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1. 

The renewed interests concerning the applicability of Statistical Energy Analysis (SEA)
have led to a strong effort in order to assess definitively the capability of the predictive
vibroacoustic methodologies when working in the high frequency ranges. Furthermore, the
Finite Element Method (FEM) is also being investigated to clarify if and how it could allow
an analysis for decreasing wavelengths. The high frequency range is such that the response
of a vibroacoustic system is no longer dominated by that of a single mode but, conversely,
the direct and the coupling loss factor will govern the amplitude of the vibrational and
acoustic levels. A specific analysis of the literature shows the guidelines outlined in the next
paragraphs.

1.1. SEA extension
Researchers involved with the development of the SEA technique are defining refined

wave-based approaches in order to make available efficient tools for the evaluation of the
coupling loss factors. At increasing wavelengths the applicability of SEA has been
demonstrated even if the increasing of the confidence intervals of the data could not always
allow an engineering usage of these latter [1].

Furthermore an iterative SEA procedure, called Advanced Statistical Energy Analysis,
has been proposed [2] in order to solve the tunnelling problem. This phenomenon occurs
when the energy exchange among structural subsystems that are not directly in contact
has to be predicted: the standard SEA is not able to account for it, over-predicting the
energy levels, while the proposed ASEA is able to converge onto the real behaviour.

1.2. FEM extension
The fundamental problem is related to the computational costs. In fact, the FEM

represents the best numerical solution (for sake of brevity: it is an approximation of a
differential problem with the required boundary conditions) but the spatial mesh is
frequency dependent. Also the average of an adequate modal content does not always allow
a significant extension in the frequency domain [3]. Significant attempts have been
successfully made by using the adsorbing waves inside a finite element approach. This
research is still ongoing [4].

1.3. Novel approaches
These approaches try to circumvent the spatial limitations of the deterministic

approaches, using a transformation of the solution domain [5]. Efficient theoretical
comparisons and promising results have appeared in the literature; also however, the
applicability of the proposed approaches has still to be demonstrated for more complicated
structures (multicomponent analysis): for example, N-plate assemblies. A unified look at
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the problem [5] has been given in order to encompass all the research activities in a proper
scheme.

2.     

Fundamentally, what follows here is concerned with the second of the previously
outlined guidelines: the aim is related to the possibility of defining a scaled finite element
model able to represent the energy exchange for increasing excitation frequency.

The basic idea is to reduce the extension of the spatial dimensions not involved in the
energy transmission, to keep the same finite element mesh and also enforcing an augmented
damping level to obtain finally the same energy levels of the original model.

The starting point of the work can be summarized by the following general question:
is it possible to evaluate the response of a structural system by using a scaled model in a way
to perform the analysis with a smallest test model? The answer will depend upon the quality
of the information one would get.

If the natural frequencies and mode shapes are needed, the properties of the material
could be properly defined together with the geometrical dimensions in such a way as to
obtain an efficient scaling of the test model. For example, the undamped longitudinal
natural frequencies of a free–free rod, length L, could be evaluated by using the
relationship

fi = icl /(2L) with i ${0, 1 . . . , N}. (1)

In the laboratory one could use a rod of reduced length, say L*, and made of different
material such that the ratio cl/L remains the same:

c*l /L*= cl /L c fi = f*1 . (2)

Obviously, the same boundary conditions have to be kept. Note that the wave speed of
the pure longitudinal waves, cl , depends upon the material properties: cl =(En/r)1/2.

This similitude allows basically the use of a rod of different (reduced) length and made
of different material, such that the natural frequencies and the mode shapes are identical
to those of the original system. From a numerical point of view, the same reduction could
be performed with the finite element method too, but in this case one has to evaluate the
effect of modifying the wave speed, so as to properly model the wavelength (number of
degrees of freedom). If the wave speed remains unchanged, the natural frequencies will
move, for a length reduction, to higher values while the mode shapes should be computed
over the reduced domain: they will be again identical.

For the evaluation of the damped response of a structural system or a
structural–acoustic one, the problem is quite different. In fact it is really complicated to
use a modal solution as a primary reference since the parameters can be found only with
difficulty. In respect to wave propagation in non-reverberant systems some considerations
could be made.

In a chain of one-dimensional non-reverberant systems, the amount of energy, say E1,
of the first system that reaches the boundary is proportional to E1* exp(−mp), where m
is the modal overlap factor of the first system. The reflected energy, upon using the
previous hypothesis, will be E1* exp(−2mp). For high values of the modal overlap factor†
(i.e. greater than 0·5) the systems are not reverberant. This means that for values of the
modal overlap sufficiently high, the dynamic response is independent of the phase of
various components while the dynamic response will depend on the constant modal
overlap factor of each system, and the transmission coefficients among the subsystems.

† Modal overlap factor: m=vhn where n is the modal density.
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Now, a finite element solution is considered. By adopting a mesh for the 1-D domain,
the maximum frequency represented inside the system has also been fixed; this frequency
is associated with the wavelength at which at least five (or seven) grid points are available
for the representation of the wave. For smaller wavelengths the representation will no
longer be possible.

Using the same mesh for the scaled 1-D domain, obtained by multiplying all the linear
dimensions by a(with aQ 1), one gets an increase of the modal density n. In fact for 1-D
system in which travelling longitudinal waves, is n= cl /L. To keep the same modal overlap
factor in the scaled model, the damping loss factor has to be divided by a.

The transmission coefficients for a 1-D system do not depend on the lengths of the
systems, so the scaled finite element model can be assembled simply by performing the
following operations: the linear dimensions have to be reduced by a, and the damping has
to be augmented by 1/a. Hence by using the scaled finite element model it will be possible
to determine the energy exchange at increasing excitation frequency, for growing values
of the modal overlap factor.

It is interesting to compare results obtained in this latter way with the SEA standard
results, as these can be considered as a reference solution for the energy exchange.

The first selected reference solution is the response of a simple rod. The list of parameters
is as follows: length, L; section A; Young’s Modulus En ; mass rAL; density r; semi-infinite
impedance Z= rAcl ; internal loss factor h; excitation force F=F0(e−jvt). By using the
classical SEA relationships, the energetic balance of a single wave system can be
represented by the equation [6]

PINPUT =Ehv. (3)

For a 1-D structural system the total energy is E= 1
2mv2 = 1

2rALv2 and the input
power is PINPUT = 1

2 =F =2 Real (1/Z). Solving equation (3) for the averaged squared velocity
gives

v2 = =F =2[hvZrAL]−1. (4)

For longitudinal waves, the rod is excited at one end and Z= rAcl , so that equation (4)
can be written as

v2 = =F =2[hvrAclrAL]−1. (5)

This can be defined as the original response. Now, consider a new rod, with * denoting
the related symbols. The response of this rod is

v*2 = =F*=2[h*vr*2A*2c*l L*]−1. (6)

This can be defined as the scaled response. Imposing cl = c*l , A=A*, F=F*, one obtains

v2 = v*2c hL= h*L*. (7)

If the scaling function is linear in the parameter a, L*= aL, the scaled model will furnish
the same energetic levels of the original one if

h/a= h*. (8)

The damping of the scaled system has to be 1/a times the geometrical reduction (aQ 1)
of the original length of the rod (e.g.: the damping of the reduced rod has to be greater
than that of the original one). It should be noted that other parameters also could be
introduced to scale the model: the choice is not unique. It is useful at this point to view
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Figure 1. Squared velocity of the rod, —r—, Original F.E. model; · · ·+· · ·, scaled F.E. model; --w--, refined
F.E. model; ——, SEA.

the results outlined by equations (7) and (8) from the finite element point of view: (i) the
properties of the material are the same, the longitudinal wave speeds in both the models
are the same; (ii) the length is simply reduced; (iii) the boundary conditions are the same;
(iv) the damping loss factor has to be scaled inversely to the length of the domain. The
finite element model of the scaled rod will be identical to the original one, except for the
damping; it is necessary only in order to reduce the number of degrees of freedom. The
energy evaluated by using the scaled model should be the same as that of the original one.
The natural frequencies extracted from the scaled model will be shifted by the parameter
1/a. The results of the approach are shown in Figure 1, for three selected finite element
models, which have the characteristics shown in Table 1. The results shown in Figure 1
are encouraging. The scaled FEM solution fits the SEA one starting 4 kHz. This result
justifies the hypothesis of a non-reverberant domain as described above.

T 1

The finite element characteristics of the simple rod

Itemized as Length (mm) Loss factor No. of F. E.

First F.E. model Original L=10 000 h=0·04 60
Second F.E. model Scaled (a=1/2) L*a h/a 30
Third F.E. model Refined (a=1/2) L*a h/a 60
Common parameter: Section A=10 000 mm2, E=7000 kp mm−2, r=2·7×10−10 kp s mm−4,

unit excitation amplitude.
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3.  

The SEA relationship for an assembly of two subsystems is such that the energy ratio,
when the first system is excited and the second system is the receiver, is given by

E2

E1
=

n2

n1

1
(h2/n21 +1)

c
v2

2

v2
1
=

(rAL)1

(rAL)2

h2

h1

1
(h2/n21 +1)

. (9)

Here n denotes the modal density, hi the damping loss factor, and hij the coupling loss
factor. For the evaluation of the separate energy levels, it has to be remembered that

E1 =
P1

v

(h2 + h21)
(h1 + h12)(h2 + h21)− h21h12

=
1
2 =F =2 Real{1/Z1}

v

(h2 + h21)
(h1 + h12)(h2 + h21)− h21h12

. (10)

By using equations (9) and (10) the energy level of the receiving system can be easily
evaluated. The scheme now considered is related to two in-line rods. The same terminology
is used as before with the addition of an index. The modal densities and the coupling loss
factors are exposed explicitly. One has then

v2
2

v2
1
=

(rAL)1

(rAL)2 0L2

cl210cl1

L210 h2v

(t12/2pn2
)+11

−1

, (11)

with

t12 =4(zZ1/Z2 +zZ2/Z1)−2 =4(z(rAcl )1/(rAcl )2 +z(rAcl )2/(rAcl )1)
−2.

Assuming now for the sake of simplicity that the rods are of the same material, one has

v2
2

v2
1
=

1
s 0 h2v

(t122pn2)
+11

−1

, (12)

with

t12 =4(zs+z1/s)−2 and s=A2/A1.

The transmission coefficient t depends only upon the ratio, s, of the two rods [6]. The
scaled model of the two rods will be such that all remain unchanged except for the damping
and the rod lengths. In particular

L*1 = aL1 and L*2 = aL2. (13)

Note also that, ntALi /cli and h21 = (t12/2pvn2)

and n*21 = (t12/2pvn*2 )= (t12/2pvn2a)c h*21 = h21(1/a).

The energy ratio

v2
2

v2
1
=

(v*2 )2

(v*1 )2c h2n2 = h*2 n*2 c h2L2 = h*2 L*2 c h*2 = h2(1/a). (14)

The energy of the scaled source system is thus calculated as

E*1 =
=F =2{1/(rAcl )1}

v

(h*2 + h*21)
(h*1 + h*12)(h*2 + h*21)− h*21h*12

. (15)

Therefore, it is easy to demonstrate that:

E*1 = aE1, 1
2r1A1L*1 (v*1 )2 = a1

2r1A1L1(v1)2 (16, 17)
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T 2

Common properties of the finite element models of the six rod model

Rods
ZXXXXXXXXXXXCXXXXXXXXXXXV
1 2 3 4 5 6

Mass per unit length 1 10 3 7 8 2
Longitudinal wave speed 5000
Harmonic excitation Unit value at x=0·0 (free end of the first rod)

but imposing L*1 = aL1 gives the final result as

(v*1 )2 = (v1)2. (18)

4.    

For the primary assessment of the scaling procedure, a test-case presented in the
literature in 1994 has been used. It represents an assembly of six in-line rods whose
properties are reported in Tables 2 and 3. This model is a severe test for the standard SEA
approach, because the problem of tunnelling is involved [7]: the problem of the energy
exchanges between subsystems that are separate from other subsystems. In reference [7]
the feasibility was demonstrated of a new iterative scheme called ASEA, that is able to
overcome the 30 dB overprediction in the sixth rod due to the standard SEA; see Figure 2
in which the finite element results are also included.

The starting finite element model has been designed to work up to 3400 Hz by using
600 finite elements; see Table 3. The other finite element model characteristics are reported
in Tables 4, 5, and 6. The standard SEA relationships can be easily derived and they are
not shown here. In reference [7] the velocity ratios of the rods 3, 4, 5 and 6 to that of the
source rod (the first one) have been reported. Here, only the worst result is shown,
concerning that for the sixth rod.

The efficiency of the scaling procedure is immediately evident. It is possible to obtain
the same quality of results by using the SCALED finite element model, while keeping the
total number of degrees of freedom, it is possible to extend the frequency validity of the
finite element model (see the models REFINED and REFINED2).

Again the scaled FEM results are in good accordance with the analytical one starting
from a frequency value where the modal overlap factor becomes high enough and hence
such that the domains can be considered non-reverberant. Moreover it must be stressed
that the scaled FEM approach can be applied successfully for a system where SEA is not
valid. In fact the solution schemes of the two approaches are completely different. In the
SEA one does not take into account the energy exchanges among subsystems not directly

T 3

Characteristics of the F.E. model original, (a=1)

Rods
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

Length 1 2 3 4 5 6

Length 23 28 25 24 29 21
Loss factor 0·02
Number of elements 600
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Figure 2. The six rods problem: ratio of the sixth rod velocity to that of the source rod. —e—, SEA; ——,
analytical; · · ·Q· · ·, F.E. REFINED2 (601 dofs); · · · w· · ·, F.E. REFINED (601 dofs); · · ·+ · · ·, FE SCALED
(301 dots); r, FE ORIGINAL (601 dofs).

T 4

Characteristics of the first scaled F.E. element model (a=1/2) scaled

Rods
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

1 2 3 4 5 6

Length 23*a 28*a 25*a 24*a 29*a 21*a
Loss factor 0·02/a=0·04
Number of elements 300

T 5

Characteristics of the second scaled F.E. model (a=1/2) REFINED

Rods
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

1 2 3 4 5 6

Length 23*a 28*a 25*a 24*a 29*a 21*a
Loss factor 0·02/a=0·04
Number of elements 600

connected (for example the first rod with the sixth one). In the FEM approach the solution
is not developed by splitting the domain into subsystems: the stiffness, mass and damping
matrices are assembled and solved for the complete domain.

It is useful to discuss the limits of the scaling procedure presented. Virtually, there
are no superior limits, if one satisfies the modal density requirement. In particular



    547

T 6

Characteristics of the third scaled F.E. model (a=1/3) REFINED2

Rods
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

1 2 3 4 5 6

Length 23*a 28*a 25*a 24*a 29*a 21*a
Loss factor 0·02/a=0·06
Number of elements 600

Figure 3 shows the values of the driving point admittance, Y. Note that
Real (1/Z)=Real (Y)= (p/2)n(v)/M. Therefore the value of Y corresponds to that of the
modal density of the systems. The energy based similitude can be adopted until the modal
densities are sufficiently represented. Finally it has to be noted that the finite element
velocities have been averaged over the space domain; they were not averaged over the
excitation locations and the frequency domain.

Some comments are needed concerning better analysis and the validity and the
applicability of the results previously outlined. The whole approach is based upon the
analysis of the energy exchange among subsystems.

It is useful to recall some of the basic hypothesis: (i) the boundary conditions do not
affect the energetic response; (ii) high modal density and modal overlap factor response;
(iii) the subsystems energy exchange is determined by considering semi-infinite systems.

The third point could be overcome by using the finite element approach. In fact when
using the finite element method the transmission coefficient between the subsystems i and
j could be evaluated also in presence of a kth subsystem. The energy based similitude could

Figure 3. The six rods problem: analysis of the power input for the several finite element models. Theoretical
value of the driving point admittance is 1·83 E-5. Finite element models: —e—, ORIGINAL; · · ·E· · ·,
SCALED; —w—, REFINED; —W—, REFINED 2.
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be so used also for evaluating the transmission coefficients among structural and acoustic
subsystems in the presence of the rest of the structure; this should be useful for the
frequency region where the subsystems oscillate as finite systems. The next step of the
research will be focused toward results for plate assemblies, which are severe test cases for
the random transmission characteristics.
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