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Localized damage to a structure affects its dynamic properties, and much work has been
undertaken investigating the variation of natural frequencies with damage. However, use
of mode shape data has seen much less effort. This paper develops and presents a technique
for identifying the location of structural damage in a beam. The procedure operates solely
on the mode shape from the damaged structure, and does not require a priori knowledge
of the undamaged structure. The procedure is developed using a one-dimensional finite
element model of a beam, and demonstrated by experiment. When damage is severe (a
localized thickness reduction of more than 10%), applying a finite difference approximation
of Laplace’s differential operator to the mode shape successfully identifies the location of
the damage. However, when damage is less severe, further processing of the Laplacian
output is required before the location can be determined. This post-processing enables the
location of thickness reductions of less than 0·5% to be identified. The procedure is best
suited to the mode shape obtained from the fundamental natural frequency. The mode
shapes from higher natural frequencies can be used to verify the location of damage, but
they are not as sensitive as the lower modes.
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1. INTRODUCTION

When a structure suffers localized damage, its dynamic properties can change. Specifically,
crack damage can cause a stiffness reduction, with an inherent reduction in natural
frequencies, an increase in modal damping, and a change to the mode shapes. There has
been a significant effort to detect the location of cracks using one or more of these
characteristics. The most easily observable change is the reduction in natural frequencies,
and most of the reported effort uses this feature in one way or another. Varying success
is reported using the change in modal damping, and little work is reported on using the
change in mode shape to detect the location of damage.

Much of the reported work using modal analysis for damage detection concerns trusses
and frameworks and is generally targeted at offshore oil platforms and space structures
such as satellites and the space station. On many steel platforms the changes in natural
frequencies caused by the failure of a single, structurally important member can be large
enough to be detected, and can be used to identify damage [1–10]. For trusses, the change
in pole/zero information caused when an ‘‘at risk’’ member fails can be analyzed using a
neural network; see Manning [11]. Alternatively, Liu [12] derived an optimization program
in which the error norm of the eigenequation is minimized. Some authors employ both
natural frequency changes and mode shape information. Chen and Garba [13] investigated
the variation of modal amplitude caused by damage and used kinetic and potential energy
distribution to identify damage. Li and Smith [14] adjusted the physical properties of a
truss in a finite element model, and Adams et al. [15] used natural frequency shifts and
anomalies in mode shapes as damage indicators. Lim and Kashangaki [16] identified
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damage with a multiple mode analysis. Finite element and experimental data for a scale
modal of an offshore platform were presented by Shahrivar and Bouwkamp [17], who
concluded that the fundamental mode shape was more sensitive to damage than the
fundamental vibration frequency.

Damage detection using changes in damping has been investigated. The effect of
debonding on the modal damping of a sandwich panel was investigated by Peroni et al.
[18], who showed that for some modes, damage caused a slight increase in damping
coefficient. Lai and Young [19] reported extensive work on a composite structure, including
the effect of high temperatures and prolonged exposure to humidity. They showed that
while delamination decreases the natural frequency of the fundamental mode, it increases
the damping. However, they concluded that change in damping coefficient was an
unreliable parameter on which to base a damage detection algorithm. Vantomme [20]
correlated modal parameters and the accumulated damage of composite joints of a
stiffened plate structure and concluded that modal frequency measurements were more
suitable than modal damping measurements.

Some researchers have considered using a spatial stiffness matrix to locate damage;
however, Lin [21] observed that higher modal frequencies contribute to the spatial stiffness
matrix values to a greater extent than lower ones—to obtain a good estimate of the spatial
stiffness matrix one needs to measure all the modes of the structure, especially the high
frequency modes. This presents a problem for stiffness-based damage detection methods
relying on experimental modal data, and various techniques and degrees of success are
reported [22–25]. A variation is to perturb the stiffness matrix of a finite element model
and compare the resulting changes in natural frequencies with observations, Hearn and
Testa [26]. An alternative to the stiffness matrix, considered by Pandey and Biswas [27],
is to consider the flexibility matrix, which converges better on increasing frequency.

Compared to trusses and space frames, there is very little reported work on beams and
plates, and most is designed for concrete structures, such as bridges, and composites. When
a bridge is damaged, a change in natural frequencies is one of the most observable effects,
and a committee report by Javor [28] gives international technical guidelines that
recommend monitoring the fundamental frequency for the long-term observation of such
structures. Miller et al. [29] reported on a reinforced concrete bridge, and compared
experimental and finite element results to identify damage to the shoulders of the bridge
using differences in natural frequencies, and anomalies in mode shapes. Casas and Aparicio
[30] minimized a scalar performance error, which included the sum-square difference
between footprint and measured mode shapes and natural frequencies. They concluded
that the measurement of only one mode shape was not sufficient to distinguish structural
damage. The use of a neutral network to find the location and size of delamination in a
composite panel from changes in natural frequencies was considered by Okafor et al. [31].

Other approaches to damage detection include that of Rizos et al. [32] who developed
a method based on the amplitudes at two points in a structure vibrating at one of its
natural frequencies and an analytical solution of the dynamic response, and Springer et
al. [33] who used variations in natural frequency to identify damage in members that can
be modelled as longitudinally vibrating beams. Doyle [34] considered a structure to be a
collection of multiply connected waveguides, and investigated an iterative procedure to
detect cracks in beams.

Most of the techniques use changes in natural frequencies. Some use mode shape
information, although often this is only to verify the same natural frequency is being
considered. Yuen [35] investigated the systematic change in the fundamental mode shape
for a cantilever with respect to the location of the damage. The use of strain measured
mode shapes has been considered by several authors. Yao et al. [36] concluded that strain
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measured mode shapes were more effective at identifying the location of damage than
displacement mode shapes for damage in a steel truss. This was also found by Chang et
al. [37], who investigated the sensitivity of modal parameters to damage and compared
strain measured mode shapes with displacement mode shapes. This finding is consistent
with a study by Pandey et al. [38], who investigated the change in curvature of mode shape
for a damaged beam. Curvature is proportional to the surface strain, and Pandey showed
that the difference between curvature mode shapes for an intact and damaged beam could
find a localized change in elastic modulus of about 30%.

Cumulatively, the published work suggests that a change in natural frequency is the
single most effective dynamic indicator of structural damage. However, locating the
damage is not a simple matter. Nearly all the published work requires reference to an
undamaged dynamic model of some form. Most often this is a validated finite element
model, although some work refers to a model obtained from an undamaged structure.
Requiring this footprint can limit the application of these techniques. This paper presents
a technique that solely uses the mode shape obtained from a damaged beam; no footprint
or natural frequency information are required. The first part of the identification procedure
is to apply a Laplacian operator to the discretely measured mode shape. When damage
is severe, this single step is sufficient to identify the location of the damage. However, when
damage is less severe, further processing of the Laplacian yields a damage detection
procedure that can identify a localized thickness change as small as 0·5%. This procedure
is developed with finite element models of a cantilever and a free–free beam, and
demonstrated with the results from an experimental modal analysis of a beam.

2. THE LAPLACE OPERATOR

Cracks and other forms of localized damage in a beam can introduce a reduction in the
flexural stiffness (EI), but minimal change to the mass. For the uniform, rectangular
cross-section beam considered here, localized stiffness damage can be introduced by
reducing the thickness for one element of the finite element model, but leaving the mass
matrix unchanged. This approach is consistent with previously published work, including
references [9] and [38]. The percentage reduction in thickness is called the percentage
damage applied to the beam. For the numerical examples, a model with a reduced matrix
size of 20 was used, and although this damage detection procedure does not require natural
frequency information, for interest Figures 1 and 2 show the variation of natural
frequencies with damage.

Figure 1. Effect of damage on natural frequencies for a free–free beam; ——, mode 1; -----, mode 2; —-—,
mode 3; ———, mode 4.



40

0

–12
0

% Damage

%
 C

h
an

ge
 in

 n
at

u
ra

l f
re

qu
en

cy

–8

–4

10 20 30

171
Node

L
ap

la
ci

an

5 9 13

. . 508

Figure 2. Effect of damage on natural frequencies for a cantilever: key as for Figure 1.

Localized changes to EI result in a mode shape that has a localized change in slope.
Experimental mode shape data are discrete in space, and therefore the change in slope can
be estimated using a finite difference approximation. The Laplacian difference equation
[39] is a common method used to calculate an estimate of the second difference of a discrete
function, but it is normally applied to problems involving two dimensions. A beam can
be analyzed as a one-dimensional structure, and in this case the one-dimensional
Laplacian, Li , of the discrete mode shape, yi , is given by

Li =(yi+1 + yi−1)−2yi . (1)

A Laplacian calculated using equation (1) and the shape for the first bending mode of
a finite element free–free beam with 50% damage between nodes ( 7 and ( 8 is shown
in Figure 3. This level of damage is severe, and also causes a noticeable anomaly in the
mode shape. When the damage is less severe, the Laplacian retains its characteristic shape,
but the effect is less pronounced. This is shown, for 5% damage to the same beam, in
Figure 4. The Laplacian has a similar shape and identifies damage in a similar fashion to
the curvature shapes in reference [38]. The main difference is that reference [38] considers
the difference in curvature between undamaged and damaged beams, whereas this study
only considers the damaged model.

Figure 3. Laplacian for 50% damage.
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Figure 4. Laplacian for 5% damage.

3. MODIFYING THE LAPLACIAN

As the level of damage further reduces, the distinctive shape of the Laplacian continues
to become less pronounced. It still holds the information required to locate the damage,
but the location is not immediately apparent. Various methods of enhancing the
discontinuity in the graph, such as piecewise linearization and cubic spline, were tried. The
method that was most effective was to fit a cubic polynomial to the Laplacian, and
calculate a difference function between the cubic and Laplacian. A separate cubic was
determined for each element of the Laplacian in turn, with the coefficients being
determined from the data on either side of the element, but excluding the actual element.
For example, the cubic calculated for the ith element of the Laplacian, Li, at position xi

along the beam, was defined as

a0 + a1xi + a2x2
i + a3x3

i . (2)
The coefficients a0, a1, a2 and a3 were determined using Laplacian elements:

Li−2, Li−1, Li+1, Li+2. (3)

Figure 5. Calculation of the difference function for Node ( 7: —, Laplacian; w, data for cubic; ----; cubic.
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The difference function, dv̇ was calculated from the cubic and the Laplacian:

di =(a0 + a1xi + a2x2
i + a3x3

i )−Li . (4)

This calculation is shown graphically for i=7 in Figure 5. The difference function for
5% damage between nodes ( 7 and ( 8 is shown in Figure 6. While the difference
function does not identify the location of damage as accurately as the Laplacian, it is still
sufficiently detailed to suggest where damage may be present. For example, Figure 6
suggests damage somewhere between nodes ( 5 and ( 10. This ‘‘smearing’’ of location
is a result of the difference function calculation.

Figure 6. Difference function d for 5% damage (free–free).

Figure 7. Difference function d for 0·5% damage (free–free).

Figure 8. Difference function d for 0·5% damage (cantilever).
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4. SENSITIVITY

4.1.   

As an indication of the potential for identifying small amounts of localized damage,
Figure 7 shows the difference function for 0·5% damage between node ( 7 and ( 8 of
a free–free beam. This damage is equivalent to locally reducing the thickness of the 5 mm
beam to 4·975 mm. Figure 8 shows the difference function for a cantilever with the same
damage. Note that the difference functions are scaled to the full size of the graph—absolute
values are not considered here. The unprocessed Laplacian can identify thickness
variations of about 10%. However, the difference function can identify the location of less
than 0·5% damage.

4.2.  

An important consideration for experimental mode shape data is the effect of increasing
the mode number. Usually, the higher the mode number, the more difficult it is to measure
and accurately identify a mode shape. Figures 9–12 show the difference function for several
natural frequencies for a cantilever with 10% damage. The figures show that the difference
function for the fundamental gives the strongest indication of damage. Mode shapes for
higher natural frequencies are not as effective, but can still be used to verify the location
of damage. The findings are similar for a free–free beam.

Figure 9. Cantilever mode 1 difference function d for 10% damage.

Figure 10. Cantilever mode 2 difference function d for 10% damage.
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Figure 11. Cantilever mode 3 different function d for 10% damage.

Figure 12. Cantilever mode 4 difference function d for 10% damage.

Figure 13. Cantilever difference function d for 10% damage near root.

4.3.  

Calculation of the difference function is most effective when there are at least two spatial
co-ordinates on each side of the damage location. When damage is very close to either
end of the beam the ‘‘end effects’’ caused by the numerical operations can partly obscure
the characteristic shape of the difference function. When damage is not near an end, the
sensitivity of the procedure is almost independent of the damage location. This is shown
in Figures 13 and 14 for a cantilever with 10% damage applied toward the root and tip,
respectively.
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Figure 14. Cantilever difference function d for 10% damage near the tip.

5. STRAIN MODAL DATA

The analysis conducted so far has considered displacement mode shapes. There is a
rising interest in using strain gauges to measure mode shapes [40–42], and the surface strain
can be related to the radius of curvature, R, of the beam. For pure bending:

o= t/2R. (5)

When displacements are small, the radius of curvature can be approximated by

R= =(1+ (dy/dx)2)3/2/(d2y/dx2)=1 =1/(d2y/dx2)== =1/L=. (6)

Hence the Laplacian is proportional to the surface strain:

L=d2y/dx2 1 1/R=(2/t) o. (7)

The experimental significance is that the Laplacian can be obtained directly from a
measured strain mode shape, which eliminates the need to calculate it from displacement
data. This potentially offers a significant improvement in the sensitivity of the procedure
presented in this paper, and helps explain the findings in references [36] and [37] that strain
mode shapes are more effective as damage location indicators.

6. EXPERIMENTAL DEMONSTRATION

A flat steel beam, approximately 0·6 m×0·25 m×4 mm thick (24 in×10 in×1/6 in)
was suspended through two small holes with S-hooks and rubber cords. The beam had
very light damping, and therefore, to make it more representative of an engineering

T 1

Effect of damage on the natural frequencies and viscous damping ratios

Natural frequency (Hz) Viscous damping ratio (%)
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

Mode Undamaged Damaged Undamaged Damaged

1 60·82 54·82 2·21 2·45
2 167·65 151·88 0·81 0·90
3 328·97 324·86 0·42 0·43
4 544·02 509·65 0·26 0·29
5 811·01 755·61 0·18 0·20
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structure, free layer damping was applied to one side. This gave the beam a damping ratio
in the range 0·5–2%. A uniform 20×7 mesh of co-ordinates was marked on the beam,
which was damaged by cutting a through-thickness slot (the thickness of a saw blade) in
the middle, across approximately half the width, and 0·2 m from one end. This introduced
a stiffness change, with minimal effect on the mass of the plate. The test method was impact
excitation, referenced to a fixed accelerometer, and the 140 frequency response functions
were recorded and subject to a modal analysis of the first five natural frequencies. For
comparison only, the natural frequencies and damping ratios before and after damaging
the beam are shown in Table 1. For all modes there is a small increase in damping,
although the increase is within the bounds of experimental error. All the natural
frequencies are reduced, and a comparison with the equivalent data for the finite element
beam, Figure 1, suggests the slot caused stiffness damage comparable to that produced
by about 30% damage.

The mode shapes for the first two natural frequencies, and their Laplacian and difference
functions, are shown in Figures 15–20. These results are consistent with the finite element

Figure 15. Experimental mode 1.

Figure 16. Laplacian for mode 1.

Figure 17. Difference function d for mode 1.
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Figure 18. Experimental mode 2.

Figure 19. Laplacian for mode 2.

Figure 20. Difference function d for mode 2.

findings, and the Laplacian has identified the location of the damage. However, the
difference function gives a clearer indication of the damage location.

7. DISCUSSION AND CONCLUSIONS

A finite difference Laplacian function can successfully be used to identify the location
of stiffness damage of as little as about 10% in an otherwise uniform beam. When damage
is less severe, further processing of the Laplacian can locate damage of less than 0·5%.
The post-processing consists of determining a cubic polynomial to fit the Laplacian locally
at each spatial co-ordinate. A difference function between the cubic and Laplacian provides
the information necessary to identify the location of damage. Mode shape data from the
fundamental mode are most suited to the technique. However, data from the next three
or four natural frequencies can be of use, particularly for verification of the results from
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the fundamental. The findings were supported by experiment, where a slot cut into a steel
beam was successfully found.

The Laplacian function represents the curvature of the mode shape. This is proportional
to the surface strain on a beam. This suggests that modal data obtained using strain gauges
may be used directly in place of the Laplacian. While this was not verified experimentally,
measuring strain mode shapes potentially may further improve the sensitivity of the
proposed damage detection procedure.
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