement that the plate be symmetric about the neutral
surface; most of the motors like the Shinsei motor are not symmetric about the neutral
surface. Generally, an accurate analysis of asymmetric plates requires a numerical
approach.

Hagedorn and Wallashek [8] also points out the necessity of accounting for the stator
teeth if these are of significant size relative to the overall dimensions of the stator. In this
study, the stiffness contribution of the stator teeth is neglected due to their relatively small
size (eight teeth per wave length) but the mass contribution of each tooth is lumped into
the mass of the stator. These assumptions seem reasonable, and the resulting model
predictions agree well with experiment as will be demonstrated below.



        427

4. THE STEADY-STATE FORCED RESPONSE OF THE STATOR

The stators in most piezoelectric motors are forced through bending due to the
expansion and contraction of the piezoelectric layers in the stator. The in-plane expansion
and contraction of the entire stator is usually negligible in comparison, as is the forcing
of the stator from transverse deformation of the piezoelectric layers (due to the d33E3 term).

Once the mode shapes and resonant frequencies of the free–free plate are known, the
motion of the forced plate may be determined through modal expansion. During the forced
vibration of plates and shells, several different modes may participate simultaneously in
different amounts depending on the type of forcing. The amount of participation that each
mode offers in response to the external forcing is called the modal participation factor for
that mode, and it is solely a function of time. The general solution to the transverse
vibration of the annular plate is a summation of the plate vibration solution, equation (19),
over all of the possible modes of vibration:

u3(r, u, t)= s
a

m=0

s
a

n=1

hmn (t)U3mn (r, u). (26)

The stator in this motor design is forced primarily through moment forcing from the planar
expansion and contraction of the piezoelectric laminas.

From Tzou [26], the equation of motion for the transverse vibration of a deep shell with
applied moment forcing Ma

ij and transverse forcing T3 can be written as

Lz (Mij )− cvu̇3 − rhü3 =−T3 −Lz (Ma
ij ) (27)

where Lz (Mij ) is Love’s operator in the transverse direction on the moment per unit length
induced in the plate, and Lz (Ma

ij ) is Love’s operator on the applied moment per unit length
due to the deformation of the piezoelectric laminas. Structural damping in the plate is
included here (as equivalent viscous damping) as a part of the general forcing term. The
operator Lz (Mij ) simplifies into the left side of equation (4) and the operator Lz (Ma

ij ) may
be replaced by its definition to give

(D*119
4 + cvu̇3 + rh12/1t2)u3 =T3 −L3(Ma

ij )=T3 +02 1Ma
rr

r1r
+

12Ma
rr

1r2 −
1Ma

uu

r1r
+

12Ma
uu

r21u2 1,

(28)

where Mru and Mur are zero since the piezoelectric laminas will not induce the twisting
moments Mru and Mur in the stator [26].

Substituting equation (26) into equation (28) gives

s
a

m=0

s
a

n=1

(D*11hmn9
4U3mn + cvḣmnU3mn + rhḧmnU3mn )

=T3 +02 1Ma
rr

r1r
+

12Ma
rr

1r2 −
1Ma

uu

r1r
+

12Ma
uu

r21u2 1. (29)

From the analysis on the free plate,

D*119
4U3mn − rhv2

mnU3mn =0, (30)
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so equation (29) becomes

s
a

m=0

s
a

n=1

(rhv2
mnhmnU3mn + cvḣmnU3mn + rhḧmnU3mn )

=T3 +02 1Ma
rr

r1r
+

12Ma
rr

1r2 −
1Ma

uu

r1r
+

12Ma
uu

r21u2 1. (31)

For convenience, the resonant modes of the plate are renumbered to reduce the double
subscript (m, n) to the single subscript n; the (1, 0) mode becomes the (1) mode and so
on [25]. Multiplying both sides by U3k , where k is necessarily equal to n gives

s
a

n=1

(rhv2
nhn + cvḣn + rhḧn )U3nU3k =$T3 +02 1Ma

rr

r1r
+

12Ma
rr

1r2 −
1Ma

uu

r1r
+

12Ma
uu

r21u2 1% U3k .

(32)

In practice, the induced forcing is usually designed to excite a single mode by ensuring that
the forcing closely matches the desired mode, so the complete summation of modes over
both n and k collapses into a single summation over n with a given constant k. Integrating
both sides over the plate midplane to exploit the orthogonality of the modes gives

gr gu

s
a

n=1

(rhv2
nhn + cvḣn + rhḧn )U3nU3kr du dr

=gr gu $T3 +02 1Ma
rr

r1r
+

12Ma
rr

1r2 −
1Ma

uu

r1r
+

12Ma
uu

r21u2 1% U3kr du dr (33)

or

s
a

n=1

(rhv2
nhn + cvḣn + rhḧn )gr gu

U3nU3kr du dr

=gr gu $T3 +02 1Ma
rr

r1r
+

12Ma
rr

1r2 −
1Ma

uu

r1r
+

12Ma
uu

r21u2 1% U3kr du dr. (34)

The integrals may move within the infinite sum by assuming that the plate surface is
continuous with derivatives that are continuous to the second order (class C2). Since each
mode of plate vibration is orthogonal to every other mode,

gr gu

U3nU3kr du dr=g
G

G

F

f

0

gr gu

U2
3nr du dr

if k$ n

if k= nh
G

G

J

j

. (35)

Hence, all the terms in the infinite sum in equation (34) vanish except for the one when
n= k. A single ordinary differential equation remains to be solved for the modal
particpitation factor of mode k:

ḧk +2zkvkḣk +v2
khk =Fk , (36)
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where

Fk =
1

rhNk gr gu $T3 +02 1Ma
rr

r1r
+

12Ma
rr

1r2 −
1Ma

uu

r1r
+

12Ma
uu

r21u2 1% U3kr du dr, (37)

Nk =gr gu

U2
3kr du dr, (38)

and

zk = cv /2rhvk . (39)

In the present example, the transverse forcing term is assumed to be neglegible (T3 =0),
but in a more sophisticated model it could be used to account for transverse loading on
the stator. As motors are normally used, the transverse forcing term is of much lower order
than the piezoelectric forcing, for if too much preload is applied, the PZT elements will
become clamped [23].

The steady state harmonic response of the plate vibration is the most important part
of the motor’s operation, since the transient part lasts only a few milliseconds for most
motors. Since the response will be harmonic, the solution for equation (36) is

hk =Lk ej(vt−fk ). (40)

Substituting this into equation (36) and solving for Lk gives

Lk =
F*k

(v2
k −v2)+2jzkvkv

e−jfk , (41)

where

F*k =
1

rhNk gr gu 02 1Ma*rr
r1r

+
12Ma*rr

1r2 −
1Ma*uu

r1r
+

12Ma*uu

r21u2 1 U3kr du dr. (42)

The magnitude of the response is

=Lk ==F*k /v2
k z[1− (v/vk )2]2 +4z2

k (vk /v)2, (43)

and the phase lag angle fk is

dk =arctan [2zk (v/vk )/(1− (v/vk )2)]. (44)

If there is only one mode being excited in the plate, then only one solution of the modal
participation factor is necessary, making the solution process relatively simple.

In equation (42), F*k expresses the modal loading on the plate for any fixed point in time
on the kth mode. It only depends on the spatial variables r and u. In a piezoelectric motor,
the induced fields in the piezoelectric plate and thus the loading by a single piezoelectric
laminate can be assumed to be constant over the area covered by a particular electrode
as shown in Figure 5 since, for most applications, the resistance of the electrode is low.
In this motor, there is an even number of electrodes that cover the entire surface of the
piezoelectric plate with the exception of small gaps between the electrodes to prevent
shorting. If all of the electrodes are identical in shape and size, an equation for the applied
potential may be determined fairly easily:

v3,1 = 8 v*3
−v*3

0

if
if
if

4pp/n̂E uQ uelect +4pp/n̂
4pp/n̂+ uelect + ugap E uQ 2uelect + ugap +4pp/n̂
4pp/n̂+ uelect E uQ uelect + ugap +4pp/n̂ 9, (45)
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Figure 5. Stepwise electric field distribution.

where v*3 is the peak potential applied to the piezoelectric lamina, n̂ is the number of
electrodes, and the index p ${0, 1, . . . , n̂/2−1} selects each electrode pair for each value
of p. The angles uelect and ugap indicate the angular width of a single electrode and the gap
between two electrodes. If a second piezoelectric lamina is present, the potential applied
to it may be out of phase with the potential applied to the other piezoelectric layer:

v3,2 = 8 v*3
−v*3

0

if
if
if

4pp/n̂E u+fPZT Q uelect +4pp/n̂
4pp/n̂+ uelect + ugap E u+fPZT Q 2uelect + ugap +4pp/n̂
4pp/n̂+ uelect E u+fPZT Q uelect + ugap4pp/n̂ 9, (46)

where fPZT is the phase angle between the two piezoelectric laminas. This angle between
the two layers is necessary to create a traveling wave in many piezoelectric motors. Some
motors use only one piezoelectric plate and employ complex electroding patterns to obtain
the traveling wave. The equations for the applied voltages for these types of motors are
much more lengthy, although they are not any more complex than equations (45) and (46).
Notice that, for a motor with two piezoelectric layers, both layers are assumed to have
the same peak applied electrical potential and the same thickness. Assuming that the
spatial distribution of the electric fields are in this form eliminates the need to determine
the electrical and mechanical boundary conditions for the piezoelectric plates and the
associated field distribution in them. This assumption also neglects the effect of
piezoelectric stiffening, the increase in the stiffness of piezoelectric materials when the
material is in an open circuit or in a highly resistive circuit. These assumptions are justified
since the piezoelectric laminas are relatively thin in comparison with the stator [26].

The moment forcing on the plate due to planar expansion of the piezoelectric plate can
be expressed by

Ma*uu = 1
2[e32v3,1](hPLATE + hPZT ) cos (vt+ft ), (47)

illustrated by Figure 6. The analogous expression for the radial moment is

Ma*rr = 1
2[e31v3,1](hPLATE + hPZT ) cos (vt+ft ), (48)

These equations give the moments exerted by a single piezoelectric layer with respect
to the midplane of the stainless steel layer excited with a temporally harmonic
electric field distribution. For two piezoelectric layers, the radial and circumferential
moments are

Ma*rr = 1
2[e31v3,1](hPLATE + hPZT ) cos (vt+ft )+ 1

2[e31v3,2](hPLATE +3hPZT ) cos (vt+ft ) (49)



        431

Figure 6. Moment forcing by one piezoelectric plate about radial axis.

and

Ma*uu = 1
2[e32v3,1](hPLATE + hPZT ) cos (vt+ft )

+ 1
2[e32v3,2](hPLATE +3hPZT ) cos (vt+ft ), (50)

illustrated by Figure 7.

5. MOTION OF THE TEETH

From the plate vibration solution,

u3 = u3(r, u, t)= hn (t)U3n (r, u) (51)

is the solution for a plate vibrating solely in the nth mode. A vector from the center of
the annular plate at its midplane to a point in the midplane of the deformed plate along
an arbitrary radius is given by

x= rer + u3ez . (52)

To determine the motion of a tooth on the surface of the plate, a unit vector normal to the
surface is needed. Taking the derivative of equation (52) with respect to r (holding time
fixed),

1x/1r= er +(1u3/1r)ez , (53)

and taking the derivative of equation (52) with respect to u and dividing by r gives

1x/r1u= eu +(1u3/r1u)ez , (54)

Figure 7. Moment forcing by two piezoelectric plates about radial axis.
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two equations which represent tangent vectors along the surface at (r, u) in the radial and
circumferential directions, respectively. Taking the cross-product of these two vectors and
normalizing to find the unit normal vector to the surface,

er eu ez

N=Tr ×Tu =
1x
1r

×
1x
r1u

= 1 0
1u3

1r
=−

1u3

1r
er −

1u3

r1u
eu + ez , (55)

0 1
1u3

r1u

gives

eN =
N
=N==

N
z1+ (1u3/1r)2 + (1u3/r1u)2

. (56)

Then the vector to the end of the tooth has the form

xT = x+[hTOOTH
1
2hPLATE ]eN (57)

for the piezoelectric motor. Fully expanded, equation (57) is

xT =(r− h�1u3/1r)er −(h�1u3/r1u)eu +(u3 + h�)ez , (58)

where h� is given by

h�=[hTOOTH + 1
2hPLATE ]/z1+ (1u3/1r)2 + (1u3/r1u)2. (59)

This gives the location of the center of the top of each tooth if one knows its location on
the plate as shown in Figure 8. Equation (58) effectively transforms the plate vibration
solution into a tooth displacement solution for any point (r, u).

For the piezoelectric motor, the location of the teeth is specified as a part of the design.
To make it easier to determine the motion of the teeth, the location of each tooth is based
on an index i, its arc-width (ru)T , the arc-width of the gap between each tooth (ru)gap , the
location of the inner radius of the teeth rTin , and the location of the outer radius of the
teeth rTout . The location of the center of each tooth is, then,

rT = 1
2(rTin + rTout ), uT =[(ru)T +(ru)gap ]/rTi, (60)

where i is the tooth selected. These two equations can be used in equation (58) to describe
the motion of those teeth.

Figure 8. Illustration of tooth kinematics (not to scale).
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T 1

Geometric properties of the 17 mm motor

Property Value

Number of teeth 32
Inner radius of plate, a (m) 1·59×10−4

Outer radius of plate, b (m) 8·48×10−3

Thickness of stator, hPLATE (m) 6·35×10−4

Thickness of piezo. plates, hPZT (m) 1·27×10−4

rTin (m) 4·67×10−3

rTout (m) 5·61×10−3

Height of teeth, hTOOTH (m) 1·91×10−3

uT (rad) 0·16144
ugap (rad) 0·0349
Maximum applied field, E*3 (V/cm) 1900
Number of electrodes per plate 8
fPZT (rad) p/8

6. RESULTS

There are a wide variety of piezoelectric motor designs with a concomitant number of
geometric constraints on the analysis of these designs. As an example, a relatively simple
motor design invented by researchers at Matsushita, the 17 mm piezoelectric motor, is
described here. The 17 mm piezoelectric motor stator is constructed of stainless steel, and
the piezoelectric plates are composed of a hard piezoelectric material: PZT-5H. A variety
of piezoelectric materials are available for use in the motor, although in practice, only the
PZT (lead-zirconium-titanate) class of ceramics is viable for high electric field applications
like this one. For this motor, Table 1 provides the geometric data necessary for the
analysis. The motor is operated in the (1, 4) mode, causing the stator plate to have four
nodal diameters and one nodal circle (see Figure 2). To achieve this mode, each
piezoelectric plate has eight electrodes.

Using the free vibration analysis for the Kirchoff annular plate, the prediction of the
resonant frequency for the plate of 143 kHz is 6% above the experimentally measured
135 kHz. This indicates that the composite corrections for the stator are accurate and that
rotary inertia and shear deformation for this particular case are negligible. The piezoelectric
plates are electrically excited near the resonant frequency to develop the (1, 4) mode
shape. Transverse deflection of the stator reaches 2 mm at its maximum, illustrating how

Figure 9. Tooth displacement (m) viewed from the side (dotted line indicates experimental results).
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Figure 10. Tooth displacement (m) viewed from the top (dotted line indicates experimental results).

small the deformation of the stator are as the motor operates. This deformation is
harmonic in time, and it causes the tips of the stator teeth to generate an elliptical motion
as shown in Figures 9 and 10. From the side, the elliptical motion is roughly twice as wide
as it is tall, yet the overall motion is minuscule at less than 4 mm. The dotted lines indicate
experimental results based upon optical measurements (of maximum and minimum
deflection in each direction) taken at a tooth tip. At first glance it would seem that this
motion is too small to develop a large-scale motion from the rotor. However, it is
important to remember that a tooth will make a complete cycle around the ellipse in only
8×10−6 s. Looking from the top, the elliptical motion is mostly azimuthal, as desired. The
azimuthal component of the motion acts to rotate the rotor, while the radial component
merely causes frictional losses. For this reason, the teeth are placed as close to the
azimuthal antinode as possible to ensure that as the plate flexes, the teeth do not bend
inward and outward radially.

7. CONCLUSIONS

An analytical model of a composite piezoelectric motor stator with teeth has been
described. This model provides three significant contributions to the piezoelectric motor
literature: it allows the prediction of steady state stator motion given an applied electrical
potential for either one or two piezoelectric plate elements, it accounts for the composite
structure of the stator in predicting the natural frequencies and modes, and it predicts the
kinematics of the stator teeth. The approach described forms the foundation for rapid
design prototyping and subsequent optimization once the model is extended to account
for rotor-stator interaction. An example of using the analysis on a piezoelectric motor
system is described. The results of the analysis are accurate enough to use the method for
design purposes.

Work is currently underway to extend this model to account for the contact mechanics
between the rotor and stator, and these results will be presented in a subsequent paper.
This extension will allow the prediction of motor performance metrics such as torque and
speed. Model predictions can then be compared to experimentally measured performance
metrics in a variety of commercially available piezoelectric motors.
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8. NOMENCLATURE

94 = (92)2 Biharmonic operator (see equation (5))
a, b Inner and outer radii of annular plate, respectively
Ai Constants (i=1, 2, 3, 4)
A, Aij Composite plate in-plane stiffness matrix
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B, Bij Composite stiffness coupling matrix
c, cIJ Material stiffness tensor (cE is measured with a constant electric field)
cv Equivalent viscous damping in stator
D, Dij Composite plate bending stiffness matrix
D*, D*ij Reduced composite plate bending stiffness (see Ashton and Whitney [14])
D�, D�i Charge displacement vector
e, eIj Piezoelectric stress tensor
o, oij Permittivity tensor (oT is measured with a constant stress field, oS is measured with

a constant strain field)
Y Young’s modulus
E, Ej Induced electric field tensor
er , eu , ez Unit vectors along co-ordinates axes
f(r, f, t) Forcing on plate
Fk Modal forcing (F*k indicates harmonic forcing)
F(u) Azimuthal solution of transverse plate motion
fk Phase angle for the kth modal solution of freely vibrating plate
fPZT Rotation angle between the bottom piezoelectric layer and the top piezoelectric layer
ft Phase angle of induced electric field (temporal)
G Shear modulus
h Thickness of the stator
hi Thickness of lamina i (i=PLATE, PZT)
hTOOTH Height of the teeth measured from the top of the stator
h Modal participation factor (0 E hE 1)
i, I, j, J Spatial subscripts (=1, 2, 3)
j Imaginary unit
Jn , In Bessel’s original and modified functions of the first kind, respectively
l Selected layer in the stator
L3 Love’s operator for the transverse vibration of a plate (see [26])
l Eigenvalue of characteristic equation of plate
k Selected mode (after renumbering of modes)
m Radial mode number (number of circular modal lines)
Ma*ij Applied moment per unit length (Ma*rr , Ma*uu are applied about the radial and

azimuthal directions, respectively)
Mij Moments per unit length in plate
n Mode shape number or number of diametral modal lines
n̂ Number of electrodes
n, nk Poisson’s ratio
N, eN Vector and unit vector normal to the deformed plate’s midplane, respectively
Nk Modal normalization factor
p index, ${0, 1, . . . , n̂/2−1}
Qij Reduced stiffness matrix (see [14])
r Density of the plate
r Radial coordinate
R(r) Radial solution of transverse plate motion
rTin , rTout Radius to the inner and outer edges of the teeth, respectively
(ru)T , (ru)gap Arclength of tooth and gap between adjacent teeth, respectively
S, SJ Strain tensor
t Time
T�, T�I , TI Stress tensor, components, and stress components due to electrical excitation,

respectively
Ti Forcing in the ith direction
Tr , Tu Vectors tangent to midplane surface in radial and azimuthal directions, respectively
u Azimuthal coordinate
uelect Angular width of one electrode
ugap Angular width between two adjacent electrodes
u3 Transverse displacement (time domain)
U3 Transverse displacement (frequency domain)
v3 Electric potential applied transversely across piezoelectric plate (v3,1 is applied to top

piezoelectric plate, v3,2 to bottom plate)
v*3 Peak electric potential applied to piezoelectric plate
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v Circular frequency of applied forcing (rad/s)
vk Resonant circular frequency of kth mode of plate (rad/s)
x Vector to a point on the midplane of the annular plate from the center at the midplane
xT Vector to the end of a tooth from the center of the midplane
Yn , Kn Bessel’s original and modified functions of the second kind, respectively
zk Distance from the midplane of the composite plate to the kth interface (k=0

indicates the top of the plate, k=1 indicates the interface between the stator and the
top PZT plate, and so on)

zk Damping of kth mode of plate


