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The sensitivity of eigenvalues to the location of bracing and/or boundary support is
formulated by using a generalized variational principle. The constraints are incorporated
through the use of Lagrange multipliers. A numerical example is provided to illustrate the
proposed method and its accuracy in application.
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1. INTRODUCTION

Slender beams, thin plates and some built-up structures, such as ships, are susceptible to
lateral–torsional buckling and/or vibration. It is often necessary to specify intermediate
supports for such structures to reduce the possibility of design failure. The locations of
the braces and intermediate supports affect significantly the buckling load and natural
vibration frequencies [1, 2]. Therefore, it is desirable to guide selection of the optimal
locations of these constraints. Eigenvalue sensitivity analysis with respect to the locations
of these constraints reveals the relative importance of design parameters to specified
performance measures like buckling load or natural frequency magnitude. Sensitivity
analysis is particularly useful in large and complex analytical models where optimal
bracing and intermediate support locations are not obvious and can be expensive to locate
by repeated analysis. In addition, sensitivity approximates eigenvalues following
perturbation of bracing and/or intermediate support locations, and is used for shaping
vibration modes to reduce dynamic displacements at particular locations.

In recent years, optimal specification of constraints for beams to prohibit buckling and
constrain vibration has received substantial attention [1–9]. Liu et al. [3] presented a
generalized variational approach to the derivation of eigenvalue sensitivity with respect to
support location for continuous systems. Wang [4] derived a sensitivity formula from a
normal mode method. Chuang and Hou [5, 6] derived eigenvalue sensitivity with respect
to the support location in a beam through a material derivative. Hsieh and Arora [10]
investigated the dynamic response of structural systems when general boundary conditions
are imposed during the analysis phase. Pierre [11] studied eigenvalue sensitivity
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formulation with respect to the natural boundary conditions. Very recently, Liu and Hu
[12] presented a method to formulate eigenpair sensitivity with respect to boundary shape.
In the continuum methods the eigenvalue sensitivity is derived from a weak variational
form. In discrete methods the sensitivity is obtained following spatial discretization of the
governing differential equations.

The continuum approach to eigenvalue sensitivity with respect to bracing and support
locations has been evaluated in references [3–6]. However, the discrete derivation for
eigenvalue sensitivity with respect to bracing and support locations appears to have not
been brought to closure. Lund and Olhoff [9] noted that erroneous results for eigenvalue
sensitivity can be obtained when the characteristic equation is differentiated at the
locations of boundary supports. In this case the essential boundary equations, necessary
for specification of the space of admissible functions, can be violated. A derivation of
eigenvalue sensitivity that avoids this problem and a numerical algorithm for prediction
of sensitivity are presented in this paper.

The sensitivity of eigenvalues with respect to the locations of constraints is formulated
here through a generalized Rayleigh Quotient. The stationarity of the Rayleigh Quotient
subject to constraints is transformed into a free stationary problem without constraints
by means of Lagrange multipliers. The eigenvalue sensitivity is then obtained by
differentiating the generalized Rayleigh Quotient.

2. PROBLEM DESCRIPTION

Assume that a continuous structure has been spatially discretized into a N-degree of
freedom (e.g., finite element) model so that its undamped free linear vibration and/or
buckling analysis leads to a finite eigenvalue problem,

KZi − liMZi =0, (1)

where K $RN×N, M $RN×N and Zi $RN. In a vibration problem, li is the square of the ith
natural frequency and in a buckling analysis li is the buckling load factor. Zi is the ith
mode associated with li . K and M are symmetric, K is positive semidefinite, and M is
positive definite in vibration. The constraints due to supports and/or braces are represented
in the form

Xr =0, (2)

The partition of equation (1) in the form ZT = [XT
r , XT

f ], following introduction of equation
(2), yields

0$Krr

Kfr

Krf

Kff%− li $Mrr

Mfr

Mrf

Mff%1$Xri

Xfi%=0. (3)

From equations (2) and (3), one obtains the reduced eigenproblem

(Kff − siMff )Yi =0, (4)

where si and Yi are respectively the ith eigenvalue and the corresponding eigenvector of
the constrained system.

Let the locations of the constrained co-ordinates be perturbed to a new co-ordinate
vector U(h)=U+ hZ, where Z is the direction of perturbation, U is the co-ordinate
vector of the unperturbed constrained nodes and h is a scaling parameter. The
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eigenproblem associated with the perturbed locations of the constraints is then

(K*f f − s*i M*f f )Y*i =0, (5)

where K*f f and M*f f reflect the perturbed locations of constraints, s*i is the ith eigenvalue
and Y*i is the associated eigenvector. When h=0, one has s*i = si and Y*i =Yi.
The eigenvalue sensitivity becomes

dsi

dh
=lim

h:0

s*i − si

h
(6)

and the problem is to formulate dsi/dh to facilitate its application in optimization.

3. RAYLEIGH QUOTIENT R(x, y)

Two Rayleigh Quotients are used to establish the relation between s*i and h, one
including and one excluding the constraint.

The Rayleigh Quotient associated with equation (3) is

R3 =

[XT
r , XT

f ]$Krr

Kfr

Krf

Kff%$Xr

Xf%
[XT

r , XT
f ]$Mrr

Mfr

Mrf

Mff%$Xr

Xf%
(7)

and the eigenvalue si is the ith stationarity of R3, reference [8],

li = s.t.R3 = s.t.

[XT
r , XT

f ]$Krr

Kfr

Krf

Kff%$Xr

Xf%
[XT

r , XT
f ]$Mrr

Mfr

Mrf

Mff%$Xr

Xf%
(8)

where s.t. denotes the stationary value with respect to Xf and Xr . This equation can be
further expressed as

R3(Xri , Xfi )= li (9)

and when [Xr , Xf ]T = [Xri , Xfi ]T

1R3/1Xr =0, 1R3/1Xf =0, (10, 11)

The Rayleigh Quotient for equation (4) is

R4(Y)=YTKffY/YTMffY (12)

and

R4(Yi)=YT
i KffYi /YT

i MffYi = si 1R4(Y)/1Y=0 when Y=Yi . (13, 14)
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Define the generalized Rayleigh Quotient as

RG (Xr , Xf , r)=

[XT
r , XT

f ]$Krr

Kfr

Krf

Kff%$Xr

Xf%−2[rT, 0]$Xr

0 %
[XT

r , XT
f ]$Mrr

Mfr

Mrf

Mff%$Xr

Xf%
(15)

where r is an Nr order column vector of Lagrange multipliers to be determined.
Stationarity of RG (Xr , Xf , r) requires

1RG

1r
=

−2Xr

[XT
r , XT

f ]$Maa

Mba

Mab

Mbb%$Xr

Xf%
, (16)

1RG

1Xf
=

2([Kfr , Kff]−RG [Mfr , Mff ])$Xr

Xf%
[Xr , Xf ]$Mrr

Mfr

Mrf

Mff%$Xr

Xf%
, (17)

1RG

1Xr
=

2([Krr , Krf]−RG[Mrr , Mrf ])$Xr

Xf%−2[rT, 0]$10%
[Xr , Xf ]$Mrr

Mfr

Mrf

Mff%$Xr

Xf%
, (18)

The stationary of RG with respect to r, equation (16), provides

Xr =0 (19)

The stationary of RG with respect to Xf , equations (17) and (19), leads to (see equation
(4))

[Kff −RGMff ]Xf =0. (20)

The stationary of RG with respect to Xr , equations (18) and (19), gives

[Krf −RGMrf ]Xf = r. (21)

Equations (20) and (21) yield

$$Krr

Kfr

Krf

Kff%−RG$Mrr

Mfr

Mrf

Mff%%$ 0
Xf%=$r0%, (22)

illustrating the force of constraint provided by the Lagrange multipliers.
When RG is stationary,

dRG =0. (23)
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Then

RG =

[XT
r , XT

f ] $Krr

Kfr

Krf

Kff%$Xr

Xf%−2[rT, 0]$Xr

Xf%
[XT

r , XT
f ]$Mrr

Mfr

Mrf

Mff%$Xr

Xf%
= si (24)

and

Xr =0, Xf =Xfi , r= ri =KrfXfi − siMrfXfi .

4. EIGENVALUE SENSITIVITY

Because Xri , Xfi , ri , K and M all depend on h for the given perturbation direction Z,
si depends on h. Variation in h, dh, results in a variation in si , denoted as dsi ,

dsi = dhsi + d0
hsi , (25)

where d0
hsi denotes the variation of si induced by Xri , Xfi and ri alone with h=0. Because

si is a stationary value of RG with respect to Xri , Xfi and ri ,

d0
hsi =0. (26)

Therefore,

dsi = d0
hsi , (27)

where dhsi is the variation of si induced by h with Xri , Xfi and ri remaining unchanged.
For a distinct si , dif ferentiation of equation (24) with respect to h yields

dsi/dh=[1V/1h− si1L/1h−2rT
i X'ri ]XT

f iMffXfi , (28)

where

1V
1h

=
1

1h0[X	 T
r , X	 T

f ]$Krr

Kfr

Krf

Kff%$X	 r

X	 f%1, (29)

1L
1h

=
1

1h0[X	 T
r , X	 T

f ]$Mrr

Mfr

Mrf

Mff%$X	 r

X	 f%1, (30)

with a tilde ( 	 ) over a variable denoting that the variable is kept fixed during the partial
dif ferentiation; and X' is the spatial slope of X defined by

X'= lim
h:0

(X(h)−X(0))/h. (31)

The first two terms on the right side of equation (28) represent changes of potential energy
and kinetic energy due to the variation of the constraint location; the last term reflects the
product of the reaction forces of the constraint with the slope of the eigenvector at the
point of constraint.

For repeated s0 with multiplicity m and a corresponding set of independent eigenvectors
x01, x02, . . . , x0m , X0 will also be an eigenvector associated with an s0,

X0 = [x01, x02, . . . , x0m ]a, (32)
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where a is an arbitrary m order column vector. Partition of X0 with respect to constraints
gives

X0 =$Xr0

Xf0%a. (33)

Introduction of equation (33) and equation (15) yields

s0 =

aT[XT
r0, XT

f0]$Krr

Kfr

Krf

Kff%$Xr0

Xf0%a−2[rT
0 , 0]$Xr0

Xf0%a
aT[XT

r0, XT
f0]$Mrr

Mfr

Mrf

Mff%$Xr0

Xf0%a
, (34)

where r0 is given by

r0 =KrfXfoa− s0MrfXf0a. (35)

Recalling that dhs0 is the variation induced by h alone with Xr0, Xf0 and r0 unchanged, one
has

dhs0 =
aT[1V/1h− s01L/1h−2rT

0 X'r0]a
aTXT

f 0MffXf0a
dh, (36)

where

1V
1h

=
1

1h0[X	 T
r0, X	 T

f0]$Krr

Kfr

Krf

Kff%$X	 r0

X	 f0%1, (37)

1L
1h

=
1

1h0[X	 T
r0, X	 T

f0]$Mrr

Mfr

Mrf

Mff%$X	 r0

X	 f0%1, (38)

(39)

As shown in reference [8], dhs0 is stationary with respect to a. After substitution of equation
(35) into equation (36) and noting that ds0 = dhs0, equation (36) becomes

ds0 = s.t.
aT[1V/1h− s01L/1h−2[KrfXf0 − s0MrfXf0]TX'r0]a

sTXT
f0MffXf0a

dh, (40)

where s.t. denotes a stationary value with respect to a. Stationarity of equation (40) yields
the eigenproblem,

0A−
ds0

dh
B1a=0, (41)

where

A= 1V/1h− s01L/1h−2[KrfXf0 − s0MrfXf0]TX'r0, (42)

B=XT
f0MffXf0, (43)

whose m eigenvalues have the sensitivities of s0.
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Figure 1. A plane frame with two intermediate supports.

5. NUMERICAL EXAMPLE

For illustration, the eigenvalue sensitivity of the first four eigenvalues of the plane frame
shown in Figure 1 with respect to the locations of the intermediate supports are calculated.
The plane frame is described by Young’s modulus=2·1×1011 N/m2, mass
density=7·8×103 kg=m3, cross-sectional area=0·02×0·02=0·0004 m2, Poisson
ratio=0·3, L=12 m, l=4 m, a=4·00 m and b=8·00 m.

The first four eigensolutions have been computed for a plane frame modelled by 32
uniform beam finite elements. The two supports are located at node 9
(X, Y, Z)= (4·000, 0·000, 0·000) and node 17 (X, Y, Z)= (8·000, 0·000, 0·000). The
support locations are perturbed to new positions given by (X, Y, Z)= (4·000, 0·000, 0·000)
+h"1·000, 0·000, 0·000) and (X, Y, Z)= (8·000, 0·000, 0·000) +h(1·000, 0·000, 0·000).
Because the spatial slope of the mode, X'ri , at a nodal point is the rotation in Z at that
nodal point, the eigenvalue derivatives with respect to h can be evaluated using (28). The
results are summarized in Table 1. For comparison, the first four eigenvalue sensitivities
were also approximated by using a forward difference method (FD) with h=0·001 and
those results are included in Table 1. As can be seen in the last two rows of Table 1, the
results obtained by using equation (28) and the forward difference method agree well.

6. CONCLUSION

A generalized Rayleigh Quotient is defined so that the equation for the constraints due
to the bracing and/or supports can be included in the functional RG . The Lagrange

T 1

Eigenvalue sensitivity with respect to support locations

Mode number
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

1 2 3 4

Unperturbed eigenvalues
(h=0·000)

78·3156 149·8498 402·1168 639·9145

Perturbed eigenvalues
(h=0·001)

78·2565 149·9337 402·8429 640·0390

Eign-rate by FD
si /h

−59·1 89·9 174·8 124·5

Eign-rate by Eq. (28)
dsi/dh

−54·0 84·3 179·7 122·4
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multiplier terms, rT
r Xr , give the work done by the reaction forces at the bracing and/or

supports of interest [3, 8]. Equation (28) shows that eigenvalue sensitivity with respect to
location of the constraint depends not only on the changes in potential energy and
kinematic energy due to the variation of constraint location, but also on the product of
the spatial slope of the corresponding eigenvector at the point of constraint with the
constraint force.
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