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At the design stage of many projects, the engineer is often asked to make a prediction
of any resultant sound levels. To achieve this goal, the analysis needs to account for all
the excitation sources and their interaction with all the transmission paths. Whilst for
air-borne sound a source–path–receiver model is often employed with success, inherent
physical problems have, to date, prevented a similar approach being adopted for
structure-borne sound. In this paper the problems are reexamined with particular reference
to the characterization of machines as structure-borne sound sources. A novel approach
proposed by Mondot and Petersson for a single point and component of motion [1] is
developed to include multiple points.
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1. INTRODUCTION

A problem fundamental to the control of structure-borne noise is the characterization of
machines as vibrational sources. Strong dynamic coupling between a machine and
supporting structure prevents source characterisation based upon the transmitted power.
Whilst many alternative approaches have been proposed [2] these commonly assume either
the receiver to be dynamically stable, e.g., to permit a constant force or velocity source
assumption [3], or else assume a standard receiver structure i.e., the reception plate method
[4]. Application of these ideas to the general case is not possible. A more promising
approach proposed by Mondot and Petersson [1] characterizes a source based on its ability
to deliver power. For a single point connection, with a single component of motion, the
calculation assumes nothing about the receiver structure and can be applied to any case.
A problem arises, however, in applying it to multi-point and multi-component
connections. For these cases, the calculation can only be undertaken once an estimate of
the force distribution amongst the connections has been made. The potential for a powerful
noise control tool is therefore realizable providing the force distribution amongst the
contact points can be adequately assumed.
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In this paper the viability of using various simple estimates of the force distribution is
assessed by using idealized beam structures. This is a prelude to more detailed work,
involving generalised structures, which will be reported in later papers.

2. THEORETICAL REVIEW

The structure-borne sound manifested in a body can be measured as either a force, F,
or a velocity, V at any point n, and in any direction i: i.e., Fn

i or Vn
i . A quantization of

the sound obtained by using just one of these measurements is however misleading.
Consider for example the velocity resulting from a force where, if the structure is stiff, the
magnitude of the velocity would clearly be less than if it were flexible. Further confusion
arises because the differences in the units of rotation and translation make an assessment
of the relative importance of different components of excitation difficult. There is a
growing consensus therefore towards combining the two field measurements to calculate
power [5].

If a vibrational source is attached to a receiver via a single, uni-directional point the
transmitted power can be given by

Q=[(Vsf)2/2=Yr +Ys =2] Re {Yr}, (1)

where YS is the mobility of the source, Yr the mobility of the receiver and Vsf is the r.m.s.
free velocity of the source. The free velocity quantizes the response of the source to all
of its internal vibration producing mechanisms and is the velocity measured whilst the
machine is run under normal operating conditions but suspended in free space. Therefore,
it represents the activity of the source.

Equation (1) is interesting for it illustrates why a structure-borne sound source
characteristic cannot be extracted which is analogous to source strength in air-borne
sound. In air-borne sound the source strength can be defined by the power transmitted
at the surface–air interface. The formulation is analogous to equation (1) though with
impedance (the inverse of mobility) and sound pressure the preferred variables. Although
there are circumstances (such as a source surface in close proximity to a receiver surface)
where the condition does not hold, the impedance of the receiver, i.e., air, can be assumed
constant and independent of location. Hence the power involves only variables associated
with the source and can be used directly to characterize a source.

In structure-borne sound there are many possible receivers and the receiver mobility will
vary. The power is dependent upon both source and receiver and a characterization of
source strength analogous to that for air-borne sound is therefore not possible. A different
approach is required.

The problem has been addressed in a seminal paper by Mondot and Petersson [1]. Their
approach is to introduce two functions; one, the source descriptor S, describes the ability
of a source to yield power and the other, the coupling function Cf, is the proportion of
this power which is manifested:

S=(Vsf)2/2Y*s , Cf=Y*s Yr/=Ys +Yr =2. (2, 3)

The transmitted power is given by the real part of their product.
The formulation has several distinct properties. Firstly, the source descriptor is a unique

function of the source in that it involves only source variables. Secondly, since the source
descriptor has the units of power, different components of motion can be compared
directly. Finally, for a single point uni-directional system, both the source descriptor and
coupling function involve variables which are measurable prior to assembly and can
therefore be used to make a prediction of the transmitted power.
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If the source descriptor and coupling function can be applied to multi-point-connected
systems a valuable tool for analysis will result.

2.1.    -- 

Where the source and receiver are connected at many points and motion is possible in
any of the six degrees of freedom (three translational and three rotational) the analysis
becomes complicated because coupling between all points and all components of motion
has to be taken into account. If both a source mobility matrix, [YS ], and a receiver mobility
matrix, [Yr ], are introduced together with a force ratio vector, {Fm

j /Fn
i }, the transmitted

power can be written as

Qn
i =

(Vn
sfi)

2

2=[Ys ]{Fm
j /Fn

i }+[Yr ]{Fm
j /Fn

i }=2
Re {[Yr ]{Fm

j /Fn
i }}. (4)

The equation reveals the problems and complications associated with the analysis of
multi-point-connected systems. Four are key.

(i) The matrices involved are large. For N points, both the source and receiver mobility
matrices will be of size 6N×6N: that is, 576 elements for even a simple four point system.
Even if reciprocity is invoked the amount of data is still considerable. The problem is
compounded since the matrix elements are complex and usually complicated functions of
frequency.

(ii) There are difficulties in assessing the relative significance of source mobility
compared with that of the receiver mobility: i.e., with so many mobility and force terms
it is difficult to determine whether a constant force or constant velocity source idealization
can be assumed [3].

(iii) There are difficulties in assessing the relative importance of the coupling between
different directions and points with regard to the power component under consideration:
i.e., the most important transmission path/s.

(iv) Knowledge of the forces, or more specifically the force ratios, acting at the interface
is required.

To help address these problems the effective point mobility can be introduced [6]. The
concept is based upon the premise that any point in a multi-point-connected system can
be considered individually if the effects on that point of all other points and components
of motion are taken into account. It can be expressed as [7]

YnnS
ii =Ynn

ii + s
N

m=1,m$ n

Ynm
ii

Fm
i

F n
i
+ s

6

j=1,j$ i

Ymn
ij

F n
j

F n
i
+ s

6

j−1,j$ i

Ymn
ij

F m
j

F n
i
: (5)

i.e., the product of the mobility matrix and the force ratio vector in equation (4) is
expressed as a linear combination of terms. As written, the first term is the direct
contribution, the second (sum) is the contribution from the other points in the direction
of motion being considered, the third is the contribution from the other directions at the
point being considered and the fourth is the contribution from the other points in
directions other than that being considered. Since the effective point mobility is a single
figure, its introduction addresses problems (i), (ii) and (iii). Problem (iv) does however still
remain: i.e., knowledge of the forces.

For multi-point-connected systems, the effective point mobility is analogous to the point
mobility. With reference to equations (2) and (3) the source descriptor and coupling
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function for a point n and in direction i for a multi-point-connected system are therefore
given by

Sn
i =(Vn

sfi)
2/2YnnS*sii , Cf n

i =YnnS*sii YnnS*rii /=YnnS
sii +YnnS

rii =2, (6, 7)

respectively. The transmitted power Qn
i at a point and a direction is given by the real part

of the product and the total transmitted power by the sum of all Qn
i .

Thus far, the formulation of the source descriptor and coupling function has been
analytical and the problem of practical application remains. This centres upon the
construction of the effective point mobilities which in turn centres upon obtaining all of
the mobility and force ratio terms. For the surface descriptor to be a function of only
source parameters, the effective point mobility YnnS

Sii
must be independent of the receiver.

This requires that both the source mobilities and force ratios must also be independent.
The mobilities are dependent only upon the source structure and although acquisition

is laborious they can, through either analytical techniques or measurement, be secured
independently of the receiver. The force ratios however are inherently dependent upon
both the source and receiver structures. If the source descriptor is to be a function of only
source parameters the force ratios must therefore be predicted or assumed in some manner.
Hence, before the source descriptor can be used an understanding of the force ratios is
required. At the very least, the sensitivity of the source descriptor to estimates of the force
ratios should be investigated. This is at the core of this study. It is important to note though
that it is the force ratios, i.e., the force distribution, rather than the absolute forces which
need to be predicted.

2.2.    

Present understanding of the force ratios in a source-receiver system is very limited and
it is only through the formulation of the effective point mobility that they have received
any consideration at all. In the theoretical work of Mondot, Petersson and Gibbs [7–9]
the translational force ratios have simply been assumed to have unity magnitude and zero
phase. For force ratios with differing components of motion similarly arbitrary real and
positive values have been used [7]. Upon assuming translational motion only, estimates
of the effective point mobility have therefore been given by

YnnS
ii =Ynn

ii + s
N

m=1,m$ n

Ynm
ii . (8)

The advantages of the assumption are clear; it is simple and does not rely upon knowledge
of the receiver system. The independence of the source descriptor formulation is therefore
maintained.

Alternatively, the contributions from the N contact points can be assumed to cancel
through superposition (upon assuming that the system is linear); i.e., each mobility and
force ratio has different phase. In this case the effective point mobility will simply reduce
to the point mobility:

YnnS
n =Ynn

ii . (9)

This is the same as assuming that the contact points are uncoupled.
A third approach towards an estimate is to take into account both the excitation of the

source and its structural characteristic. The simplest way is to assume that the excitation
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is the free velocity of the contact points and that the structure is characterized by the
associated source point mobility. The force at a contact point is then given by

Fn
i =Vn

sfi/Y
nn
Sii . (10)

The omission of the receiver condition prescribes that this estimate is most applicable to
an ideal force source condition.

To improve upon the third estimate, some account would have to be given to the
coupling between contact points. This would lead towards complicated expressions for
the forces (and subsequently the effective point mobilities) involving transfer mobility
terms.

3. INITIAL INVESTIGATION

It is necessary to establish a criterion for the viability of estimating the force ratios. This
could be the accuracy of an effective point mobility, source descriptor or coupling function.
All are specific, however, to only one contact point and a comprehensive assessment based
upon the contributions of all contact points and components of vibration would be a
protracted task. A simplified investigation can instead be undertaken by selecting for the
criterion the accuracy of the estimates of the total transmitted power. A clear implication
of using this criterion is that no insight into the composite parameters is forthcoming. This
is particularly limited for the investigation will profer nothing regarding the suitability of
the source descriptor as an indicator of source strength. However, for much of engineering
design the total transmitted power is of most interest and it can be argued that for the
source descriptor/coupling function approach to be of use its prediction of the total
transmitted power is the most important.

The response of a beam is not only relatively simple to model analytically but is also
physically representative of many real structures. For an initial investigation, point
connected beam source–receiver systems were therefore developed.

The Euler–Bernoulli wave equation was used to define the models [3],

EI14W/1x4 − rSv2W=0, (11)

where E is the Young’s modulus, r the density, S the cross-sectional area, I the second
moment of area of the cross-section, W the wave displacement and v the frequency.

The general solution for a position x is

W(x)=A e−ikx +B eikx +C e−kx +D ekx (12)

where

k=(v2rS/EI)1/4(1− ih), (13)

is solved for the imposed boundary conditions.
The boundary conditions were based upon the source and receiver beams coupled

together by rigid, massless connectors. With respect to Figure 1, conditions of
continuity were imposed together with moment and force balance equations, which
are respectively:

M1 =M3, M2 =M4 and F1 +F2 =F3 +F4. (14, 15)

The boundary conditions allow power to be transmitted only by translational forces.
Although the significance of moment induced power is recognized [10], the restriction is
imposed because the thrust of the investigation is towards the realisation of the source
descriptor/coupling function formulation rather than an analysis of the power in the
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Figure 1. ‘Exploded’ diagram of a beam connection point.

systems. By assuming the power to be imparted by only translational forces the
investigation could proceed with a much reduced set of mobility and force distribution
functions, compared with the general case.

3.1. 

A reference system was designed; see Figure 2. This consists of a 5 mm thick finite source
beam attached, via four connectors, to a 17 mm thick infinite receiver beam. Excitation
of the system is by a force of unit magnitude and zero phase applied at an approximately
central position. Both the source and receiver beam are assumed to have the material
properties of steel with a loss factor of 0·001.

For the system, the magnitudes of the point and transfer mobilities associated with
contact point 1 are shown in Figure 3(a) and the corresponding phases in Figure 3(b). In
these and all subsequent figures, normalized wavelength denotes the number of
wavelengths in the source beam. Two distinct frequency regions are exhibited. Firstly, a
low frequency mass controlled region characterised by a 6 dB per octave decrease of
magnitude and a frequency invariant phase difference of either 2p/2. Secondly, a
resonance controlled region in which both the magnitude and phase of the mobilities are
highly variable with respect to frequency. The existence of the two regions is due to the
source beam being finite and can be expected for any real structure.

Throughout the mass controlled region the magnitudes of the point mobility Y11
S and

the transfer mobilities Y12
S and Y14

S are approximately equal whilst that of Y13
S is an order

of magnitude less. In the resonance region it is difficult to establish a consistent
relationship; whilst at certain frequencies the magnitudes are approximately equal it is
more common that differences between them exist.

For the receiver the mobility magnitudes are shown in Figure 4. The receiver is infinite
and the distinct mass and resonant controlled regions are therefore not seen. Instead, the
magnitudes exhibit a monotonic decrease with increasing frequency. It is known [3] that
the phase of the point mobility will be frequency invariant with a value of −p/4 but, due
to the travelling wave, the phase of a transfer mobility will have a frequency dependence.

Figure 2. Reference system.



-   665

Figure 3. Source mobility (a) magnitude and (b) phase for reference system. —, Y11
s ; · · · ·, Y12

s ; – – –, Y13
s ; – · · –,

Y14
s .

At all frequencies the magnitudes of the receiver mobilities are approximately equal and,
due to the greater thickness of the beam, are mostly at least 102, i.e., two decades, lower
than those of the source.

3.2. 

The magnitudes and phase differences (relative to the input force) of the four contact
point forces are shown in Figures 5(a) and (b), respectively. As for the source mobilities
two distinct regions are apparent: a low frequency region where the magnitudes are smooth
in character and the phases discretized at either 0 or 2p and a high frequency region where
both magnitude and phase are highly variable.

In the low frequency region the wavelengths are large compared with the bays (a bay
defined as the distance between two adjacent connector points) and accordingly each bay
responds as a rigid body; at very low frequencies the total source beam will respond as

Figure 4. Receiver mobility magnitude for reference system. —, Y11
r ; · · · ·, Y12

r ; – – –, Y13
r ; – · · –, Y14

r .
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Figure 5. Magnitude (a) and (b) phase of forces in reference system. —, F 1; ---, F 2; – –, F 3; – · · –, F 4.

a single mass and the forces will have equal asymptotic values. Since there is no wave
interaction at these frequencies the dynamics can be considered rigid body motion or mass
controlled.

In the upper frequency region the wavelengths become small compared with the bays
and wave interaction can occur. The rigid body motion is lost and the forces are dependent
upon the beam sizes, materials, contact positions and boundary conditions. Both
magnitude and phase are highly variable and no force consistently predominates. The
response can be termed resonant.

The transition between rigid body and resonance behaviour occurs at the frequency of
the fundamental system resonance. Approximately, this is when there is half a bending
wavelength in each source bay indicating that the response of the receiver is having little
effect upon the forces. The source can therefore be described as a constant force source.
In general this cannot be assumed and the fundamental system resonance will be
determined by both source and receiver structures.

With respect to the effective point mobility formulation the force ratios are of far greater
interest than the forces. Shown therefore are the magnitude and corresponding phase of
F 2/F 1, F 3/F 1 and F 4/F 1 in Figures 6(a) and (b). Again a clear distinction can be made
between the rigid body and resonant regions.

The magnitudes of F 2/F 1 and F 3/F 1 in the rigid body region are both greater than
unity whilst the ratio F 4/F 1 is close to unity. This observation is however largely trivial
for, were the forces normalized by, for example, F 3, then all the ratios would be
below unity.

It is interesting to observe that the footprint of the fundamental resonance is not seen
in the force ratios and the character of the rigid body region has been extended. This is
because the resonance is a global effect experienced by all of the forces and therefore not
observed upon taking ratios.
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Figure 6. (a) Magnitude and (b) phase of force ratios in reference system. –, F 2/F 1; ---, F 3/F 1; – –, F 4/F 1.

In the rigid body region F 2/F 1 and F 3/F 1 are p out of phase with F 4/F 1: i.e., F 2 and F 3

move contrary to F 1 and F 4. The response can be considered approximately symmetrical
about the system centre.

In the resonance region the magnitudes of the force ratios exhibit variations about unity
within approximate bounds of 1022 which, for a conventional dB scale, equates to 240 dB.
This corresponds to that shown experimentally by Mondot [8]. The phases can be
considered random.

4. TRANSMITTED POWER ESTIMATES

By using the true force ratios the correct solution for the total transmitted power
was obtained. This was used to normalize estimates obtained via the simple force
ratio assumptions introduced by equations (8)–(10). Since the boundary conditions
imposed do not permit moment induced power, any discrepancies between the correct
and estimate solutions result only from differences between the true and the estimate
translational force ratios. Each of the three simple force ratio estimates will be
considered separately. It was noted that at certain frequencies (about 5%) the
estimates produced negative transmitted power. At these frequencies the absolute value
is used instead.

Shown in Figure 7 is the normalized estimate of the transmitted power, Q est U, with
unit magnitude and zero phase assumed for the force ratios: i.e., equation (8). At the lower
frequencies the estimate is accurate whilst at the high frequencies significant discrepancies
occur. Although at a few frequencies the discrepancies are large, within a range of
approximately 1023 (of 230 dB), the trend is unity.

Interestingly the transition from the lower to the upper frequency region is not according
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Figure 7. Normalized Q est U for reference system.

to the force ratios, but the source mobilities. It is explained by considering the magnitude
of the effective point mobility, =YnnS=, where

=YnnS== s
4

m=1

=Y1m=bFm

F 1 b+ s
4

m=2

2=Y11==Y1m=bFm

F 1 b{cos (uY11 − uY1m) cos uFm1

+ sin (uY11 − uY1m) sin uFm1}

+ s
4

m=3

2=Y12==Y1m=bF 2

F 1bbFm

F 1 b {cos (uY12 − uY1m) cos (uFm1 + uF21)

+ sin (uY12 − uY1m) sin (uFm1 + uF21)}

+2=Y13==Y14=bF 3

F 1bbF 4

F 1b {cos (uY13 − uY14) cos (uF41 + uF31)

+ sin (uY13 − uY14) sin (uF41 + uF41)}. (16)

The influence of a force ratio is dependant upon its phase relationship with both the
mobilities and the other force ratios. All such relationships have the form

f(uY , uF)= cos uY cos uF +sin uY sin uF , (17)

where uY is the phase difference between two mobilities and uF the phase difference between
two force ratios. The fundamental resonance of the system is not seen in the force ratios
and their phase therefore is frequency invarient at, and just beyond, this frequency. Hence,
the transition in the effective point mobility from the smooth lower region to the variable
upper frequency region follows the phase of the mobilities: i.e., at the division between
the mass and resonance controlled regions of the source mobilities.

The normalized estimate Q est P obtained when assuming the effective point mobility
reduces to the point mobility, equation (9), is shown in Figure 8. Again the estimate is
accurate in the mass controlled region large whilst discrepancies occur in the resonance
controlled region. Further, the discrepancies are again within approximate limits of
230 dB with a trend to unity.



-   669

Figure 8. Normalized Q est P for reference system.

The normalized estimate Q est V obtained when assuming that the forces are given by
the quotient of the free velocity at the contact point and the point mobility of the source
at the point, equation (10) is shown in Figure 9. Again, the estimate is seen to be accurate
in the mass region but variable in the resonance region; once more though the trend of
the estimate is that of the true value with the discrepancies within the range of 1023.

For the simple system considered the three force ratio assumptions yield accurate
estimates of transmitted power in the mass controlled region. In the resonance region,
however, all three assumptions introduce discrepancies within a range 230 dB. In this
region, the trend of each estimate does though seem to follow that of the true value.

The model is now used to highlight features expected in real installations i.e., the
influence of the connector positions, the position of the excitation, the structural loss
factor, the receiver structure and the number of connectors can be considered. To prevent
the analysis from being specific to a particular system and to allow it to be more general
a full discussion is deferred until these other systems have been considered.

4.1.    

The results from three other configurations of connector positions were obtained. Two
of these were with non-symmetric positions and one with the connectors placed
symmetrically around a centrally positioned excitation force.

Typical normalized estimates of the transmitted power, Q est U, Q est P and Q est V,
are shown in Figures 10–12. For all three cases the form of the mobility and force ratios

Figure 9. Normalized Q est V for reference system.
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Figure 10. Normalized Q est U for connector set-up 1.

Figure 11. Normalized Q est P for connector set-up 2.

Figure 12. Normalized Q est V for connector set-up 3.

was similar to that seen in the reference system: i.e., they exhibited both mass and resonance
controlled regions.

In the resonance region, the three estimates for all three systems introduce
discrepancies similar in form to those seen for the reference system although with a
different spectrum: i.e., except for a few discrete frequencies the estimate is within
230 dB of the true value.

In the mass region Q est P introduced a small discrepancy for all three systems. The
estimate Q est U however only introduced a difference in one case (connector set-up 1) whilst
Q est V was accurate for all three cases.
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The results suggest that neither of the three simple force ratio assumptions can be
relied upon in the resonance region. In the mass region Q est V seems to be the most
reliable.

4.2.    

Two systems were considered where the position of the excitation force could be varied.
One where the excitation force was in the end bay and one in which a force was positioned
in each bay; here, all the forces have unit magnitude and all are in phase. For both systems
the connector positions were as for the reference system.

For the end bay excitation the force ratio magnitude are shown in Figure 13(a) and the
corresponding phases in Figure 13(b). The form of the ratios is familiar: i.e., a mass
controlled region and a resonance region. In the mass region F 1 and F 2 are in phase, F 1

and F 3 are in phase and F 1 and F 4 are p out of phase. Unlike the reference system the
response in the region is therefore not symmetrical about the centre.

In the resonance region, all three estimates of transmitted power introduce discrepancies
similar to those seen previously; Q est U is shown in Figure 14. In the mass region however,
the discrepancies for Q est U and Q est P were 6 dB and 3 dB respectively. These are larger
than previously observed.

For the force per bay excitation, the magnitudes and phases of the force ratios can be
expected to be similar in form to all those seen previously. It is noted though that in the
mass region, all the forces will be in phase (the system simply moves in a translatory mode)
and the response approximately symmetrical about the centre.

The normalized power estimate Q est P is shown in Figure 15. In the mass region the
estimate is accurate whilst in the resonant region discrepancies familiar in form to those

Figure 13. Magnitude (a) and phase difference (b) of force ratios for end bay excitation. –, F 2/F 1; ---,
F 3/F 1; – –, F 4/F 1.
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Figure 14. Normalized Q est U for end bay excitation.

seen for the other four-point systems are introduced. The results for Q est U and Q est V
were similar.

4.3.    

The effect of the structural loss factor is considered by increasing its value in the
reference system from 0·001 (assumed in the system so far) to 0·01. As regards the source
mobilities, it can be expected [3] that the increased loss factor will decrease the magnitude
of the peaks in the resonance region but have no effect in the mass region.

The magnitudes of the forthcoming force ratios F 2/F 1, F 3/F 1 and F 4/F 1 are shown in
Figure 16. The peaks in the general region have been reduced compared to those of the
reference system.

The estimate Q est V is shown in Figure 17. As a direct consequence of the changes in
mobility, the discrepancies in the resonant region are reduced, cf., Figure 9, and
particularly so at the upper frequencies. The position in frequency of the discrepancies is
however not changed. In the mass region the estimates are as accurate as before. Similar
results were forthcoming for both Q est P and Q est U.

4.4.   

To assess the influence of the receiver structure the thickness of the receiver beam was
reduced to that of the source beam.

Figure 15. Normalized Q est P for force per bay excitation.
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Figure 16. Magnitude of force ratios for 0·01 loss factor. –, F 2/F 1; ---, F 3/F 1; – –, F 4/F 1.

Figure 17. Normalized Q est V for 0·01 loss factor.

Figure 18. Magnitude of force ratios for 5 mm receiver. –, F 2/F 1; ---, F 3/F 1; – –, F 4/F 1.

The ensuing force ratio magnitudes for a 5 mm receiver beam are shown in Figure 18.
These are clearly different to those of the reference system (Figure 6) revealing that the
receiver structure is influential. Their form however is likewise with the other systems: i.e.,
a mass region and a resonance region.

In the mass region the accuracy of all the transmitted power estimates was similar to that
seen for the reference system. In the resonant region however the discrepancies for
Q est P andQ est Uwere reduced such that formany frequencies the discrepancies fell within
the range 215 dB; Figure 19 shows Q est U (compare with Figure 7).
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Figure 19. Normalized Q est U for 5 mm receiver.

4.5.      

To investigate whether the number of connectors influences the accuracy of the power
estimates a system with eight connectors was modelled. As for the reference system, the
connectors were positioned at random (though with a small standard deviation) and the
excitation was maintained as a single force in the central bay. The thickness of the source
and receiver beams were again 5 mm and 17 mm respectively and their material properties
as for the reference system.

The magnitudes of the force ratios associated with the effective point mobility of the
first connector are shown in Figure 20(a) and the corresponding phases in Figure 20(b).
Once again both a mass controlled and a resonant region are observed. In the mass region
the phase of the force ratios indicates that F 1, F 8 are p out of phase with F 2, F 7 and that
F 4, F 5 are p are out phase with F 3, F 6. This indicates that likewise the reference system
the

Figure 20. Magnitude (a) and phase (b) of force ratios for eight connectors. –, F 2/F 1; ---, F 3/F 1; – –, F 4/F 1;
– · · –, F 5/F 1; – · –, F 6/F 1; —, F 7/F 1; - - - -, F 8/F 1.
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Figure 21. Normalized Q est P for eight connectors.

response is approximately symmetrical. In the resonance region, whilst the force ratios are
again within approximate limits of 230 dB their trend has increased from unity to 3 dB.

In the mass region both Q est U and Q est V were accurate whilst Q est P overestimated
by about 5 dB; the normalized power estimate Q est P is shown in Figure 21. In the
resonance region the discrepancies of Q est U and Q est V had a similar form to those for
the other systems. There is however a tendency for Q est P to overestimate in the resonant
region.

5. DISCUSSION

Unfortunately, the amount of data involved in the calculations does not permit a
mathematical discussion. Consider for example the full formulation for the total active
power in a constant force source system of four contact points:

Qtot =Re 6 (V1
sf)2

=Y 11S
s =2 Y11S

r +
(V2

sf)2

=Y22S
s =2 Y22S

r +
(V3

sf)2

=Y33S
s =2 Y33S

r +
(V4

sf)2

=Y44S
s =2 Y44S

r 7 . (18)

To allow the powers through the individual connectors to be compared, a common
denominator would need to be introduced; i.e.,

Qtot =Re 6(V
1
sf)2Y11S

r =Y22S
s ==Y33S

s ==Y44S
s =+(V2

sf)2Y22S
r =Y11S

s ==Y33S
s ==Y44S

s =+· · ·
(=Y11S

s ==Y22S
s ==Y33S

s ==Y44S
s =)2 7 . (19)

Upon remembering that, excluding the effect of different excitation components, each of
the effective point mobilities has the form

YnnS
ii =Ynn

ii + s
N

m=1,m$ n

Ynm
ii

Fm
i

Fn
i

, (20)

it is clear that the number of terms involved makes it impractical to multiply out the
brackets in the equation. The common denominator would for example involve 2562 terms.
Subsequently the influence of a particular force ratio or mobility function cannot be
assessed analytically.
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Observation suggests that the position of the internal excitation is of most significance.
This affects the response of the system and in particular whether in the mass controlled
region it is symmetric or not. If the response is symmetric the accuracy in the mass
controlled region of all three estimates—particularly Q est V—is good. For a
non-symmetric response however the estimates in the region are, though less so for
Q est V, poor. With respect to the force ratios the significant difference between the
symmetric and the non-symmetric system is not that the assumed force ratios in the
symmetric system approximate the true values better but rather that the ratios can be
paired together. For the non-symmetric system they cannot. Because the mobility functions
are independent of the excitation the influential factor must be the symmetrical properties
of the free velocities. This suggests that from free velocity data an engineer could assess
the suitability or otherwise of invoking for the mass controlled region one of the simple
force ratio assumptions. In the resonance region the symmetry of the response does,
though, have little effect upon the accuracy of the estimates of the power and all
are poor.

When the connector positions are altered, though the discrepancies in the resonance
region vary with frequency the trend is unaffected. In the mass region there is no significant
effect. For practical purposes it is suggested therefore that providing the symmetrical
properties of the system response is not dramatically altered, changing the contact
positions has little influence upon the accuracy of the power estimates.

In the mass region, varying the loss factor has no effect upon the accuracy of the power
estimates. In the resonance region, however, the discrepancies reduce as the loss factor
is increased. This suggests a correlation between loss factor and overall accuracy.
If a correlation were qualified and quantified an engineer could, prior to assembly,
obtain the loss factor from mobility data and assess the expected overall accuracy in the
resonance region of a power estimate based upon one of the three simple force ratio
assumptions.

When the mobility of the receiver is increased towards that of the source the receiver
becomes increasingly influential and its presence becomes manifested in the force ratios.
The principal effect is to alter the frequency and magnitude of the resonance peaks. Though
in the initial study a decrease in the magnitude of the peaks was seen, the complexities
of the force ratios are such that this cannot be assumed to be a general result. Likewise,
although the discrepancies between the true transmitted power and the estimates were seen
to decrease, the complexities of the calculations are such that this too is not suggested to
be a general result.

Finally, increasing the number of connectors is seen to have little effect upon the overall
accuracy of the power estimates. This is interesting for it suggests that the discrepancies
are, in general terms, independent of the number of connectors.

6. CONCLUDING REMARKS

An initial investigation has been undertaken to examine the viability of using simple
force ratio assumptions to obtain—via the effective point mobility concept—estimates for
the total transmitted power in a multi-point-connected system. The system considered was
one-dimensional with a finite source and an infinite receiver and the behaviour therefore
highly modal.

For the three simple force ratio assumptions, three estimates were obtaind for a reference
system and the effects of the position of the connectors, the type of excitation, the
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loss factor, the receiver and the number of connectors upon these estimates were
studied.

The results suggest that, when the system is mass controlled and approximates a
symmetrical response, accurate estimates can be obtained. When the response is resonance
controlled, however, all three estimates introduce large discrepancies. A significant
reduction in these is achieved only by increasing the loss factor in the system.

A more detailed study is needed to interpret the results with respect to (i) source
characterization and (ii) application of the effective point mobility to other systems.

For the effective point mobility formulation to become a realizable concept a greater
understanding of the product of force ratio and mobility is required. To do this, one of
two approaches can be taken. Either the product itself can be considered or else the
mobility and force ratio can be considered separately. The first approach can be rejected
since there are limits to the understanding obtained. With the second approach a
distinction is made, however, between the contribution of the structure (the mobility) and
the activity of the source (which contributes to the force). This provides a greater
opportunity for understanding.

An investigation based upon the second approach has been undertaken [11]. This work
is first concentrated upon generalizing structural characteristics and source activity and
then, through a novel approach, the results are applied to obtain generalized statistical
distributions for the force ratios. By using these distributions, statistical distributions for
overall source descriptor functions are then obtained. The work is to be reported in later
papers.
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