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1. 

Figure 1(a) shows a mechanical model which displays friction induced self-sustained
oscillations. Energy is continuously introduced into the system by the moving belt which
slowly drives the two blocks with constant velocity Vdr . Starting from rest, both blocks
stick on the belt while the energy is initially accumulated by the two linear springs which
connect each block with a fixed support, then, when the elastic forces acting on a block
exceed the maximum static friction force (slip condition), the block starts slipping due to
the decreasing magnitude of the dynamic friction (Figure 1(b)). Such a motion changes
the length of the linearly elastic coupling spring and influences the forces acting on the
other block which, eventually, initiates a slipping motion. Finally, if the driving velocity
is not too high, after the dissipation of a certain amount of kinetic energy due to friction,
both blocks stop slipping and stick again on the belt until a new slip condition occurs.
The sequence of stick–slip motions can generate a periodic or a non-periodic motion as
was shown elsewhere [1].

In this letter the interest is in the classification of the bifurcations of the system. The
system is not smooth, with a phase space dimension varying between two, when both
blocks ride on the belt, and four, when both blocks slip, so that the usual analytical or
numerical methods are not easily applicable. In the next section a one-dimensional map
is defined (introduced in [1]) which allows a straightforward identification of the
bifurcational behaviour of the system and the computation of the most significant
Lyapunov exponent. The non-dimensionalized equations of motions [1] are given by:

X� 1 +X1 + a(X1 −X2)=21/(1+ g=V1 −Vdr =), (1a)

X� 2 +X2 + a(X2 −X1)=2b/(1+ g=V2 −Vdr =). (1b)

The conditions which indicate the passage between stick and slip motions are given by:

X1 + a(X1 −X2)=21, X2 + a(X2 −X1)=2b. (2a, b)

Equations (1) and (2) were derived in [1] for the case of blocks with the same mass and
external springs with the same stiffness k1 = k2 = k (see Figure 1). a denotes the ratio
between the coupling spring stiffness and the stiffness of the other two springs kc/k and
can vary between 0 and +a; b corresponds to the ratio between the maximum static
friction force acting on the second mass and the same force acting on the first mass, and
can also vary between 0 and +a; g, the shape coefficient of the dynamic friction law, can
vary between −a and +a. The parameters assume the following values: a=1·2, b=1·3,
g=3·0, while Vdr is kept in the range of small driving velocity, see [1] for more details.
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2.   

If the driving velocity Vdr is not too high the motions of the system are composed of
a sequence of phases in which both blocks stick on the belt (stick phase) or at least one
block slips (slip phase). A stick phase is characterised by a constant value of the variable

d=X2 −X1, (3)

therefore a generic motion of the system generates in a natural way a sequence of values
d0, d1, . . . , dn , which can be thought of as a one-dimensional map of the type:

dn+1 = f(dn), (4)

where f is implicitly defined and it is computed via the numerical integration of the system
dynamics. A similar one-dimensional map, describing a three-dimensional non-smooth
mechanical system with dry friction, was derived and analysed in reference [2].

In [1] it was shown that the system possesses different attractors. In this paper one
concentrates on one of them, the bifurcation path which is entirely contained in the small
driving velocity range. In this way the one-dimensional map is always well defined. Figure
2 shows the bifurcation path of such an attractor. The figure is generated by plotting the
X1 co-ordinate of a three-dimensional Poincaré map. Following the definition given in [1],
a three-dimensional Poincaré section of the four-dimensional phase space is detected by
the condition V1 =0 and the Poincaré map is constituted by the successive values of the
variables (X1, X2, V2) when V1 is equal to zero and passes from negative values to positive
ones. The attractor exists approximately in the range 0·08058QVdr Q 0·170. The
introduction of the above defined one-dimensional map allows the bifurcations which
appear in that diagram to be understood.

2.1. Remark
It is worth noting that for the above defined parameter set, the variable d is contained

in the range −0·6764705882Q dQ 0·6764705882. Therefore in the following Figures 3, 4
and 5, only the portions of the one-dimensional map corresponding to the attractor of

Figure 1. (a) Mechanical system; (b) friction characteristics.
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Figure 2. Bifurcation diagram of an attractor. The X1 co-ordinate of the Poincaré section is plotted versus
the driving velocity.

Figure 2 are shown. Clearly other branches belong to the map but they lie out of the zones
shown in the figures and correspond to other attractors.

3. 

3.1. Collision of the attractor with the basin boundaries
The introduction of the one-dimensional map allows one to identify the sudden crisis

of the chaotic attractor. Figure 3 shows the evolution of the one-dimensional map as the
parameter Vdr decreases. When Vdr decreases the permanent branches of the map spread
towards the boundaries of the basin. The attractor disappears for the value Vdr 1 0·08058
associated with the collision of the attractor with its basin boundaries. Consequently it is
believed that a similar collision takes place in the four-dimensional phase space, between
the attractor and a stable manifold [3].

Figure 3. Collision between chaotic attractor and its basin boundaries. Thick lines indicate the attractor
whereas thin lines indicate transient motions.
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Figure 4. Period doubling bifurcation. Vdr values (a) 0·0838; (b) 0·0842; (c) 0·0838; (d) 0·0842.

3.2. Flip bifurcations
In the range of driving velocities 0·0820QVdr Q 0·0840 the system dynamics seem to

undergo a reverse period-doubling cascade which is clearly described and confirmed by the
use of the one-dimensional map. In Figure 4(a) the second iterated map is shown to have
two stable attractors separated by an unstable fixed point. As the driving velocity increases
the shape of the map changes in such a way that the three fixed points collapse into a
unique stable fixed point shown in Figure 4(b). In the same way it is possible to show that
the bifurcation close to the value Vdr 1 0·1432 is a flip bifurcation.

3.3. Fold bifurcation
The attractor disappears at a fold bifurcation of the second iterated map for Vdr 1 0·170.

Figure 5(a) shows f 2 for Vdr =0·165. The second iterated map has two stable fixed points,

Figure 5. Fold bifurcation.
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Figure 6. Convergence of some calculations of Lyapunov exponents.

separated by a central unstable fixed point, and two other external unstable fixed points
that are the boundaries of the basin of attraction of the stable solutions. As Vdr increases
the shape of the map changes and the stable intersections of the map with the bisection
line coincide with the two external unstable ones and then disappear as can be seen in
Figure 5(b) for Vdr =0·175. The unstable fixed point exists also for larger values of Vdr .

4.  

As described in the previous section the non-smooth four-dimensional system can be
reduced to a one-dimensional map. By means of this reduction three Lyapunov exponents
have been lost. Loosely speaking, since the phase dimension of the system varies between
two and four, two Lyapunov exponents can be considered as l3:−a, l4:−a because
of the degeneration of the motion along the stick phases. A third exponent equals zero,

Figure 7. Bifurcation diagram and corresponding Lyapunov exponent in the range 0·0807 QVdr Q 0·0829.
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corresponding to a perturbation in the tangential direction. The fourth exponent can be
evaluated by computing the one-dimensional map. In the case of one-dimensional maps,
the Lyapunov exponent can be given as [2, 4]:

l= lim
n:a

1
n

s
n

i=1

ln = f '(dn)=. (5)

Figure 6 shows the computed Lyapunov exponent for two different values of the driving
velocity and Figure 7 shows the good agreement existing between the bifurcation diagram
and l values in the range 0·0806QVdr Q 0·0829. One observes that where period doubling
occurs the slope of the map is f '=−1 and therefore the Lyapunov exponent is l=0 as
can be clearly seen in the figure. The Lyapunov exponents of non-smooth systems can be
computed in a different way [5], but the approach presented here is more suitable for the
system under investigation.

5. 

In this letter a one-dimensional map has been introduced in order to classify the
bifurcations of a non-smooth dynamical system with four-dimensional phase space. The
same map reduction can be utilised to evaluate the unique unknown Lyapunov exponent
of the system, so that it is possible to clearly diagnose the chaotic nature of some motions.
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